
Local Bootstrap Approach for the Estimation of
the Memory Parameter

J. Arteche and J. Orbe ∗

Abstract— The log periodogram regression is widely
used in empirical applications because of its simplicity
to estimate the memory parameter, d, its good asymp-
totic properties and its robustness to misspecification
of the short term behavior of the series. However,
the asymptotic distribution is a poor approximation
of the (unknown) finite sample distribution if the sam-
ple size is small. Here the finite sample performance
of different nonparametric residual bootstrap proce-
dures is analyzed when applied to construct confi-
dence intervals. In particular, in addition to the basic
residual bootstrap the local bootstrap that might ad-
equately replicate the structure that may arise in the
errors of the regression is considered when the series
shows weak dependence in addition to the long mem-
ory component. Bias correcting bootstrap to adjust
the bias caused by that structure is also considered.

Keywords: bootstrap, confidence interval, log peri-

odogram regression, long memory

1 Introduction

Long memory processes are characterized by a strong de-
pendence such that the lag-j autocovariances γj decrease
hyperbolically as j →∞

γj ∼ Gj2d−1

for some finite constant G, d is the memory parameter
and a ∼ b means that a/b tends in the limit to 1. For
d > 0,

∑ |γj | = ∞ but stationarity is guaranteed as long
as d < 1/2 and mean reversion holds for d < 1. It is also
usually assumed that d > −1/2, which warrants invert-
ibility. Long memory can alternatively be defined in the
frequency domain. A stationary time series process has
long memory if its spectral density function f(·) satisfies

f(λ) ∼ C|λ|−2d as λ → 0, (1)

for some positive finite constant C. Under positive long
memory, which is the most common case in economic and
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financial series, the spectral density diverges at the origin
at a rate governed by d. If d > 1/2 the process is not sta-
tionary and, by definition, the spectral density does not
exist. However pseudo spectral density functions can be
similarly defined (e.g. [1]) with a behavior as in (1). One
issue of main interest in these processes is the estimation
of d. Perhaps the most popular is the log periodogram
regression estimator (LPE hereafter) originally proposed
by [2] and analyzed in detail in [3] and [4]. The LPE is
widely used in empirical applications because of its sim-
plicity, since only a least squares regression is required,
its good asymptotic and finite samples properties and its
robustness to misspecification of the short term behavior
of the series. Taking logarithms of the local specification
of the spectral density in (1), the LPE (d̂) is obtained by
least squares in the regression

log Ij = a + dXj + uj , j = 1, ...,m, (2)

where Xj = −2 log λj , a = log C + c, c = 0.577216
is Euler’s constant, Ij = (2πn)−1|∑n

t=1 xt exp(−itλj)|2
is the periodogram of the series xt, t = 1, .., n, at
Fourier frequency λj = 2πj/n, n is the sample size,
uj = log(Ijf(λj)−1)−c and m represents the bandwidth,
that is the number of frequencies used in the estimation.
For the asymptotics, this bandwidth has to increase with
n but at a slower rate such that the band of frequencies
used in the estimation degenerates to zero and the local
specification in (1) remains valid. [3] and [4] proved the
consistency of d̂ in the stationary and invertible region
−0.5 < d < 0.5, and obtained its limit distribution

√
m(d̂− d) d→ N

(
0,

π2

24

)
. (3)

Reference [1] showed that the consistency holds even in
the nonstationary region [0.5, 1) and the same limit dis-
tribution remains valid for d ∈ [0.5, 0.75).

In practice the choice of the bandwidth is crucial, a large
m decreases the variance at the cost of a higher bias which
can be extremely large in some situations, for example in
the presence of some short term component such as those
analyzed below. The choice of an optimal bandwidth is
not a simple task. Some attempts have been made in [5],
[6] and [7]. However, the performance of all these proce-
dures is not very satisfactory and the results for a grid of
bandwidths are usually shown in empirical applications.
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The log-periodogram estimation of the memory param-
eter in economic series raises the problem of the small
sample size since many economic time series consist of
low frequency, monthly ([8]), quarterly ([9] and [10]) or
even yearly ([9] and [10]) data. Furthermore, if the se-
ries shows a rich spectral behavior around the origin the
bandwidth has to be low enough to avoid a large bias in
the estimation of d ([11]). Also the strong seasonality in
many quarterly and monthly economic series compels the
use of a small bandwidth to avoid distorting influence of
neighbouring seasonal spectral poles ([12]). As a result
the number of frequencies used in the estimation is small
and, as noted in [13], the asymptotic distribution in (3)
is a poor approximation of the small sample distribution
of d̂. In this situation, the bootstrap could be a useful
tool to make inference without relying on the asymptotic
probability distribution.

