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Abstract—This paper presents a numerical scheme
that avoids iterations to solve the nonlinear partial
differential equation system for pricing American puts
with constant dividend yields. Upon applying a front-
fixing technique to the Black-Scholes partial differen-
tial equation, a predictor-corrector finite difference
scheme is proposed to numerically solve the discrete
nonlinear scheme. In the comparison with the solu-
tions from articles that cover zero dividend and con-
stant dividend yields cases, our results are found accu-
rate. The current method is conditionally stable since
the Euler scheme is used, the convergency property
of the scheme is shown by numerical experiments.

Keywords:American Options, Predictor-Corrector, Fi-

nite Difference Method, Black-Scholes Equation

1 Introduction

Options are the most common securities that are fre-
quently bought and sold in today’s financial markets. Un-
der the Black-Scholes partial differential equation (PDE)
framework, Merton [1] casts the valuation problem of
American options as a free-boundary problem in 1973.
Ever since then, there have been two kinds of approx-
imation methods in the literature, to solve the free-
boundary problem associated with the valuation of Amer-
ican options. One approach is the analytical approxima-
tion method, e.g. the Quasi-analytical formula [2]. The
other one is the numerical method, such as the Binomial
Method [3], which are quite preferred by market practi-
tioners, as they are usually much faster with acceptable
accuracy.

In the last decade, various numerical methods have been
presented by using the finite difference method (FDM),
to solve the pricing problems of American options. For
instance, Wu and Kwok [5] use a multilevel FDM to solve
the nonlinear Black-Scholes PDE after applying a front-
fixing technique [6], they adopt a so-called front-fixing
technique or Landau transform [6] to fix the optimal ex-
ercise boundary on a vertical axis. To tackle the nonlin-
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ear nature of American option pricing problems, which
is explicitly exposed after applying the front-fixing tech-
nique [6] to the original Black-Scholes PDE, they employ
a two-level discretization scheme in time. However, since
the scheme is a multilevel discretization scheme, the in-
formation at more than one time step is needed at the
beginning to start the computation, which is referred to
as the initialization for multilevel schemes in literature.
The multilevel scheme of Wu and Kwok [5] motivates us
a simpler version, while maintains the same level of com-
putational accuracy.

To avoid the initialization and iteration, we propose a
one-step scheme based on a prediction-correction frame-
work. The approach adopts a predictor-corrector finite
difference scheme at each time step to convert the non-
linear PDE to two linearized difference equations asso-
ciated with the prediction and correction phase respec-
tively. The predictor is constructed by an explicit Euler
scheme, whereas the corrector is designed with the Crank-
Nicolson scheme. The predictor is used only to calculate
the optimal exercise price, as the literature shows that it
is far more difficult to calculate the optimal exercise price
with a high accuracy. The predicted optimal exercise
price is then corrected in the correction phase together
with the calculation of the option prices. The scheme
maximizes the use of computational resources, as a high
accuracy of the computed option price is easy to achieve
as long as a high accuracy can be achieved in the compu-
tation of the optimal exercise price. The efficiency in the
scheme results from the fact that only one set of linear
algebraic equations needs to be solved at each time step.

The paper is organized as follows. Section 2 introduces
the PDE system concerning the valuation of American
put options. Section 3 presents a predictor-corrector
scheme for computing the optimal exercise prices and the
option values. In Section 4, some numerical examples are
given to demonstrate the convergence and accuracy of the
new scheme. Section 5 draws conclusions.

2 Partial Differential Equation System

This paper considers a general case in which a constant
dividend yield is associated with the underlying asset and
adopt the PDE given in Merton [1]. Let V denote the
value of an American put option, which is a function of
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the value of underlying asset S and the time t. The value
of an American put option also depends on the following
parameters:
σ, the volatility of the underlying asset;
T , the life time of the contract;
X, the strike price;
r, the risk-free interest rate;
D0, the dividend yield.
Without loss of generality, we assume that both the risk-
free interest rate and the dividend yield be constants.
The functions can be easily modified for the cases when
they are some known functions of time and asset values.

