
Stochastic Learning of the Optimum Bid in Auction
Markets

Shahram Tabandeh and Hannah Michalska ∗†

Abstract—Evolutionary algorithms based on stochastic pro-
gramming are proposed for learning of the optimum bid in auc-
tion markets. Sellers and buyers are attempting to learn their
optimum bids that maximize their individual utility functions in
the next round of the game. Examples of second-price sealed-bid
auction and double auction markets are considered and good per-
formance of this type of algorithm is confirmed by extensive sim-
ulations. The proposed algorithms need no assumptions about
the stationary behavior of players, contrary to the needs of com-
petitive algorithms in the class of fictitious play.
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1 Introduction

Auctions are the basic framework of exchange in many mar-
kets and can be analyzed by game theoretical methods. In
any game players attempt to maximize their individual utility
functions. If the game is repetitive the players can use past
experience to learn to play better in the future.
Learning in games such as auctions has been studied exten-

sively; see for example [5][7][16][15][9] , as it permits to im-
prove the strategies of the players in the future based on the
observation of the past actions. Diverse information patterns
can be considered in this context by which an agent can have
partial or complete access to the history of the actions and re-
sults of other players.

It is then of primary interest to determine whether the re-
peated game can converge to some kind of equilibrium. Learn-
ing and convergence are particularly difficult when utility
functions exhibit discontinuities as is the case of utility func-
tions used in auction markets. The references [12][3] provide
a discussion of the existence of equilibria in discontinuous
games while references [8][4] give conditions of existence of
equilibria in auction markets specifically.

This paper considers different examples of auction mar-
kets and develops algorithms for iterative stochastically-based
learning of their equilibria. The first algorithm is designed
to implement learning of the optimum bid in a second-price
sealed-bid auction where the valuation of buyers of the same
object is unknown to other buyers. The second algorithm is
suited for double auction markets with separate populations
of buyers and sellers who attempt to optimize their individual
utility functions during the game.
Both types of auctions are used widely in practice as markets

as NYSE and AMEX use double auctioning to trade while
some antique traders use second price auctioning to trade.
Evolutionary algorithms have long been used for learning in

games, see e.g. [1][2] which discuss convergence of a genetic
algorithm proposed for learning of the equilibrium in a double
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auction market.
Other approaches to solve the same kind of problem include

fictitious play, see [13]. In a fictitious play, the players opti-
mize their actions based on the empirical statistics estimated
from the historical actions of their opponents, while stationary
behavior of opponents is assumed. In partial best response dy-
namic methods, only some players change their strategies to
best reply to previous state of the game, [16]. In other meth-
ods, called replicator dynamic, the number of players using
the same strategy grows proportionally to the success of that
strategy [16].

Random search algorithms, [10][6], are preferred stochas-
tic programming techniques in search of solutions to global or
non-smooth optimization problems. This also motivates their
use as a tool for computation of equilibria in discontinuous
games such as auction markets considered here.
The algorithm presented here can be adapted and extended to

apply to other kinds of auctions and can, for example, prove
useful to find equilibria of auctions in electricity markets as
discussed in many recent papers, see e.g. [11][14].

The paper is organized as follows. Section II delivers the
problem statement. Section III introduces examples of auction
markets and presents the algorithm for evolutionary computa-
tion of their equilibria. Section IV, contains conclusions and
future research directions.

2 Problem Statement

The algorithms presented below are designed to find optimum
bids for different auction markets hence the problem statement
is presented in the following general form. The assumption is
that there are n buyers and n′ sellers in a market. Every buyer
or seller employs his own utility function. When seller j meets
buyer i their utility functions are denoted by: ubi(pbi, psj) :
Ab × As → � and usj(pbi, psj) : Ab × As → �. Here,
pbi and psj are the bid and ask prices of buyer i and seller j,
respectively, Ab is the feasible set of prices bid by the buyers,
and As is the feasible set of prices asked by the sellers. The
utility function for buyer i as she meets with several random
sellers is further defined as the expected value:

Ubi(pbi, Ps, f
s) = Esj(ubi(pbi, psj)|pbi) (1)

where Ps is the set of feasible prices offered by the sellers
and fs is the probability distribution function for these prices.
Similarly, the utility function for seller j as she meets with
several random buyers is:

Usj(psj , Pb, f
b) = Ebi(usj(pbi, psj)|psj) (2)

where the Pb is the set of feasible prices offered by the buyers
and f b is their probability distribution function. The following
definitions are essential for further developments in this paper.
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Definition 1 [1] (Nash Equilibrium in an auction game) The
set, {Pb, Ps, f

b, fs} , where Pb and Ps are sets of all prices
bid by the buyers and asked by the sellers, respectively, and f b

and fs are probability distribution functions over Pb and Ps,
respectively, is called a Nash equilibrium of the game if and
only if:

Ubi(pbi, Ps, f
s) ≥ Ubi(p′bi, Ps, f

s) ∀i, p′bi ∈ [0, 1] (3)

and

Usj(psj , Pb, f
b) ≥ Usj(p′sj , Pb, f

b) ∀j, p′si ∈ [0, 1] (4)

Definition 2 (Evolution) Evolution is the process by which
the values of the buyers’ bids pbi(k) and the sellers’ asks
psj(k), i, j = 1, ..., n in round k are updated to their new
values in round k + 1. The evolution process is hence thought
to be represented by two mappings:

Eb : pbi(k) �→ pbi(k + 1) and Es : psi(k) �→ psi(k + 1) ∀i, j

3 Stochastic Learning in Auction Markets

Two new algorithms implementing evolutionary learning of
the optimum bid and ask prices for different types of auctions
are presented below. Convergence properties of the novel ran-
dom algorithms are studied by simulations. The case of a
second-price sealed-bid auction market is discussed first. This
is followed by two other examples of double auction markets.
Extensive simulation results demonstrate the efficiency of the
designed algorithms and deliver statistics for convergence to
the market equilibria when stochastic learning is applied.

3.1 Second-Price Sealed-Bid Auction Market

A second-price sealed bid auction is considered in which dif-
ferent buyers bid to buy the same object. This object is as-
sumed to have value vi for buyer i. The valuations of objects
are considered private , more precisely, any given buyer does
not know the value that the other buyers are attributing to the
object which she wants to buy. The highest bidder gains the
object and pays as much as the second highest bid, while any-
one else pays as much as she has bid.The following notation
is adopted:
– n, the cardinality of the populations of buyers.
– k, the index of the current round of the game, (k ∈ Z.)
– vi ∈ [0, 1], the value of the product for buyer i.
– pbi(k) ∈ [0, vi], the maximal price at which buyer i is will-
ing to buy in round k.
– σ > 0, the variance of the random generator function.
– NT (μ, σ), the normal distribution with mean μ and variance
σ.
– loop, maximum number of rounds in the game.
– mcount, counter of the round in the game.
– ch, the index of the buyer who is allowed to change his bid.
– bnew, candidate for a mutated bid price.
– ubch(bnew; k), the value of the utility function for buyer ch
when bidding price bnew in round k of the game.
The algorithm is stated first and is followed by a discussion

of its steps. The buyers are allowed to change their bids dur-
ing the game as they see fit. No more than a single buyer is
allowed to mutate his bidding price in any round of the game
which places the learning methodology employed in the cat-
egory of ”learning by partial best response”. The buyers are
taking turns in changing their bids.

Algorithm 1 The Stochastic Optimizer Algorithm For
Second-Price Sealed-Bid Auction Market.

Step 0: Set the counter for the round of the game k = 0.
Set n, the number of buyers and loop, the maximal number of
rounds in the game. Set the initial value for the bid randomizer
σ > 0. For i = {0, ..., n} draw samples of initial values of the
bid prices from uniform distributions over the interval [0, vi],
i.e. pbi(0) ∼ U(0, vi).

Step 1: For i = {0, ..., n} calculate utility functions
ubi(pbi(k); k).

Step 2: For buyer whose index is calculated as ch =
remainder(mcount/n)+1 calculate the candidate for a mu-
tated bid price as: bnew ∼ NT (pbch(k), σ).

Step 3: Update the bid price pbch(k) = bnew if
ubch(bnew; k) > ubch(pbi(k); k).

Step 4: Update the counter of rounds mcount = mcount+1,
and go to Step 1 if mcount ≤ loop .