In the LPE setup the bootstrap is carried out previously
to the definition of the regression model (2) and the boot-
strapped dependent variable is then the logarithm of the
periodogram of the bootstrap samples. Reference [14]
proposed instead to bootstrap directly the residuals in
the regression (2) avoiding in that way the necessity to
deal with the temporal dependence of xt with the corre-
sponding computational savings and robustness against
misspecification. We focus here in this last approach and
analyze the implementation of different bootstraps on the
coverage of confidence intervals.

As already mentioned, the LPE can be highly biased in
the presence of some weak dependent component. Refer-
ence [15] shows that an autoregressive or moving-average
component in an ARFIMA model can seriously distort
the estimation of the memory parameter with a large
bias. The source of the bias is the effect of these short
memory components on the spectral behavior around fre-
quency zero such that the approximation (1) is only re-
liable for frequencies very close to the origin. This weak
dependence, not considered in the regression in (2), af-
fects the behavior of uj such that it shows some remain-
ing structure. To try to capture this structure we con-
sider a version of the local bootstrap of [16], applied also
in a similar long memory context by [17], and compare
its performance with the nonparametric residual boot-
strap. We are also concerned with the effects of the bias
in the LPE and evaluate the capacity of different bias
corrections usually employed in the bootstrap literature,
namely the Bias Corrected (BC) percentile of [18], the
accelerated Bias Corrected (BCa) percentile [19] and the
Constant Bias Correcting (CBC) estimator of [20]. In
addition the bootstrap-t method of [18], which implicitly
includes a bias adjustment, is also examined.

The paper is organized as follows. Section II describes
the different bootstrap procedures that we analyze in the
Monte Carlo in Section III. Finally Section IV concludes.

2 Different bootstraps procedures in
LPE

Here the bootstrap to calculate confidence intervals for
the LPE that improve standard confidence intervals
based on the asymptotic distribution in a small sample
size situation is used. We focus on a bootstrap in a regres-
sion context, using a nonparametric residual bootstrap
since the regressor is based on non stochastic Fourier fre-
quencies and we do not assume any probability distribu-
tion for the error term in the regression model, involving
a nonparametric resampling of the residuals.

2.1 Residual bootstrap (RB)

The appropriate performance of this bootstrap in the
LPE context over other procedures, such as the wild boot-
strap, has been discussed in [14]. The residual bootstrap
for the log periodogram regression follows these steps:

1. Obtain the LPEs, â, d̂, by OLS in the regression (2)
and the residuals ûj = log Ij − â − d̂Xj . Construct
the modified residuals v̂j = ûj/(1− hj)1/2.

2. Resampling with replacement from the modified
residuals v̂j , and giving equal probability 1/m to
every residual, get B bootstrap samples v̂∗bj , b =
1, 2, ..., B and j = 1, ..., m. Using the empirical
distribution function of the residuals and based on
model (2) we obtain the corresponding bootstrap de-
pendent variable log I∗bj = â + d̂Xj + v̂∗bj .

3. Fit the regression model (2) in each bootstrap sample
to obtain the B bootstrap estimates d̂∗b , b = 1, ..., B.

2.2 Residual local bootstrap (RLB)

The RB implicitly assumes that the errors do not have
any structure and their behavior approximate an iid se-
quence. This can be quite unrealistic, especially when the
long memory series contains also a short memory compo-
nent. We propose here a version of the local bootstrap
([16]) that tries to capture the structure of the errors by
bootstrapping only in a neighborhood of each observa-
tion. It follows these steps:

1. Step 1 in the RB.

2. Select a resampling width km ∈ N , km ≤ [m/2] for
[·] denoting ”the integer part of”.

3. Define i.i.d. discrete random variables S1, ..., Sm tak-
ing values in the set {0,±1, , ...,±km} with equal
probability 1/(2km + 1).