Since American options can be decomposed into its Eu-
ropean counterparts plus an early exercise premium, this
early exercise premium is associated with the extra right
embedded in American options in comparison with its
European counterparts. Wilmott et al. [9] show that
there are two boundary conditions of the optimal exer-
cise price S = Sf (t) for American options:

{
V (Sf (t), t) = X − Sf (t),
∂V
∂S (Sf (t), t) = −1.

(1)

To close the system, another boundary condition at the
end of large asset value, i.e. the payoff of the contract at
the expiry is necessary,

lim
S→∞

V (S, t) = 0, (2)

and the terminal condition for a put option is

V (S, T ) = max{X − S, 0}. (3)

In summary, the differential system for pricing American
put options can be written as:





∂V
∂t + 1

2σ2S2 ∂2V
∂S2 + (r −D0)S ∂V

∂S − rV = 0,
V (Sf (t), t) = X − Sf (t),
∂V
∂S (Sf (t), t) = −1,
limS→∞ V (S, t) = 0,
V (S, T ) = max{X − S, 0}.

(4)

To solve the differential system Eq. (4) effectively, we
normalize all variables in the system by introducing the
following scale of variables,
V ′ = V

X , S′ = S
X , τ = (T − t)σ2

2 , γ = 2r
σ2 ,

D = 2D0
σ2 , S′f (τ) = Sf (T−2τ/σ2)

X .
After normalizing Eq. (4), dropping the primes, and im-
posing the Landau transform [6],

x = ln
S

Sf (τ)
, (5)

the original system becomes:




∂P
∂τ − ∂2P

∂x2 + (γ −D − 1)∂P
∂x + γP =

∂P
∂x

1
Sf (τ)

dSf (τ)
dτ ,

P (0, τ) = 1− Sf (τ),
∂P
∂x (0, τ) = −Sf (τ),
limx→∞ P (x, τ) = 0,
P (x, 0) = 0.

(6)

After this rather simple manipulation, the nonlinear na-
ture of the problem is explicitly exposed in the inhomo-
geneous term on the right hand side of Eq. (6), which
consists the product of the Delta of the unknown option
price under the Landau transform, the time derivative
of the unknown optimal exercise boundary Sf (τ) and its
reciprocal.

One should note that we have replaced the unknown func-
tion V (S, t) in Eq. (4), with a new unknown function P ,
which is defined as P (x, τ) = V (S(x, (τ)), τ) through the
transform defined in Eq. (5). This is to facilitate the in-
troduction of a relation between P (0, τ) and the Sf (τ) on
the boundary x = 0, which is used to design the predictor
of the numerical scheme. Moreover, one should also note
that the transform in Eq. (5) only holds if Sf (τ) > 0.
This condition poses no problem since it is easy to show
that the Sf (τ) for an American put option is a monoton-
ically decreasing function of τ ; the minimum value Sf (τ)
is the optimal exercise price of the corresponding perpet-
ual contract. For a perpetual American put on a constant
dividend yield paying asset, this value was shown as fol-
lows:

lim
τ→∞

Sf (τ) =
η +

√
η2 + 4γ

2 + η +
√

η2 + 4γ
, (7)

with η = γ −D − 1. It is then very trivial to show that
Sf (τ) > 0 for any η values. Therefore, the differential
system Eq. (5) defines a well-posed problem, other than
a well-known singular point at τ = 0 (see Barles et al.
[10]). We now propose an efficient and accurate numerical
scheme to solve this system.

3 The Predictor-Corrector FDM Scheme

This section presents the predictor-corrector scheme. We
propose to solve the nonlinear PDE in differential system
Eq. (6) in two phases within a time step, a prediction
phase in which an initial guess of the Sf (τ) is worked out
before its final value is calculated together with the option
value P (x, τ) in the correction phase of the scheme.