In Step 0 of the above algorithm, parameters of the algorithm
are initialized, and the bids of the n buyers are drawn from
uniform random distributions. In Step 1 the values of the util-
ity functions for all buyers are calculated for the current bid
prices. The index ch of Step 2 changes in a manner that allows
the buyers to take turns in mutating their bidding prices in ac-
cordance with their proper utility function values. The fact
that the buyers are allowed to change their prices one by one
does not diminish the applicability of the algorithm in practi-
cal situations as one can assume that the real-time execution
times of Steps 2 and 3 are negligible as compared to real time
bidding process in the marketplace. The inequality of Step
3 implies that the bidding prices in the market will move to-
wards achieving best utility values for all buyers.
To test the algorithm, an example with five buyers is consid-

ered. Values of the common object of interest for these five
buyers are drawn from a uniform random distribution U [0, 1].
Figures 1 and 2 show how the bid prices and utility function
values evolve when the private values of the desired object for
the five players were randomly set to: 0.8785, 0.7110, 0.6611,
0.4396, 0.5628. Note that these happen to be set in favor of
the first buyer who, in fact, gains possession of the object as
his utility function approaches its valuation. During the evo-
lution of the market, the values of the utility functions for the
remaining players approach zero as they do not gain the ob-
ject of bid. The utility functions for the buyers in the game are
assumed to be given by:

ubi(pbi(k); k) =
{

1
N(k) (vi − p′b(k)) if pbi(k) = pb(k)

−pbi(k) otherwise
(5)

where pb(k) is the highest bid, N(k) is the number of buyers
that bid the highest bid, and p′b(k) is the second highest bid,
all in round k. The other parameters in the algorithm were set
to loop = 300 and σ = 0.5.

Figures 3 and 4 show the statistics of convergence when the
values of the object for the five players are always the same
and are equal to 0.8785, 0.7110, 0.6611, 0.4396, 0.5628. The
histogram presented shows that different bid price equilibria
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Figure 1: Evolution of the bids.
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Figure 2: Evolution of the utility functions

can be achieved in the market depending on the particular
course of the stochastic evolution of the game. As follows
from the formula for the utility functions, all these prices are
part of Nash equilibria when the remaining buyers bid zero.
Figure 4 shows that perfect learning is not achieved as the
sum of the absolute values of the utility functions for the
non-winning buyers is non-zero in the region [0, 0.04].

3.2 Double Auction Market

A double auction market is considered in which the number
of buyers and sellers is the same and is equal to n > 0. It is
further assumed that there is only one kind of good to trade
and that in any round of the game a seller has a single unit of
good to sell and a buyer can buy up to one unit of good. In any
round of the game any buyer will be matched with a random
seller. A transaction will take place, benefiting both the buyer
and the seller, only if the price bid by the buyer exceeds the
price asked by the seller.
If c ∈ [0, 1] is the cost of the production and v ∈ [0, 1] repre-

sents the value of good for the buyers, and under the assump-
tion that a buyer and a seller will benefit from their transaction
equivalently, the utility functions, ubi and usj , of buyer i and
the seller j in a single round of the game can be given by the
formulae below [1], [2]:

ubi(bi, sj) =
{

v − pbi+psj

2 if pbi ∈ [psj , v]
0 otherwise

(6)

usj(bi, sj) =
{

pbi+psj

2 − c if psj ∈ [c, pbi]
0 otherwise

(7)

in which pbi and psj denote the prices of buyer i and seller j,
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Figure 3: Empirical frequencies of convergence to different
bids for the fist player (the buyer who gains the object of the
auction).
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Figure 4: Empirical frequencies of the sums of absolute values
of utility functions for the non-winning buyers (i=2,3,4) as an
estimator of the error in reaching the equilibrium of the market
(error reflecting inadequate learning in the game).

respectively.
Another example of a double auction market will be also

considered that is created by adopting a different set of utility
functions:

ubi(bi, sj) =
{

v − (pbi+psj

2 )2 if pbi ∈ [psj , v]
0 otherwise

(8)

usj(bi, sj) =
{

(pbi+psj

2 )2 − c if psj ∈ [c, pbi]
0 otherwise

(9)

Proposition 1 [1] A double auction game employing any of
the two sets of utility functions as above, with populations of
buyers and sellers of equal cardinalities, is in equilibrium if
all the players are bidding and offering the same price, i.e.
pbi = psj = ψ ∈ [c, v] for all i, j ∈ {1, ..., n}.