4. Generate B bootstrap series v̂∗bj = v̂|j+Sj | if |j+Sj | >
0, v̂∗bj = v̂1 if j + Sj = 0 for b = 1, 2, ..., B.
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5. Generate B bootstrap samples for the dependent
variable log I∗bj = â + d̂Xj + v̂∗bj for b = 1, 2, ..., B.

6. Fit the regression model (2) in each bootstrap sample
to obtain the B bootstrap estimates d̂∗b , b = 1, ..., B.

These bootstrap techniques are used to construct confi-
dence intervals trying to improve the coverage of confi-
dence intervals based on the asymptotic distribution:

CI(1−α) =
(
d̂− z1−α

2
ŝe(d̂); d̂− zα

2
ŝe(d̂)

)

where ŝe(d̂) is the OLS estimate of the standard error and
zα indicate de 100 · αth percentile of a N(0, 1) distribu-
tion. The use of the OLS standard error ŝe(d̂) instead of
the asymptotic variance in (3) has proved to significantly
improve the finite sample coverage probabilities.

For each of the bootstrap resampling strategies we con-
sider five different classes of bootstraps confidence inter-
vals for d parameter: the percentile interval (P), the con-
stant bias correction percentile interval (CBC), the bias
corrected interval (BC), the accelerated bias corrected in-
terval (BCa) and the bootstrap-t interval (b-t).

1) The basic percentile method (P), proposed by [21]:

CI(1−α) =
(
d̂∗((B+1)( α

2 )) ; d̂∗((B+1)(1−α
2 ))

)
.

where the d̂∗(j) denotes the jth ordered value of the boot-
strap estimates of d.

2) Reference [20] proposed a method for reducing the
finite sample bias of consistent estimators using a pre-
bootstrap estimation of the bias. The constant bias cor-
recting (CBC) estimator is obtained as d̃ = d̂ − b̂ where
b̂ is a bootstrap estimate of the finite sample bias of d̂.

CI(1−α) =
(
d̃∗((B+1)( α

2 )) ; d̃∗((B+1)(1−α
2 ))

)
.

3) In order to improve the coverage probability of the
basic percentile interval [18] introduced the bias-corrected
(BC) percentile. The CI is then constructed as

CI(1−α) =
(
d̂∗((B+1)( α̂

2 )) ; d̂∗((B+1)(1− α̂
2 ))

)
,

where

α̂

2
= Φ

(
2k0 + zα

2

)
and 1− α̂

2
= Φ

(
2k0 + z1−α

2

)
,

Φ is the standard normal cumulative distribution function
and k0 is the bias-correction parameter.

4) The accelerated bias-corrected (BCa) percentile
method of [19] is defined as

CI(1−α) =
(
d̂∗((B+1)( α̃

2 )) ; d̂∗((B+1)(1− α̃
2 ))

)
,

where
α̃

2
= Φ

(
k0 +

k0 + zα
2

1− s
(
k0 + zα

2

)
)

and

1− α̃

2
= Φ

(
k0 +

k0 + z1−α
2

1− s
(
k0 + z1−α

2

)
)

.

If s = 0, this confidence interval will be equal to the BC
confidence interval. In addition, if the k0 = 0, we are in
the basic percentile case.

5) The percentile-t or bootstrap-t method ([18]) is based
on a given studentized pivot, in this case: t = d̂−d

ŝe(d̂)
. The

resulting (1− α) confidence interval is

CI =
(
d̂− ŝe(d̂)t∗((B+1)(1−α

2 )); d̂− ŝe(d̂)t∗((B+1)( α
2 ))

)

For a more detailed description of these and others boot-
strap resample procedures and confidence intervals see,
for example, [22] or [23].