Beginning with truncating the bounded x domain, as well
as the time domain τ , the computational domain is dis-
cretized with uniformly spread M + 1 grids placed in the
x direction and N + 1 grids in the τ direction (i.e., M
and N are the number of steps in these two directions,
respectively). For the easiness of presentation, we denote
the step length in the x direction by ∆x = xmax

M and
that in the τ direction by ∆τ = τexp

N , in which τexp is the
normalized tenor of the contract with respect to half of
the variance of the underlying asset, i.e., τexp = Tσ2/2.
Consequently, the value of unknown function P at a grid
point is denoted by Pn

m with the superscript n denoting
the nth time step and the subscript m denoting the mth
log-transformed asset grid point.

To facilitate the numerical computation, we derive an ad-
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ditional boundary condition to construct our predictor-
corrector scheme. This condition is not independent from
all those boundary conditions prescribed in Eq. (6).
Rather, it is derived by making use of the PDE in Eq.
(6) as well as the boundary conditions that have already
made the system closed. Firstly, we take a partial deriva-
tive with respect to τ on both sides of the first boundary
condition in Eq. (6), which yields

∂P

∂τ
(0, τ) = −dSf (τ)

dτ
. (8)

In fact, one easily shows that Eq. (8) is consistent with
the condition ∂V

∂τ (Sf (τ), τ) = 0 in Bunch and Johnson’s
paper [7]. Then, if we evaluate the PDE in Eq. (6)
at x = 0, utilizing Eq. (8) and the second boundary
condition in Eq. (6), we obtain

∂2P

∂x2 |x=0
− (D + 1)Sf (τ) + γ = 0, if τ > 0. (9)

Eq. (9) reveals a relationship of the put option price and
the optimal exercise price at any time, except on the ex-
piry day. This relation is important to our scheme in
eliminating the value of the unknown function defined on
the fictitious grid point near the boundary x = 0, when
the second-order central difference scheme is applied. The
reason that it is only valid for τ > 0 is the inherent sin-
gular behavior of the Black-Scholes PDE at τ = 0 (see
Barles et al. [10]).

Applying a second-order central difference scheme to the
equation, one has the asset price discretization in the x
direction. Eq. (9) and the boundary conditions in Eq.
(6) is written as

−Pn+1
1 − 2Pn+1

0 + Pn+1
−1

∆x2
− (D +1)Sf

n+1 + γ = 0, (10)

and 



Pn+1
0 = 1− Sf

n+1,
P n+1

1 −P n+1
−1

2∆x = −Sf
n+1,

Pn+1
M = 0,

P 0
m = 0,

(11)

respectively. Upon eliminating the fictitious nodal value
Pn+1
−1 from Eq. (10) and the second equation in Eq. (11),

we obtain a relation between Sf and P1 at the (n + 1)th
time step as

Pn+1
1 = α− βSf

n+1, (12)

in which α = 1 + γ
2 ∆x2 and β = 1 + ∆x + D+1

2 ∆x2. Eq.
(12) is used in the predictor and corrector construction.

Predictor: The predictor is constructed by using the ex-
plicit Euler scheme to calculate a guessed value of Sf

n+1,

which is denoted as Ŝf
n+1

. Applying the explicit Euler

scheme to the PDE in Eq. (6) results in

P̂n+1
1 − Pn

1

∆τ
− Pn

2 − 2Pn
1 + Pn

0

∆x2 −(γ−D−1)
Pn

2 − Pn
0

2∆x
+

γPn
1 =

Pn
2 − Pn

0

2∆x

1
Sf

n

Ŝf
n+1 − Sf

n

∆τ
, (13)

which is coupled with Eq. (12) to generate the Ŝf
n+1

value. The boundary condition of P̂n+1
0 used in the

corrector is also predicted here; with the calculated
Ŝf

n+1
value, P̂n+1

0 is calculated from the first equation
in Eq. (11), which is nothing but the payoff function.
Like the predicted Ŝf

n+1
value, this predicted boundary

value of P̂n+1
0 will also be corrected once the Ŝf

n+1
is

corrected in the following corrector scheme.