Justification :
Assume that all the players are biding/offering ψ ∈ [c, v] i.e.
pbi = psj = ψ,∀i, j. If bidder i decides to bid higher, pbi >
ψ, it is obvious that the utility function will decrease for that
player. If the same bidder decides to bid lower, her utility
function will be zero. A similar reasoning can be applied to a
seller, implying that the market is in Nash equilibrium.
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Algorithm Proposed For Double Auction Markets
The evolutionary iterative algorithm for learning in double
auction markets developed here belongs to the general class
of random search algorithms. The underlying idea of the algo-
rithm is that buyers and sellers try to follow the most success-
ful buyer or seller known to them from the previous iteration
of the algorithm. This algorithm can hence be considered to
belong to the class of algorithm of guided learning. The fol-
lowing notation is adopted :
– n, the cardinality of the populations of buyers and sellers.
– k, the index of the current round of the game, (k ∈ Z).
– pbi(k) ∈ [c, v], the price at which buyer i is willing to buy
in round k.
– psj(k) ∈ [c, v], the price at which seller j is willing to sell
in round k.
– c ∈ [0, 1], the cost of production for sellers.
– v ∈ [0, 1], the value of the product for buyers.
– p̄b(k) ∈ [c, v], the average of the buyers’ bid prices in round
k.
– p̄s(k) ∈ [c, v], the average of the sellers’ ask prices in round
k.
– m, the number of buyers (or sellers) that any seller ( or
buyer) meets in any round of the game.
– α > 1, a shrinking factor for the variance of the randomizer
function used in the generation of the bid and offer prices.
– σk > 0, the variance of the random generator function in
round k of the game.
– μbk ∈ [c, v] and μsk ∈ [c, v], the means for the random gen-
erator functions for buyers and sellers, respectively.
– NT (μ, σ), the normal distribution with mean μ and vari-
ance σ truncated to the interval [c, v], i.e. if p ∼ N(μ, σ), the
normal distribution, and p /∈ [c, v] then p is reset to c or v de-
pending on whether the initial sample satisfies p < c or else
p > v.
– mcount, a counter by which a buyer meets exactly m sellers.
– u′

bi(pbi, psj), variable that is used to show the value of the
utility function for buyer i as she meets seller j.
– u′

sj(pbi, psj), variable that is used to show the value of the
utility function for seller j as she meets buyer i.
– usumbi, variable that is used in averaging the utilities of
buyers.
– usumsj , variable that is used in averaging the utilities of
sellers.
– csj , the counter of the number of times that seller j has a
chance to participate in a transaction.
– ε ∈ (0, 1), algorithm termination threshold.
– i∗ and j∗, the indices of the buyer and seller, respectively,
who achieve the highest utility values in the current round of
the game.

Before stating the steps of the algorithm it is helpful to ex-
plain their meaning. The values of the algorithm parameters
and the initial values of the buyers’ and sellers’ prices are se-
lected in Steps 0 and 1. The latter are variables that are used
in averaging the utility of every buyer and seller that partici-
pate in the market. Steps 3 - 6 constitute a loop in which each
buyer meets m sellers in the current round of the algorithm. As
a result of the meeting between buyer i and seller j, both of
them claim utility values u′

bi(pbi, psj), and u′
sj(pbi, psj), that

add up to: usumbi and usumsj , respectively. The counter csj

is upgraded to serve the averaging of utility values for every
seller in Step 7. Buyers do not need a similar counter as there
is always m values to average over for each buyer. Step 8,
commences by determining the indices i∗ and j∗ of the buyer
and seller, respectively, who achieve the highest utility values
in the current round of the game. The prices of this buyer
and seller are then selected as the averages μbk and μsk for

the randomizer normal distribution employed to generate the
prices for buyers and sellers in the next round of the game.
The variances of both probability distributions are shrunk by

a factor 1/α for the next round of the game. The variances of
the randomizing distributions are decreasing as players learn
about the market whose behavior is tightly related to the en-
semble of their utility functions. The algorithm is exited if
the prices of the buyers and sellers are sufficiently close to
each other (close to the equilibrium of the game). Clearly, the
information structure in this game is as follows: the players
know their own utility functions, their own price and the cur-
rent price of their opponents in the market game.

Algorithm 2 The Stochastic Optimizer Algorithm For Dou-
ble Auction Market.

Step 0: Set the initial values of m, c, v, α > 1, and k = 0. Set
initial values for σ0 > 0, μb0 ∈ [c, v] and μs0 ∈ [c, v] . For
i, j = {0, ..., n} draw samples of initial values of the ask and
bid prices from uniform distributions over the interval [c, v],
i.e. pbi(0) ∼ U(c, v) and psj(0) ∼ U(c, v).