3 Monte Carlo simulation study

Table 1: LPE 95% confidence intervals coverage for m = 5

AR(1) p=0.9 AR(1) p=0.3
d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym
72.8 72.8 76.9 85.9 85.5 86
1.790 1.756 1.560 1.766 1.761 1.704

RB
P 70.5 71.4 75.2 84.7 84.9 85.4

1.734 1.702 1.520 1.714 1.713 1.657
CBC 71 72.3 75.6 84.7 85.3 85.8

1.769 1.737 1.553 1.749 1.749 1.690
BC 70.9 70.7 75.1 83.9 84.9 85.3

1.725 1.693 1.511 1.704 1.706 1.648
BCa 70.9 71.4 75.3 84.3 84.7 85.4

1.740 1.706 1.525 1.719 1.717 1.662
b-t 91.8 88.5 90 95.2 94.8 95.3

2.849 2.802 2.481 2.813 2.806 2.709
RLB(2)

P 66 68.6 73.6 90.5 90.1 91.3
1.668 1.636 1.443 1.631 1.631 1.579

CBC 70.6 70.7 72.4 89.2 89.9 89.9
1.813 1.781 1.574 1.783 1.789 1.727

BC 62.5 64 64.2 80 80.6 79.3
1.561 1.524 1.355 1.536 1.518 1.463

BCa 61.5 63.4 64.4 80.8 80 79.3
1.559 1.527 1.356 1.537 1.518 1.465

b-t 89.4 87.3 89.1 95.5 94.4 94.6
2.714 2.665 2.383 2.698 2.668 2.574

RB and RLB(km) denote the residual bootstrap and the residual local bootstrap

with resampling width km. In each cell the first number is coverage frequency in

percentages over 1000 simulations and the number below it is the average length

of the interval. Asym, P, CBC, BC, BCa and b-t denote the confidence intervals

based on the asymptotic distribution, the basic percentile, the constant bias

correcting percentile, the bias corrected, the accelerated bias corrected and the

bootstrap-t respectively.

The performance of the bootstrap in LPE based confi-
dence intervals is assessed in two different type of models:

• Model 1: (1− 0.9L)(1− L)dxt = ε1t
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Table 2: LPE 95% confidence intervals coverage for m = 10

AR(1) p=0.9 AR(1) p=0.3
d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym
34.7 38.5 47 92.2 89.6 91
1.097 1.068 0.907 1.085 1.097 1.053

RB
P 37.7 40.5 49 92.4 90.1 90.6

1.102 1.073 0.916 1.086 1.100 1.052
CBC 37.1 40.4 48.9 92.5 90.5 91

1.104 1.074 0.917 1.088 1.102 1.054
BC 39.1 43.5 51.5 92.5 90.5 91.3

1.102 1.073 0.916 1.087 1.101 1.053
BCa 39 43.4 51.3 92.5 90.4 91.3

1.102 1.073 0.915 1.086 1.101 1.053
b-t 50 53.6 62.6 95.2 94.4 95.2

1.297 1.263 1.073 1.285 1.300 1.246
RLB(2)

P 25.8 28.8 36.7 88.9 85.6 87
0.954 0.929 0.792 0.929 0.948 0.895

CBC 26.2 30.7 38 87.6 82.9 84.8
0.967 0.940 0.803 0.942 0.960 0.906

BC 26.1 30.6 38.1 83.7 79.8 81.7
0.947 0.920 0.793 0.924 0.942 0.892

BCa 26 30.6 38.1 83.7 79.8 81.6
0.947 0.920 0.794 0.923 0.941 0.892

b-t 44.5 48.3 57.2 93.4 92.7 93.6
1.275 1.229 1.086 1.236 1.261 1.190

RLB(4)
P 28.8 32.8 42 93.6 91.8 93

1.044 1.018 0.862 1.018 1.040 0.990
CBC 33.7 37.3 44.3 90.1 87.2 88.6

1.053 1.025 0.867 1.032 1.051 1.000
BC 34.3 38.4 44.1 86.1 82.6 86.1

1.030 1.006 0.856 1.005 1.027 0.974
BCa 34.2 38.1 44 86.1 82.5 86

1.030 1.006 0.856 1.004 1.027 0.974
b-t 47 52.8 64 97 96 97.2

1.314 1.278 1.118 1.284 1.310 1.249

• Model 2: (1− 0.3L)(1− L)dxt = ε1t

where L is the lag operator (Lxt = xt−1), ε1t and ε2t are
independent standard normal series and d ∈ (0, 0.4, 0.8).
For d = 0 the series are short memory such that the spec-
tral density function is positive, bounded and continuos
at every frequency. The value d = 0.4 corresponds to
a stationary long memory series with a spectral density
diverging at the origin. For d = 0.8 the series is nonsta-
tionary and mean reverting. Note that in this case the
asymptotic distribution in (3) does not apply and the
LPE, although consistent, has a nonnormal limit distri-
bution that depends on d (non pivotal).