Corrector: The corrector is based on the Crank-
Nicolson scheme, applied to the linearized PDE in Eq.
(6). The linearlization is designed with an alternating
term being valued at the current time step in comparison
with that in the predictor. In the predictor, we let the
time derivative of the Sf in the nonlinear inhomogeneous
term be valued at the current time step, whereas now we
let the asset price derivative of P be valued at the current
time step through the Crank-Nicolson scheme. This
alternating approach, inspired by the idea of the ADI
approach in solving two dimensional time-dependent
PDEs [11], has an advantage of reducing the numerical
errors induced in the prediction-correction process. The
finite difference scheme used for the corrector is

Pn+1
m − Pn

m

∆τ
+ γ

Pn+1
m + Pn

m

2
−

Pn+1
m+1 − 2Pn+1

m + Pn+1
m−1 + Pn

m+1 − 2Pn
m + Pn

m−1

2∆x2

− (γ −D − 1)
Pn+1

m+1 − Pn+1
m−1 + Pn

m+1 − Pn
m−1

4∆x
+

=
Pn+1

m+1 − Pn+1
m−1 + Pn

m+1 − Pn
m−1

4∆x
× 2

Ŝf
n+1

+ Sf
n

× Ŝf
n+1 − Sf

n

∆τ
.

(14)

In Eq. (14), m value starts from 1 to M − 1, which indi-
cates that M − 1 equations are solved simultaneously to
obtain the corrected option values at the (n + 1)th time
step. Pn+1

1 is obtained upon solving Eq. (14). Then,
by means of Eq. (12), the newly-obtained Pn+1

1 is used
to correct the Sf

n+1, which is then used to correct the
Pn+1

0 value before it is used in the calculation of the next
time step. And Eq. (14) can be written in matrix form
which is a more condensed way for Matlab computation.
This predictor-corrector process is repeated until the ex-
piry time is reached. We solve these matrix equations in
Matlab, Version 7 on a Intel P4 machine.
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4 Numerical Examples

Although the Crank-Nicolson scheme for the corrector is
unconditionally stable [11], our predictor-corrector finite
difference scheme is only conditionally stable since the
explicit Euler scheme for the predictor is conditionally
stable. In this section, the conditional stability of our
approach, as well as the accuracy shall be verified empir-
ically.

4.1 Discussion on Convergence

For the linearized system, the proof of the consistency is
trivial through the application of Taylor’s expansion and
thus is omitted here. A theoretical proof the stability
for the linearized system, on the other hand, is not so
trivial because of the presence of the singularity at τ = 0
(see Barles et al. [10]). Therefore, we establish a stability
criterion empirically. Based on preliminary numerical ex-
periments, we were convinced that the stability criterion
∆τ
∆x2 ≤ 1 should be imposed in the selection of time step
length for a given grid size in the x direction. Between
the option price and the optimal exercise price, the lat-
ter is far more difficult to calculate accurately; once the
Sf (τ) is determined accurately, the calculation of the op-
tion price itself is straight forward. Therefore, in this
subsection we focus on the calculation of the Sf (τ) first.

The example we chose for our numerical tests has been
used by researchers for the discussion of American puts
on an asset without any dividend payment [4, 5]. The rel-
evant parameters are: the strike price X = $100, the in-
terest rate r = 10%, the volatility of the underlying asset
σ = 30% and the tenor of the option being one year. In
this subsection, we focus only on the zero-dividend case,
i.e., we set the constant dividend yield to zero. For the
convenience of those readers who prefer to see the results
in dimensional form, all results presented in this section
are those associated with the original dimensional quan-
tities before the normalization process was introduced.

