
  
Abstract This paper provides estimation of reliability of a 
component subjected to life testing and the procedure includes 
essentially polling of two samples of failure data, where the 
component follows exponential failure model. We assumed that 
some prior information is available in the form of an initial 
guess value ( oθ ) about the value of the parameter (θ ) of 
exponential distribution from the past, and proposed a two 
stage shrinkage pooling estimator (TSPE) of reliability function 
of exponential distribution using complete failure data. The 
expressions for the bias, mean squared error, expected sample 
size and relative efficiency are derived. Conclusions regarding 
the constants involved in the proposed estimator are presented. 
Simulation, comparisons, and numerical results are reported. 
The proposed estimator fairs better than the classical two stage 
pooling estimator.  
 

Index Terms exponential failure model, reliability 
function, relative efficiency, two stage shrunken. 

 

I. INTRODUCTION 

    The goal of system modeling is to provide quantitative 
forecasts of various system performance measures such as 
downtime, availability, number of failures, capacity, and 
cost. Evaluation of these measures is important to make 
optimal decisions when designing a system to either 
minimize overall cost or maximize a system performance 
measure within the allowable budget and other 
performance-based constraints. 
In general, the shape or type of failure distribution depends 
upon the component's failure mechanisms. Similarly, the 
shape or type of repair distribution depends upon several 
factors associated with component repairs. Several methods 
are used to determine the distribution that best fits a given 
failure or repair pattern. Or, if failures or repairs are known to 
follow a particular distribution, the specific parameters that 
define this pattern can be determined by using the known 
failure and repair times.  
As noted earlier, determining the failure and repair 
distributions of your system and its components is a 
significant part of evaluating the reliability of your design. If 
the failure rate is constant, which is generally true for 
electronic components during the main portion of their useful 
life, the reliability of the component follows an exponential 
distribution with p.d.f. 
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In the context of reliability evaluation and life testing, a 
number of engineering data have been examined (see [5] and 
[14]) and it was shown that the exponential distribution give 
quite a good fit for most cases. Furthermore, the exponential 
distribution is a very commonly used distribution in 
reliability engineering and has a wide range of applications in 
analyzing the reliability and availability of electronic 
systems, various queuing networks, and Markov chains; 
whereas the reliability of a given system (or component) for a 
given time has been defined as the probability that the system 
(or component) has a length of life greater than t, i.e.,  
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 The classical estimator θ̂  of θ  and hence of )(tR  can 
easily be obtained without any complicated mathematical aid. 
The problem of estimation of θ  and )(tR   was considered 
by several authors (see [5] and [14]).  
 

2. INCORPORATING A GUESS VALUE ,oθ  AND TSPE 

   In many practical circumstances, physical experts have 
some prior information regarding the value of θ  due to past 
experiences, and apply it latently to inference of the actual 
model. However, in certain situations the prior information is 
available only in the form of an initial guess value (natural 
origin) oθ  of θ . For example, a bulb producer may know 
that the average life time of his product may be close to 1000 
hours. Here we may take .1000=oθ  In such a situation it is 

natural to start with an estimator θ̂   (e.g. MLE) of θ  and 
modify it by moving it  closer to oθ , so that the resulting 
estimator, though perhaps biased, has smaller mean squared 
error than that of θ̂  in some interval around oθ . This 

method of constructing an estimator of θ  that incorporates 
the prior information oθ  leads to what is known as a 
shrunken estimator.  

