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Abstract—In this study we deal with aspects of the modeling 

of the asset prices by means Ornstein-Uhlenbech process driven 
by Lévy process. Barndorff-Nielsen and Shephard stochastic 
volatility model allows the volatility parameter to be a 
self-decomposable distribution. BNS models allow flexible 
modeling. For this reason we use as a model 
IG-Ornstein-Uhlenbeck process. We calibrate moments of Lévy 
process and OU process. Finally we fit the model some real data 
series. We present a simulation study. 
 

I. INTRODUCTION 
Empirical studies have also shown that the volatility is not 
constant as postulated by famous Black-Scholes model. In 
reality the logarithmic return distribution has fatter than  the 
normal distribution implies. The characteristic properties of 
logarithmic returns are high kurtosis and negative skewness. 
These facts can not explain assumption of a constant 
volatility. Volatility has a stochastic structure. Therefore a 
mean-reverting dynamics can be suitable candidate for the 
modeling of volatility. The stock market prices evolve freely 
but other a lot of real asset, price spreads are observed in the 
short time, but in the long time, the demand of product  is 
adjusted and the prices move towards around the level of  
production cost of asset. The stochastic volatility  models are  
driven by Lévy processes is introduced by[8], [9] The Bates 
model is simpler but in this model jumps and stochastic 
volatility are independent. BNS model denotes a connection 
of jumps and stochastic volatility.  
A Brownian motion may be a good model for a particle 
movement. After a hit the particle does not stop after 
changing  position, but it moves continuously with 
decreasing  speed. The Brownian  motion  is not 
differentiable anywhere . Ornstein -Uhlenbeck process was 
proposed by Uhlenbeck and Ornstein (1930)  to improvement 
the model. 
 The paper is organized as follows. Section 2 reviews well 
known  properties of Lévy  process. In section 3 we set up 
OU-processes. We explain estimators. In section 4 we fit the 
model real data. Finally, the section 5 include conclusions. 
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II.  LÉVY PROCESSES 
Definition 2.1 (Lévy process) A Lévy processes a continuous  
time  stochastic processes   with 

     
  Stationary increments 

For all  ,  has  the same distribution as  
  Independent increments 

For all   ,       
  are independent. 

 Cadlağ paths 
The sample paths of a Lévy process are right continuous and 
left  limits. 
 
Remark: In a Lévy processes discontinuous occurs at random 
times. 
 
Brownian motion   and   Poisson process  

  for some density   are levy process. 
 
The jumps of Lévy process    are very 
important to understand   structure   levy processes. 
 
Levy measure   is a measure satisfying   and    
 

                                (2.1) 
 
For any Borel subset  B of   , 
 

     (2.2) 
 

 is the expected number ,per unit time of jumps whose 
size belong to B (Tankov temperit stable,p.4).  
Thus   is intensity of  jumps of size  . 
 
Let   is the characteristic function  of a random variable 

, If for every positive  integer n , there exist a random 
variable    such that, 

                                   (2.3) 
We say that  the distribution of   is  infinitely divisible. 
Anyone can define  for any infinitely divisible distribution  a 
stochastic process,   called Lévy process [2,p.44], 
[7,p.8].  
 
Theorem (Lévy Khintchine representation). Let   
be a Lévy process. The characteristic function   is of 
the form , 

 
Where  is cumulant of   given by  the Lévy- 
Khintchine formula,  
 

Financial Modelling with Ornstein–Uhlenbeck 
Processes Driven by Lévy Process 

Ömer Önalan  

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



 
 

 

 

(2.4)  is called Lévy triplet. 
 
The Lévy – Ito decomposition reveals the path structure of a  
Lévy process. 
 
Theorem (Levy-Ito Decomposition). Let   be a Lévy 
process and   its Lévy measure and verifies, 
 

  and   
 
 

                                    (2.5) 
 
 

         (2.6) 
 
The subordinators are special case of Lévy process. All 
subordinators are pure upward jumping process. It has non 
decreasing  sample paths(i.e  Poisson and IG Lévy processes 
are subordinators) 
 
Definition (Self-decomposability).  Let   be the 
characteristic function of random variable  . We call  
self-decomposable  if  
 

                                          (2.7) 
 
For all  and all  and for some family of 
characteristic functions [2,p.47].  
 