These models belong to the ARFIMA class and have a
spectral (pseudospectral in the nonstationary case) den-
sity function

f(λ) =
1
2π

[2 sin
(

λ
2

)
]−2d

|1− φe−iλ|2 ∼ 1
2π(1− φ)2

|λ|−2d as λ → 0

for φ = 0.9, 0.3 in Models 1 and 2 respectively. Both
include an AR(1) short memory component with moder-
ate (Model 2) and high (Model 1) dependence that gives
rise to a bias in the LPE if a large bandwidth is used,
especially in Model 1.

Since the bootstrap is essentially beneficial with a low
sample size, we only consider n = 128, which is compa-
rable to the number of observations in many economic
series. For each model three bandwidths are considered
m = 5, 10 and 20. For the local bootstrap we use differ-
ent resampling widths km = 2 (for m = 5), km = 2, 4 (for
m = 10) and km = 2, 4, 8 (for m = 20). Since the results
are very sensitive to the choice of the bandwidth we also

Table 3: LPE 95% confidence intervals coverage for m = 20

AR(1) p=0.9 AR(1) p=0.3
d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym
2.8 4 20.1 90.8 89.6 87.7

0.696 0.678 0.522 0.687 0.690 0.676
RB
P 3.6 5.6 22.9 92.7 91.1 89.4

0.703 0.685 0.531 0.691 0.696 0.681
CBC 3.7 5.8 22.8 92.4 90.8 89.4

0.703 0.685 0.531 0.691 0.696 0.681
BC 4.7 7.4 25.2 92.6 91 90.4

0.705 0.687 0.532 0.693 0.698 0.684
BCa 4.7 7.4 25.2 92.6 91 90.4

0.705 0.687 0.532 0.693 0.698 0.684
b-t 5.1 7.6 25.6 94.5 92.5 92

0.749 0.729 0.561 0.738 0.742 0.727
RLB(2)

P 4 6 22.2 83.4 81 79
0.625 0.610 0.492 0.594 0.598 0.576

CBC 4.2 6.4 22.6 83.3 80.8 77.7
0.629 0.614 0.496 0.598 0.602 0.578

BC 4.5 6.6 23.3 81 78.6 76
0.625 0.613 0.496 0.597 0.601 0.579

BCa 4.5 6.6 23.3 81 78.6 76
0.625 0.613 0.496 0.597 0.601 0.579

b-t 5.7 7.7 27.5 90.1 87.9 84.7
0.712 0.698 0.584 0.672 0.681 0.653

RLB(4)
P 5.2 6.8 25.4 87.5 84.7 83.2

0.677 0.656 0.531 0.644 0.650 0.626
CBC 5.6 7.7 24.2 87.2 85 82.1

0.677 0.659 0.532 0.646 0.651 0.627
BC 7.3 9.2 26.2 85.1 82.2 79.3

0.676 0.657 0.532 0.645 0.650 0.625
BCa 7.3 9.2 26.2 85.1 82.2 79.3

0.676 0.657 0.532 0.645 0.650 0.625
b-t 6.2 9.1 31.1 92.9 92.1 89.5

0.764 0.746 0.621 0.723 0.733 0.705
RLB(8)

P 4.2 6 26.4 90.1 88.8 86.5
0.698 0.676 0.543 0.677 0.681 0.659

CBC 6.2 8.1 25.7 88.8 86.4 84.4
0.695 0.672 0.541 0.675 0.679 0.660

BC 10.1 11.4 27.5 86.3 84.8 81.5
0.700 0.680 0.542 0.679 0.683 0.659

BCa 10.1 11.4 27.5 86.3 84.8 81.5
0.700 0.680 0.542 0.679 0.683 0.659

b-t 4.7 7.6 32 94.2 92.9 92.8
0.763 0.747 0.611 0.739 0.746 0.724

consider the plug-in optimal bandwidth proposed by [7]
and defined as m∗ = Ĉn4/5 for