A standard problem in life testing deals with 
estimation of the parameter θ  and  )(tR  on the basis of less 
time and minimum cost of experimentation. The cost of  
experimentation can be achieved by using any prior 
information  available about θ  and devising a two stage 
shrunken pooling estimator (TSPE) in which it is possible to 
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obtain an estimator from a small first  stage sample and an 
additional second stage sample is required only if this 
estimator is not reliable. A TSPE of θ  is defined as follows: 

let 11 ,...,2,1, niX i =  be a random sample of size 

,1 nn <  where the variables are distributed with p.d.f. (1) 

and 1̂θ  be a good estimator of θ  based on 1n  observations. 
Construct a region R  in the space of ,θ  based on the prior 

value Oθ  and an appropriate criterion. If ,1̂ R∈θ  use the 

estimator ,)ˆ( 1 ook θθθ +−  for θ  where .10 ≤≤ k  But 

if R∉1̂θ , obtain 1222 ,,...,2,1, nnnniX i −==  

,compute 2θ̂ , and then pool 1̂θ  and 2θ̂ to find 

./)ˆˆ(ˆ
2211 nnn θθθ +=  The TSPE of θ  is thus given by  

 

}{ ,ˆ])ˆ([~
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where RI  and RI are respectively the indicator functions of 

the acceptance region R  and the rejection region R . It may 
be noted here that TSPE of the parameter θ  for complete, 
type I  and type II  censored data has also been considered 
by several authors (see [1]-[4], [6]-[9], [12] and [13]). In this 
paper we consider the problem of estimation of the reliability 
function )(tR  in the exponential distribution when the 
information regarding θ  is available in the form of initial 
guess value .Oθ  The general case of TSPE of )(tR  has been 
proposed and studied. The expressions for the bias, mean 
squared error, expected sample size and relative efficiency 
are obtained. Some numerical results and conclusions drawn 
therefrom are presented. 
 

3. ESTIMATOR ASSUMPTIONS AND DERIVATION 
   As mentioned, the exponential distribution serves as a very 
useful model in analyzing the life testing and reliability data. 
Among the different type of data, interestingly, the complete 
and censored data (type I and type II) have received a 
considerable attention particularly in the reliability analysis.  
In this section first we define the general proposed estimator 
based on complete failure data, then we describe a choice of 
the region R , and finally we obtain the necessary 
expressions of the proposed estimator.  
 

3.1 FAILURE  DATA 

Suppose 2,1, =in j  items are subjected to life test and the 

test is terminated after all items have failed. Let 

njjj XXX ,...,, 21  be the random failure times of size 

jn  and suppose the failure times are exponentially 

distributed with p.d.f. (1). The MLE jθ̂  of θ  based on the 

above items is given by 
 

,2,1/1ˆ == jX jjθ                                                       (4)                   

where jjr θθ ˆ/2  distributed as chi square random variable 

with  2rj degrees of freedom (see [10]). The proposed TSPE 
of )(tR  in this case is defined by:  
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3.2 CHOICE FOR REGION R  

  Estimator (5) is completely obtained by specifying the 
region R. A choice for the region R  is considered here. In 
this choice we follow Katti’s (see [10]) approach. That is, let 
R  be the region which minimizes ),|~( RMSE oθθ (see 
(3)). This gives  
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3.3 EXPRESSIONS 

Let ],[ jj baR =  The expressions for the bias, bias ratio, 

expected sample size, and relative efficiency of )(~ tR  are 
obtained as follows: 
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where )2(1 abp−β (see[14]) is the Bessel function of 

order    

,...,.,2,1(.),(.),2,1,1, ===+= − pjrpp ppj ββ
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and )2(1 abp−β , is an incomplete Bessel’s function, 

where the integration (summation) is over the interval  
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The efficiency of )(~
2 tR  relative to )(ˆ tR  is given by:  
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The expected sample size required to obtain )(~ tR  is given 
by 
 

)),,2(),2(()),(~|( 112 anGbnGnnRtRnE −−= (12)  
                                                   
where ,.)2( 1nG is the cumulative distribution function of a 

chi-square random variable with 12n degrees of freedom.   
 