Firstly, we examined a point-wise convergence by focus-
ing on a specific point of the Sf value first. As an in-
dicator, the differences of Sf values at a specific time to
expiry, say 1 year, are calculated with time step size being
consecutively halved. Table 1 shows the differences of the
computed Sf values with the total number of grid points
in the x direction being fixed to 51, while the number
of time step intervals is consecutively doubled from 200
to 3200 (the time step size is consecutively halved). One
should note that in Table 1, the “difference” refers to the
absolute change in Sf values when the time step size is
halved, while the “ratio” refers to the ratio of successive
differences. Theoretically, the order of convergence is re-
lated to calculated ratio by ratio = 2k, in which k is the
order of convergence. Clearly, when the grid size in the x
direction is fixed, the ratios of the differences of two Sf

values at τ = 1 year with two consecutive calculations of

Table 1: Ratios for the order of convergence in time
Time steps Sf ($) difference ratio

200 76.126
400 76.121 0.00000406
800 76.120 0.00000125 3.261
1600 76.120 0.00000060 2.072
3200 76.119 0.00000030 2.036

Table 2: Ratios for the order of convergence in asset price
Grid intervals Sf ($) difference ratio

50 76.120
100 76.150 0.00030017
200 76.160 0.00010254 2.927
400 76.164 0.00003342 3.068
800 76.164 0.00001114 3.000

time step length being halved indeed approach 2, which
indicates that our scheme is indeed of the first order in
time.

Then we fixed the time step size to ∆τ = τmax

1600 instead
and examine the ratios of the of the differences of two Sf

values at τ = 1 year with the two consecutive calculations
of x grid length being halved, we find that these ratios are
close to 3, as shown in Table 2. This indicates that the
order of convergence in the x direction is certainly higher
than one but lower than theoretically predicted 2nd order
convergence of the Crank-Nicolson scheme. One plausi-
ble reason for this is that the errors introduced in the
predictor somehow reduced the order of convergence in
the x direction a bit, so that now it is of an order of one
and half rather than two.

Having discussed the point-wise convergence, we tested
the convergence of the new scheme on the entire solution
of Sf . We first ran our code with an extremely fine grid,
e.g., the N and M are set up as 102,400 and 1,000, re-
spectively. Naturally, this takes a long time to compute.
But, once the Sf values are computed on this fine grid,
we used these values as the reference values to verify the
convergence of computed Sf values based of some coarse
grid. To measure the overall difference between the re-
sults of the coarse grid and those of the finest grid, we
use two error measures. The root mean square absolute
errors (RMSAE), which is usually referred as root mean
square errors. In order to tell relative errors, a modifica-
tion of root mean square errors is used here, we refer it
as the root mean square relative errors (RMSRE). The
two measures are defined respectively as

RMSAE =

√√√√1
I

I∑

i=1

(ãi − ai)2, (15)
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Figure 1: The RMSAE with Increased Grid numbers
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Figure 2: The RMSRE with Increased Grid Numbers

RMSRE =

√√√√1
I

I∑

i=1

(
ãi − ai

ai
)2, (16)

where ãis are the nodal Sf values associated with coarse
grid; ais are the Sf values associated with finest grid and
I is the number of sample points used in the RMSAE and
RMSRE. In the following experiments, I was set to be 50
for all the results shown in the following diagrams.

By demonstrating the RMSAE and RMSRE, we obtain
an overall measure of the convergence to make sure what
we observed from analyzing the order of convergence pre-
viously based on one point only is also true for other grid
points. Figure 1 and 2 show the RMSAE and RMSRE re-
spectively, for the Sf values when the number steps in the
x direction and the τ direction are gradually increased.
As can be clearly seen from these figures, the RMSAE
reduces by nearly 10 folds when the grid size changes
from N = 10 and M = 10 (with RMSAE = 0.0254)
to N = 200 and M = 100 (with RMSAE = 0.0028).
In fact, the difference between the results obtained with
a coarse grid and those obtained with the finest grid is
better reflected by the RMSRE, which shows very similar
trend as that of the RMSAE; when the number of grid
has increased to N = 200 and M = 100, the RMSRE has
reached 0.3%, which is quite an acceptable accuracy in
comparison with the solution based on an extremely re-
fined grid. This confirms that analysis of convergence or-
der presented earlier can be extended to other grid points
as well. Therefore, we are confident that the scheme can
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Figure 3: Comparison: Two Optimal Exercise Bound-
aries
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lead to a uniform order of convergence for the calculation
of the optimal exercise prices.