Step 1: For i, j = {0, ..., n} set usumbi = 0, usumsj =
0, and csj = 0 (parameters needed for averaging of utility
values for all players).

Step 2: Set i = 1, indicating that the utility function is aver-
aged for buyer i. Set mcount = 0.

Step 3: Draw an integer j∗ ∈ {1, 2, ..., n} from a uniform
distribution (i.e. Pr(j∗) = 1/n) without repetitions in round
k. Update the counter of the number of times that seller j
participates in asking against all buyers: csj = csj + 1 .

Step 4: Calculate u′
b(i, j) and u′

s(i, j) - the utility values for
buyer i and seller j as they meet. Update the total sums:
usumbi = usumbi + u′

bi(pbi, psj) and usumsj = usumsj +
u′

sj(pbi, psj).

Step 5: Increment counter mcount = mcount+1. If mcount <
m, go to Step 3.

Step 6: i = i + 1, go to Step 3 if i < n + 1 .

Step 7: For i, j = {0, ..., n}, set ubi = usumbi/m, and usj =
usumsj/csj , the average utilities of buyers and sellers.

Step 8: Update the price generator densities for the buyers
and the sellers, as follows. First determine the indices i∗ and
j∗ of the buyer and seller, respectively, who achieve the high-
est utility values in the current round of the game. Then set :
μbk = pbi∗ , and μsk = psj∗ .

Step 9: Evolve the price of each buyer and seller according
to pbi(k + 1) ∼ NT (μbk, σk), psj(k + 1) ∼ NT (μsk, σk);
i, j ∈ {1, ..., n}.

Step 10: Contract the variance of the averages of the price
generator densities for the buyers and the sellers: σk+1 =
σk/α.
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Figure 5: Diagram of prices, Step 0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bid

U
til

ity

Sellers
Buyers

Figure 6: Diagram of prices, Step 1

Step 11: Verify the algorithm’s stopping condition. If |p̄b(k)−
p̄s(k)| > ε, then set k = k + 1, and go to Step 1, else exit the
algorithm.

The evolution of the ask and bid prices of the players in the
market during the first few rounds of the game are shown in
Figures 5 and 6. It can be seen that the prices of both buyers
and sellers are concentrating in the neighborhoods of their cor-
responding best bid or ask prices. In all these tests the param-
eters of the algorithm are set to m = 100, α = 1.1, σ0 = 0.1,
c = 0, v = 1.

The curves in Figures 7 and 10 represent the evolution of the
average prices of the population of buyers and sellers during
the game using the utility functions 6 to 8, respectively. It
is seen that convergence to a Nash equilibrium of the game is
achieved in each case. In Figures 9, 8, 12, and 11, statistics
of convergence are shown for the algorithm that terminates
after 100 rounds of the auction game. It is seen that the spread
between the average bid and ask prices pb − ps is marginally
small which essentially demonstrates convergence to a single
market price.

4 Conclusions

Stochastic programming evolutionary algorithms are proposed
in this paper and are applied to different cases of auctions such
as a second-price sealed-bid auction and double auction mar-
kets. These algorithms do not require any a priori assumptions
about the stationary behavior of bidders or sellers to be made.
Also, no specific assumptions are made about the probability
distribution functions as believed price behavior of the play-
ers. The utility functions are allowed to be discontinuous as
is the usual case in real life auction markets. Thus, the pre-
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Figure 7: Convergence of the proposed algorithm demon-
strated by way of the evolution of the utility functions of ( 6)
and ( 7).
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Figure 8: Empirical frequencies of convergence to different
market equilibria, while using the utility functions of ( 6) and
( 7).

sented algorithms are considered to compare favorably against
the competitive classes of algorithms employed for learning in
market games such as the ”fictitious play” algorithms (which
make assumptions about the stationary behavior of the play-
ers) and the ”gradient play” algorithms (which cannot handle
discontinuous utility functions).
Numerous simulations confirm that the new algorithms con-

verge to equilibria of the market.
The novel algorithms can be applied to other cases of auc-

tions and discontinuous games. Further research should ad-
dress the dependence of the values of the equilibria on initial
market conditions and parameters of the algorithms. More re-
alistic matching process should be considered in the auction-
ing mechanism (in real auction markets the buyers and sellers
do not meet randomly, but the system selects the partners by
their merits).
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