4. SIMULATION AND NUMERICAL RESULTS 

    For the testimator )(~ tR , the relative efficiency, bias ratio, 
expected sample size and percentage of the overall sample 
size saved )ˆPr()/(100 12 Rxnn ∈θ  were computed for 

)(~ tR  by taking 

,3)3.0(3.0,12)2(2,12)2(4 21 === θtnn  and 

))/((101.0 0 θθλλ =≤≤ . The Katti’s type region  

R  (as in (6)) is defined for ./ 21 nnk >  Relative 

efficiency of )(~ tR  is computed 

for innk −+= 10),/( 21 , ,10)1(1=i  and it has been 

observed that the relative efficiency is high for ,7=i  
therefore, when using the region R  the value 

7
21 10)/( −+= nnk is recommended. Some of these 

results are presented in tables 1 to 4. The following 
observations are drawn on the basis of these computations. 
1. The testimator )(~ tR  is biased. The bias ratio is 

approximately zero (to the third decimal point) of )(~ tR  for 

,11.0 ≤≤ λ  1n , 2n , and θt , and increasing very slowly 
with increases of λ . In Table 1 we have presented some 
sample values of the bias ratio. 
2. The testimator )(~ tR  for ,101.0 ≤≤ λ  has smaller 

mean squared error than the pooled estimator )(ˆ tR (see 
Table 2). 
3. Relative efficiency of )(~ tR  is a concave function of λ , 
i.e., the proposed testimators have maximum efficiency in the 
neighborhood of 4.1≅λ .Some of these computations are 
given in Table 2. 
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4. Efficiency of )(~ tR  relatively to the classical estimator 

)(ˆ tR  is a decreasing function of ,, 2ntθ  and 1n . i.e., 

,3.0,4,4 21 =≅≅ θtnn  and gives higher relative 

efficiency than for other values of  ,, 2ntθ  and 1n  

(Table2). 
5. ))(~|( tRnE  is generally smaller than n  when 4.1≅λ  
and increases very slowly with decreases or increases of λ  
(also see Table 3). 
6.  The percentage of the overall sample saved of )(~ tR  is 

maximum when Oθ  is close to ,θ  the percentage is about 

(5%-15%) for small values of .1n  i.e., 

,12)2(2,4 21 ≅≅ nn  ,7.15.0 ≤≤ λ  and gives smaller 

percentage than for other values of ,, 2nλ and 1n  (see Table 
4). 
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1n  
2n

λ
 

 
1.11.0 ≤≤ λ

 

 
1.4 

 
2 

 
8 

4 4 0.000 -0.0004 -0.0012 -0.0034 
 6 0.000 0.000 0.000 -0.002 
 10 0.000 0.000 0.000 0.000 
 12 0.000 0.000 0.000 0.000 
6 4 0.000 0.000 0.000 -0.001 
 6 0.000 0.000 0.000 0.000 
 10 0.000 0.000 0.000 0.000 
 12 0.000 0.000 0.000 0.000 
8 4 0.000 0.000 -0.001 -0.004 
 6 0.000 0.000 0.000 0.000 
 10 0.000 0.000 0.000 0.000 
 12 0.000 0.000 0.000 0.000 

10 4 0.000 0.000 -0.002 -0.003 
 6  0 .000 0.000 0.000 0.000 
 10 0.000 0.000 0.000 0.000 
 12 0.000 0.000 0.000 0.000 

12 4 0.000 0.000 -0.001    -0.002 
 6        0.000 0.000 0.000 0.000 
 10 0.000 0.000 0.000 0.000 
 12 0.000 0.000 0.000 0.000 
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           Table 2: Showing ))(ˆ|)(~( tRtRRE  when 3.0=θt  and different values of 1n , 2n  and .λ  

 
 
 

 

1n  
2n

λ
   0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

 
1.4 

 
2 

 
8 

4 4 1.00 1.05 1.41 1.82 2.08 2.46 2.85 3.47 3.47 5.94 2.12 1.03 
 6 1.00 1.05 1.28 1.35 2.18 2.51 2.77 3.15 3.31 5.68 2.09 1.03 
 10 1.00 1.07 1.19 1.69 2.08 2.31 2.75 2.33 2.78 5.58 2.08 1.03 
 12 1.00 1.16 1.38 1.69 1.91 1.82 2.27 3.21 2.75 5.58 2.08 1.03 