4.2 Discussion on Accuracy

This subsection proves that the numerical solution of the
linearized PDE does converge to that of the original non-
linear PDE system. We firstly compare our results with
Zhu’s semi-closed solution in the non-dividend case [4].
If one can demonstrate that the converged solution ap-
proaches Zhu’s solution, it is confident to say that the lin-
earization process we took before the predictor-corrector
scheme was applied. Figure 3 shows such a comparison
with the optimal exercise boundaries being computed by
using the current scheme with N = 102, 400, M = 1, 000
and Zhu’s solution [4]. As it can be seen from this figure,
the two results agree with each other almost perfectly,
especially when the time to expiry increases. A close ex-
amination reveals that the current approach slightly un-
derestimates the Sf values when the time is close to ex-
piry. When the time to expiry increases from 0 to 1 year,
the under-estimation gradually improves from a roughly
2.16% at the time to expiry (T − t) being 0.0067 year,
to 0.05% at the time to expiry being 1 year. Given the
presence of the well-known singularity at the expiry [10],
which is not possible for any numerical scheme to deal
with, the performance of the proposed numerical scheme
is certainly very satisfactory.

Another test that a good numerical scheme must pass is

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Underlying Asset Price ($)

O
pt

io
n 

V
al

ue
 (

$)

Current Approach 
o Oosterlee et al.’s Grid Stretching Method (2005) 

Figure 5: The Option Value with D0 = 5%, T = 1 year

that the optimal exercise price asymptotically approaches
to that of its corresponding perpetual counterpart when
the lifetime of the put option becomes infinite. In this
extreme case, it was reported in the literature that some
approaches lead to an oscillatory and non-monotonic op-
timal exercise price when the lifetime of an option is very
long. We have prolonged the lifetime to 20 years to ar-
tificially make the option in this example a long-lifetime
option. Again, using the finest grid N = 102, 400 and
M = 1, 000, We calculated the Sf (τ) and plotted its
value against the theoretical perpetual optimal exercise
price given in Eq. (7), as shown in Figure 4. Clearly, the
numerical solution exhibits a nice asymptotical approach
to the optimal exercise price of the corresponding perpet-
ual put option; no oscillation was observed at all. This
shows that our scheme is very stable and can be used for
for long-lifetime options as all.

4.3 Option Prices in Constant Dividend
Yield Cases

This subsection presents option prices from the current
method for constant dividend yields case discussion. The
relevant option parameters used in the following exam-
ple are the same as those used in the non-dividend case,
except the constant dividend yield D0 is now set at 5%.
The results presented in this section were obtained using
a grid resolution of N = 200 and M = 100.

Figure 5 shows a comparison of the option values calcu-
lated by using the current approach and the ones from
Oosterlee et al. [12], who employ the so-called Grid
Stretching Method. The option values in Figure 5 are
plotted against the underlying asset prices at time to ex-
piry being 1 year. The agreement between the two ap-
pears to be excellent, reinforcing the fact that once the
optimal exercise price can be accurately calculated, the
accurate calculation of the option price itself naturally
follows.

5 Conclusion

This paper presents a new predictor-corrector scheme to
numerically tackle American put option pricing with con-
stant dividend yields. The key feature of the current
scheme is its high efficiency since there is neither iteration
nor initialization required. Through a couple of numeri-
cal examples, we have demonstrated the convergency and
accuracy of the proposed scheme.
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