Ĉ =
(

27
128π2

)1/5

K̂−2/5

where K̂ is obtained as the third coefficient in an ordi-
nary linear regression of log Ij on (1,−2 log λj , λ

2
j/2) for

j = 1, 2, ..., Anδ, with 4/5 < δ < 1 and A an arbitrary
constant. Following [7], we use δ = 6/7 and A = 0.25.
Note that this optimal bandwidth is only consistent for
Models 1 and 2 in the stationary region, but we use it
also in the rest of cases for illustrative purposes. In prac-
tice m∗ is obtained as the median of the optimal band-
widths in 1000 series generated in each model. The use
of the median instead of the mean avoids the distorting
effect of extreme cases. We get in this way m∗ = 12 and
13 for Models 1 and 2 respectively. The optimal band-
width is quite robust to different values of d (for large
d the optimal bandwidth differs at most one unity from
the corresponding optimal bandwidth for low d) and we
use the same m∗ for all d. The number of bootstraps
is B = 999 which is large enough for the calculous of
confidence intervals ([22]). The number of simulations is
1000.

Tables 1-4 show the coverage frequencies in percentage
(first number in each cell) and the average length of the
interval (under the frequencies) of confidence intervals for
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Table 4: LPE 95% confidence intervals coverage for optimal band-
width m∗

AR(1) p=0.9 AR(1) p=0.3
d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym
22.6 25.4 39.6 91.5 92.4 89.9
0.971 0.946 0.762 0.904 0.908 0.883

RB
P 26.9 28.6 41.8 91.9 92.4 90.7

0.977 0.952 0.773 0.908 0.914 0.887
CBC 27.1 28.6 41.5 92.1 93 91

0.978 0.952 0.774 0.909 0.914 0.887
BC 29.3 31.1 43.6 91.8 92.7 90.9

0.979 0.952 0.774 0.911 0.916 0.889
BCa 29.2 30.9 43.6 91.9 92.6 91

0.978 0.951 0.774 0.911 0.916 0.888
b-t 35.2 38.6 51.3 94.3 95.3 93.7

1.109 1.077 0.871 1.018 1.025 0.995
RLB(2)

P 17.2 20.6 35 86.5 86.7 83.2
0.840 0.826 0.675 0.785 0.783 0.757

CBC 17.7 21 34.9 83.9 86.2 82
0.847 0.835 0.683 0.793 0.790 0.765

BC 17.8 21.1 35.1 81.3 82.8 79.8
0.838 0.826 0.680 0.788 0.787 0.758

BCa 17.8 21.1 35.1 81.3 82.8 79.8
0.838 0.826 0.680 0.788 0.787 0.758

b-t 31.1 32.9 47.4 92.5 92.8 90.3
1.059 1.040 0.886 0.975 0.971 0.939

RLB(4)
P 19.5 23.7 39.8 91.1 91.5 88.3

0.919 0.906 0.736 0.854 0.856 0.827
CBC 21.8 24.8 38 87.8 89.8 85.9

0.922 0.910 0.738 0.858 0.862 0.832
BC 23.2 27.7 40.7 83.9 85.2 82.2

0.910 0.897 0.735 0.850 0.853 0.822
BCa 23.1 27.7 40.7 83.8 85.2 82.1

0.910 0.897 0.734 0.850 0.853 0.822
b-t 34.4 37.5 53.4 95.2 96 93.6

1.117 1.101 0.927 1.027 1.030 0.993
RLB(6)