6 4 1.00 1.08 1.23 1.33 1.48 1.74 2.07 2.12 2.12 5.58 2.08 1.03 
 6 1.00 1.03 1.23 1.44 1.49 1.72 2.17 2.22 2.24 5.20 1.92 1.01 
 10 1.00 1.02 1.11 1.34 1.69 1.69 2.32 2.45 2.46 4.96 1.89 1.01 
 12 1.00 1.03 1.11 1.27 1.49 1.76 2.02 2.25 2.29 4.96 1.89 1.01 

8 4 1.00 1.04 1.07 1.27 1.41 1.42 1.56 1.54 1.54 4.96 1.89 1.01 
 6 1.00 1.03 1.12 1.26 1.41 1.46 1.65 1.65 1.69 4.96 1.89 1.01 
 10 1.00 1.02 1.12 1.26 1.49 1.51 1.81 1.01 1.71 4.90 1.74 1.00 
 12 1.00 1.02 1.12 1.27 1.33 1.53 1.91 1.91 1.99 4.88 1.74 1.00 

10 4 1.00 1.01 1.07 1.10 1.18 1.28 1.29 1.30 1.31 4.88 1.74 1.00 
 6 1.00 1.00 1.06 1.15 1.25 1.28 1.33 1.37 1.38 4.88 1.74 1.00 
 10 1.00 1.00 1.03 1.10 1.23 1.44 1.49 1.50 1.53 3.56 1.60 1.00 
 12 1.00 1.00 1.07 1.10 1.23 1.38 1.48 1.51 1.53 3.50 1.60 1.00 

12 4 1.00 1.00 1.04 1.06 1.13 1.15 1.16 1.17 1.17 3.50 1.59 1.00 
 6 1.00 1.00 1.02 1.09 1.12 1.19 1.21 1.21 1.28 3.50 1.59 1.00 
 10 1.00 1.00 1.03 1.07 1.14 1.27 1.31 1.31 1.34 3.50 1.59 1.00 
 12 1.00 1.00 1.02 1.11 1.16 1.31 1.35 1.35 1.37 3.37 1.59 1.00 
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Table 3: Showing )),(~|( RtRnE when 3.0=θt  and different values of 1n , 2n  and .λ  

  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

1n  2n
λ

 0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 
 

1.4 
 

2 
 

8 

4 4  8.00 7.93 7.85 7.74 7.63 7.54 7.46 7.39 7. 36 7.23 7.44 7.56 
 6 10.00 9.91 9.79 9.64 9.49 9.36 7.25 9.17 9.11 9.00 9.20 9.52 
 10 14.00 13.86 11.68 13.44 13.20 12.98 12.81 12.69 12.61 12.43 12.61 12.62 
 12 16.00 15.85 15.84 15.62 15.34 15.05 14.79 14.44 14.35 14.10 14.39 14.41 

6 4 10.00 9.98 9.93 9.86 9.78 9.71 9.46 9.59 9.57 9.32 9.52 9.61 
 6 12.00 11.97 11.91 11.81 11.71 11.59 11.51 11.44 11.41 11.22 11.42 11.54 
 10 16.00 15.96 15.87 15.71 15.53 15.35 15.21 15.12 15.07 14.93 14.65 14.76 
 12 18.00 17.99 17.84 17.66 17.46 17.23 17.08 16.96 16.90 16.71 16.93 17.11 

8 4 12.00 11.99 11.96 11.92 11.86 11.79 11.73 11.69 11.67 11.34 11.57 11.63 
 6 14.00 13.99 13.97 13.91 13.86 13.79 13.74 13.69 13.67 13.43 13.65 13.77 
 10 18.00 17.99 17.94 17.83 17.69 17.55 17.42 17.34 17.17 16.99 17.12 17.25 
 12 20.00 19.98 19.92 19.80 19.63 19.46 19.32 19.22 19.17 19.02 19.25 19.36 