Let  denote the a Lévy measure of  infinitely divisible  
measure P. The form of   is   the such  

 is increasing on  and decreasing on . 
[2,p.48]. Let   denotes the Lévy measure of  . If the 
Lévy density u  of the self-decomposable law D is 
differentiable , then the Lévy measure    has a density   
and   and  are related by  
 

                                 (2.8) 
Theorem :   For any Lévy process   and for a 
function f ,satisfying regularity conditions, 
 

                (2.9) 
For  proof,  you can look [9] , [1]. 
 
Theorem :  A random variable  is self-decomposable if and 
only if  it there  exist a Lévy process   such that   
has representation of  the form, 
 

                                               (2.10) 
 

 and  are Lévy measures of respectively  and . 
They are related by [1,p.31]. 
 

                                  (2.11) 

III. ORNSTEIN-UHLENBECK PROCESSES 
Ornstein-Uhlenbeck process was proposed by Uhlenbeck and 
Ornstein (1930) as an alternative  to Brownian motion.This 
process  was driven by a Brownian motion with drift that is a 
Lévy process.  
 

OU Process driven Brownian Motion 
 
A one dimensional Gaussian OU process   can 
be defined as the solution to the stochastic differential 
equation, 

                                    (3.1) 
 
If   is the interest rate at time t and m  is a reference value 
for the rate, 

 
       (3.2) 

 
with  . Let  . We get   
 

                             (3.3) 
 
So ,     consequently, 

.  Let    
 
We obtain   so   
  

  

               (3.4) 
 is unique strong markov solution of (3.2) [19,p.298].   

Finally we obtain that 

       (3.5) 

This distribution as  to the stationary distribution 
. The probability distribution of  approach an 

equilibrium probability distribution  called the stationary 
distribution. This stationary distribution has a stationary 
density function. For a time changed Brownian motion , 
another   representation is here , 
 

    (3.6) 
 

                    (3.7) 

                           (3.8) 
 
Theorem : The correlation function of  is  
 

     (3.9) 

When  the correlation of  tents to, 
 

            (3.10) 
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OU Process driven General Lévy Processes 
 

Let   is a time homogeneous Lévy process, for 
,  Ornstein-Uhlenbeck (OU) type process has  

 

 

                                   (3.11) 
 
It is unique strong solution below SDE, 
 

                  (3.12) 
 
Where λ  denotes the rate of decay. The λ enters the stationary 
solution  of OU process. This leads difficulties  solution of 
SDE. We can remove this difficulties by a simple  change of 
time  in the stochastic integrals [8,p.75].  We can rewrite OU 
process as follows  
 

            (3.13) 
 
If   is an OU process with marginal law D , then we 
say that  is a D-OU process. When given a one dimensional 
distribution D there exist a stationary OU process whose 
marginal law is D if and only if  D is self-decomposable [16]. 
We have result that[8]  , 

 

 Proposition:   For any   , [19] ,  
 

 

 
Remark:  
 
In the  case of a D_OU process,  process   denotes the 
background driving Lévy process(BDLP). We can write  that 
relation  between the characteristic functions of  the BDLP  

  and  , 
                        (3.14) 

 
Let us denote by   the cumulant function of the 
self-decomposable law D  and   the cumulant function 
of the BDLP at time   i.e   Other 
words     is the cumulant 
function of    [8] .  We can say that  the cumulant function 
of    can be directly found from the cumulant function of  

.  
 
If   denotes the Lévy measure  of , we will assume that 
 

 

and we shall write    and   and we 
will assume that   is independent of L and that [16] 
,[10,p.3], 
 

                
 

 
Parameter Estimation of Model 

 
We will use moments estimation methods to estimate the 
model parameters . We will take discrete spaced 
observations. Let  is a levy process, then 

 and    (for detail, [10,p.4]. In 
this section our aim is match the theoretical moments and 
empirical moments  
Theoretical auto covariance and auto correlation of  is 
given by 

 

 
 
We can be write autocorrelation   and empirical moments of   
time series X  as follows,  

 

 

 
  

 

 
 

 

Finally strongly consistent estimators of   
respectively [10:p.7],  

 

 

                                               (3.15) 

 

 
 

 
We can use the as an estimator of  λ  [10:p.7] . 
 