P 19.9 24.5 40.5 92.7 94.6 91.1
0.949 0.933 0.755 0.883 0.884 0.859

CBC 25.3 28.1 40.2 88.3 90.6 86.4
0.954 0.938 0.758 0.888 0.888 0.862

BC 28.1 31 41.9 84.4 86.2 83
0.938 0.924 0.752 0.878 0.878 0.852

BCa 27.8 31 41.8 84.4 86.2 83
0.938 0.924 0.752 0.878 0.879 0.852

b-t 31.5 36.7 55.1 96.5 96.8 95
1.107 1.093 0.910 1.021 1.027 0.993

a 95% nominal confidence level over 1000 Monte Carlo
replications with bandwidths m = 5, 10, 20 and m∗. The
following conclusions can be extracted: i) The bootstrap
confidence intervals clearly beats the asymptotic distri-
bution with better coverage frequencies. ii) The different
bias correction techniques are only slightly beneficial in
Model 1 with a large bandwidth where the bias of the
LPE is especially large. The BC and BCa give better re-
sults in terms of coverage frequencies than the CBC and
the basic P. However the bootstrap-t generally overcomes
all the others even in these highly biased situations. iii)
The choice of the bandwidth is crucial. The best results
are obtained with a low bandwidth when there is a highly
dependent short memory component (Model 1) and with
a larger bandwidth for models with low dependent short
memory component (Model 2). Especially harmful is the
use of a large bandwidth (m = 20) in Model 1, with very
low coverage frequencies. iv) The performance of the lo-
cal bootstrap depends on the choice of the resampling
width km. Reference [17] suggested a value of km = 1 or
2. These values can be too small when the short mem-
ory component is of lesser importance and a larger km

gives better results in these cases. An excessively large
km can however be harmful in those cases where the esti-
mator is subject to a large bias as in Model 1 with a large
bandwidth. Thus a larger km should be chosen when the
bias component is low. In this situation a large band-

width should also be used. Then, as a rule of thumb, a
larger km can be chosen when the optimal bandwidth m∗

is large and a low m∗ should be accompanied by a small
km. For the optimal bandwidths in table 4 we found
that a value around km = 4 is adequate. v) The optimal
bandwidth of [7] is obtained by minimizing an asymp-
totic approximation of the mean squared error of the LPE
but need not give the best coverage frequencies. This is
the case in Models 1 where the bias component is espe-
cially large and better coverage frequencies are achieved
with a lower bandwidth than the optimal m∗ in Table 4.
vi) Overall the basic and local residual bootstrap-t give
the best performances. Table 5 displays the outcome ob-
tained with the asymptotic distribution and the RB and
RLB bootstrap-t with the values of m and the resampling
width km that give the best coverage frequencies. Note
that the optimal bandwidth m∗ does not generally cor-
respond to the best performance. The improvements of
the bootstrap over the asymptotic distribution are signif-
icant. The local bootstrap gives similar coverages to the
basic residual bootstrap but with narrower intervals.

Table 5: Best results for coverage frequencies with asymptotic distri-
bution and bootstrap-t

AR(1) p=0.9 AR(1) p=0.3
d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym
m 5 5 5 10 m∗ 10
cov 72.8 72.8 76.9 92.2 92.4 91

ampl 1.790 1.756 1.560 1.085 0.908 1.053
RB
m 5 5 5 10 5 10
cov 91.8 88.5 90 95.2 94.8 95.2

ampl 2.849 2.802 2.481 1.285 2.806 1.246
RLB
m 5 5 5 m∗ 5 m∗

km 2 2 2 4 2 6
cov 89.4 87.3 89.1 95.2 94.4 95

ampl 2.714 2.665 2.383 1.027 2.668 0.993

4 Conclusion

This paper shows the improvements of some residu-
als based nonparametric bootstrap strategies over the
asymptotic distribution of the LPE in the construction
of confidence intervals with a small sample size. It is
noteworthy the crucial role played by the choice of the
bandwidth. The coverage frequencies and length of the
confidence interval vary significantly with m and an ap-
propriate m should be selected as a first step. The RB
and the RLB bootstrap-t seems to perform well with an
appropriate selection of the resampling width. We have
proposed a rule of thumb for approximate selection of
the resampling width of the RLB linked to the optimal
bandwidth estimation of [7], a high optimal bandwidth
requires a high resampling width. The advantage of us-
ing the RLB over the RB is the reduction of the length
of the confidence intervals without significantly affecting
the coverage.

Our analysis has focused on the basic LPE, which is the
most popular method of estimation of the memory pa-
rameter. There have been recently further refinements
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either in a linear regression setup or in a nonlinear regres-
sion approach. For example [24] proposed a bias reduced
LPE by including linearly extra regressors that account
for the weak dependent components. This extension can
be applied to ARFIMA models such as Models 1 and 2
in our Monte Carlo.
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