10 4 14.00 13.99 13.89 13.95 13.89 13.84 13.79 13.76 13.74 13.85 13.91 13.99 
 6 16.00 15.99 15.98 15.93 15.86 15.78 15.71 15.67 15.64 15.63 15.75 15.86 
 10 20.00 19.99 19.97 19.89 19.78 19.86 19.55 19.47 19.45 19.23 19.45 19.56 
 12 22.00 21.99 21.96 21.88 21.74 21.59 21.46 21.38 21.35 21.21 21.46 21.58 

12 4 16.00 15.99 15.99 15.96 15.92 15.87 15.83 15.79 15.78 15.52 15.72 15.84 
 6 18.00 17.99 17.99 17.95 17.89 17.82 17.76 17.76 17.72 17.61 17.82 17.89 
 10 22.00 21.99 21.98 21.93 21.83 21.72 21.62 21.56 21.54 21.35 21.55 21.65 
 12 24.00 23.99 23.92 23.92 23.81 23.67 23.56 23.48 23.46 23.24 23.47 23.53 
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        Table 4: Showing )ˆPr()/(100 12 Rxnn ∈θ  when 3.0=θt  and different values of ,, 21 nn  and .λ  

 
 

 

1n  2n
λ

 0.1 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 
 

1.4 
 

2 
 

8 

4 4 0.01 4.14 6.33 8.01 9.14 9.81 10.11 10.11 9.90 9.72 9.60 6.10 
 6 0.01 4.97 7.59 9.61 10.97 11.77 12.13 12.14 11.88 11.77 11.65 7.12 
 10 0.01 5.92 9.04 11.44 13.06 14.01 14.44 14.45 14.15 14.00 13.88 8.31 
 12 0.01 6.21 9.49 12.01 13.71 14.71 15.16 15.17 14.86 14.70 14.58 9.01 

6 4 0.00 0.54 1.21 2.11 3.08 3.95 4.36 5.12 5.43 5.26 5.15 1.22 
 6 0.00 0.68 1.51 2.64 3.85 4.64 5.79 6.40 6.79 6.39 6.28 1.55 
 10 0.00 0.85 1.89 3.30 4.82 6.17 7.24 8.00 8.49 8.20 8.14 1.93 
 12 0.00 0.91 2.02 3.52 5.14 6.58 7.72 8.53 9.05 8.82 8.70 2.32 

8 4 0.00 0.10 0.30 0.61 1.05 1.59 2.14 2.63 3.02 2.84 2.73 1.00 
 6 0.00 0.13 0.38 0.78 1.35 2.04 2.75 3.38 3.88 3.55 3.44 1.31 
 10 0.00 0.17 0.49 1.01 1.75 2.65 3.56 4.38 5.03 4.65 4.55 1.52 
 12 0.00 0.18 0.53 1.09 1.89 2.86 3.85 4.73 5.43 5.21 5.16 1.71 

10 4 0.00 0.02 0.09 0.22 0.41 0.68 1.02 1.39 1.74 1.43 1.31 0.34 
 6 0.00 0.02 0.12 0.28 0.54 0.90 1.34 1.82 2.28 2.00 1.93 0.52 
 10 0.00 0.03 0.15 0.38 0.72 1.20 1.79 2.43 3.04 2.78 2.65 0.61 
 12 0.00 0.03 0.17 0.41 0.78 1.30 1.95 2.65 3.31 3.08 2.99 0.70 

12 4 0.00 0.00 0.03 0.09 0.19 0.33 0.52 0.77 1.03 0.88 0.76 0.16 
 6 0.00 0.00 0.03 0.12 0.25 0.44 0.70 1.02 1.38 1.09 0.89 0.22 
 10 0.000 0.01 0.05 0.16 0.34 0.60 0.95 1.40 1.88 1.53 1.41 0.30 
 12 0.000 0.01 0.05 0.18 0.37 0.66 1.05 1.54 2.06 1.77 1.65 0.31 
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