 

Likelihood Estimation for  a IG-OU Process 
  
We can estimate  parameters of IG process using 
observations  sample of  

  . 
 

The initial estimates of   
 
•  
 
•  
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            (3.16) 

 
The Simulation of IG-OU Process 

 
We simulate the paths of process by means of the Euler 
scheme, 

             (3.17) 
 

  is the corresponding BDLP of  
[13:p.103].  
 

Simulation of an IG process 
 

We use the IG random number generator proposed by 
[2:p.111-112]. 
 

Generate a normal  random number N 
1) Set  
2) Set  
3) Generate a uniform random number  
4) If  then return  , else return  

 
 

Sample path of an IG process 
We simulate a sample path of  an IG  process  

the value of this process ay time points 
0,1,2,…  ,  
 
• Simulate n , i.i.d  IG random variable  with parameter  

 ,  . 
 

 

IV. THE MODELLING OF DATA 
We describe the stock price process, 
 

     (4.1) 
 

                             (4.2) 
Integrated volatility is difined as integral of the spot volatility 

 

 
A non parametric measure for integrated volatility is realized 
volatility. The realized volatility  can be estimated  by the 
sum of intra daily  squared return 

 

M  is the number of intra day observations. 
 
If we use the discrete version of price process, 
 

                                                (4.3) 

Where  is the rate of return and   is the skewness 
parameter of the return.   denotes the return process. If   
has an inverse Gaussian distribution then, 

 
It has a normal  inverse Gaussian distribution[18:p.280-281].   
 
This  is an average of the continuous time volatility on one 
trading day. 
Remarks: We assume that  volatility process is a constant 
times the number of  trades on each trading day. 
 

                                (4.5) 
 

 is a constant and %95 confidence interval for  is 
 We use  

constant value. 
 
 
 
 

Application to Real Data 
 

Our data set consist of  General Motors  stock prices from 
1/2/1990 through  10/12/2007.The total number of 
observations is 4481.The parameters are calculated  using  
with (3.15) formulas. 
 
 
Table 1. Parameter estimation for  close prices of GM 
Parameter     
Estimated 
value 

47.81039 421.238 0.003005 0.012818 

 
 
Table2. Parameter estimation for  return of GM  
Parameter     
Estimated 
value 

0.000024 0.000906 3.985 0,022507 

 
 
    Figure1. Autocorrelation  for close prices of GM 
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 Figure2 True autocorrelation and estimated autocorrelation 

 

 
 
 
 
 

Figure3 Historical price data for GM 

 

 
 
 
 
          Figure 5: Return data for GM 
 

 
 
 
 

 
 
 
                 Table 1: Descriptive Statistics 
 

Statistic Value 

Sample Size 4481 

Range 0.3497 

Mean -9.5283E-6 

Variance 4.5377E-4 

Std. Deviation 0.0213 

Coef. of Variation -2235.6 

Std. Error 3.1822E-4 

Skewness -0.03172 

Excess Kurtosis 4.4648 
 
 
 
Figure 6: GM return and Estimated return 
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 Figure 7: Volume data and INV.Gaussian pdf 

 
 

Figure 8: ACF of the squared residuals of GM actual return and 
estimated returns 

 
 
  Figure 9: Histgram of the squared residuals of GM actual return and 
estimated returns 

 
 

V. CONCLUSION 
In this paper, we investigate an Ornstein-Uhlenbeck 

process driven by Lévy process for to model stock prices. We 
can be use the log return and stochastic volatility at the same 
time in a model. The autocorrelation function of an 
Ornstein-Uhlenbeck process is decreasing as exponential. 
Exponential autocorrelation function approximates well 
empirical  autocorrelation function  of General Motors stock. 
This result represent that Ornstein-Uhlenbeck process can be 
fit model for describe real data. Furthermore volume (trading 
intensity) can be use a model for the volatility. Accurate 
parameter estimates are important in mathematical finance 
and risk management. 
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