
Implementation of a Purely Hardware-assisted
VMM for x86 Architecture

Saidalavi Kalady ∗, Dileep P G, Krishanu Sikdar, Sreejith B S, Vinaya Surya, Ezudheen P †

Abstract—Virtualization is a technique for effi-
cient utilization of hardware resources. Virtual
Machine Monitor (VMM) is a piece of software
which facilitates hardware Virtualization. Software
based Virtualization technologies encompass consid-
erable instruction overhead. We have implemented
a purely hardware-assisted VMM for x86 architec-
ture on AMD Secure Virtual Machine (SVM) [1] to
overcome the instruction overhead caused by software
based Virtualization. The performance impact due to
Virtualization is measured in terms of the CPU time
consumed by certain critical sections of Virtualization
specific code. A quantitative performance analysis
using the purely Hardware-assisted Virtual Machine
Monitor reveals that Hardware Virtualization at its
current stage suffers from performance overhead, but
improves considerably with hardware enhancement.

Keywords: Hardware Virtualization, Virtual Ma-

chine Monitor, Performance Analysis, x86 architec-

ture, AMD Secure Virtual Machine

1 Introduction

Virtual machine monitor (VMM) was first introduced as
a software abstraction layer that could multiplex costly
hardware units for multiple applications in the 1960s.
Introduction of multitasking operating systems and in-
expensive hardwares obscured Virtual machine monitor
technology between 1980 and 1990 [7]. Beginning of
twenty first century witnessed re-introduction of VMM as
a solution for couple of problems like Hardware underuti-
lization, information security and Power Consumption.

Virtual Machine Monitor (VMM) also known as Hy-
pervisor, is a piece of software which is used to implement
hardware Virtualization. VMM controls the concurrent
execution of multiple operating systems on a single phys-
ical machine. It is a thin software layer that provides
Virtual Machine (VM) abstractions. The abstraction re-
sembles the real hardware to an extent that is sufficient

∗Saidalavi Kalady (e-mail: said@nitc.ac.in) is a faculty member
in the Department of Computer Science and Engineering, National
Institute of Technology Calicut, India.
†Dileep P G (e-mail: dileeppg.nitc@gmail.com), Krishanu

Sikdar (e-mail: Krishanu.6@gmail.com), Sreejith B S (e-
mail: sreejithbs.nitc@gmail.com), Vinaya Surya(e-mail: vinaya-
surya@gmail.com), Ezudheen P (e-mail: ezudheen@gmail.com) are
students in the Department of Computer Science and Engineering,
National Institute of Technology Calicut, India.

to enable software written for the real machine to run
without change in the VM [7]. The VMM is referred to
as the Host and each Operating System (OS) that runs
atop the VMM as Guest. VMM provides appearance of
full control over a complete physical machine (processor,
memory, and all peripheral devices) to every Guest OS.

Until the recent wave of processor Virtualization as-
sistance from hardware manufacturers, x86 - the world’s
most popular architecture was hostile towards VMM
technology. Techniques such as Full Virtualization
and Paravirtualization resorted to complicated software
workarounds to virtualize x86 machines, but not without
the associated overhead [4]. Software based Virtualiza-
tion technologies have considerable instruction overhead
to virtualizes x86 machines. In 2005, hardware manufac-
turers introduced architectural extensions to support x86
Virtualization. Hardware-assisted Virtualization, though
not fully mature at present, represents the future of Vir-
tualization [6].

Section 2 describes the limitations of x86 architec-
ture for Virtualization and architectural extensions to x86
which facilitates classical Virtualization on AMD Secure
Virtual Machine (SVM) [1]. Section 3 describes design
and implementation of a simple prototype of a purely
Hardware-assisted Virtual Machine Monitor (HVMM).
The performance impact due to Virtualization is mea-
sured in terms of the CPU time consumed by certain
critical sections of Virtualization specific code. Section 4
describes a quantitative study on the performance impact
associated with Hardware Virtualization.

2 VIRTUALIZATION SUPPORT FOR
x86 ARCHITECTURE

Processors based on x86 architecture failed to meet clas-
sical Virtualization standards until major hardware ven-
dors came up with the recent architectural extensions in
support of Virtualization [5]. The respective technolo-
gies from Intel and AMD in this domain are Intel VT co-
denamed Vanderpool and AMD Secure Virtual Machine
(SVM) codenamed Pacifica.

2.1 x86 Architectural Limitations

In its native form, the x86 architecture doesn’t meet the
Popek & Goldberg’s formal requirements for Virtualiza-

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



tion [5]. In a virtualized environment, those instruc-
tions that require control to be handed over to the VMM
are called sensitive instructions. Privileged instructions
within a VM can be trapped to handover control to
the VMM. If all the sensitive instructions are privileged,
then the processor architecture is said to be virtualizable.
There are 17 instructions in x86 which violate this basic
requirement [8].

Moreover, the x86 architecture has privilege levels
called Rings. The OS normally runs at ring level 0. So, to
control a Guest OS within a VM, the VMM must run at
a higher privilege level than the OS. But the highest priv-
ilege available is at level 0. Even in that case the Guest
OS must execute at a level numerically greater than or
equal to 1. But most proprietary Operating Systems are
designed to run at level 0 or they will fail to operate.
One solution to this problem is modifying the kernel of
the Guest OS. But for some commercial Operating Sys-
tems it may violate their Licensing terms and conditions.
In such cases implementing a virtualized environment re-
quires expensive changes in Operating Systems and it
might also cause software incompatibility issues [8].

Different software techniques have been in use for x86
Virtualization. These include Full Virtualization which
completely emulates the underlying hardware and Par-
avirtualization which necessitates modifications to the OS
kernel. Both these techniques requires expensive software
techniques to overcome the inherent limitations of the un-
derlying hardware.

The recent x86 hardware Virtualization extensions
from Intel and AMD are the answer to many of the afore-
said problems. The two technologies are similar but in-
compatible in the sense that a VMM designed to work
on one cannot automatically run on the other. We have
chosen the AMD SVM for our study and analysis.

2.2 AMD SVM Architectural Extensions

The AMD SVM architecture is a set of hardware exten-
sions to the x86 architecture specifically designed to en-
able effective implementation of Virtual Machine systems
[1].

The AMD SVM is designed to provide quick mech-
anisms for World Switch between Guest Operating Sys-
tems and the Host VMM. World Switch refers to the
operation of switching between the Host and the Guest
[2].

Important features of the SVM include the ability to
intercept selected instructions or events in the Guest, ex-
ternal access memory protection, assistance for interrupt
handling, virtual interrupt support, a Guest/Host tagged
Translation Look-aside Buffer (TLB), and Nested Paging
to reduce Virtualization overhead [2].

AMD SVM introduces several new instructions and
modifies several existing ones to facilitate simpler and
yet robust implementations of Virtual Machine systems
on the x86 architecture or more specifically the AMD64

architecture. The newly introduced instructions are VM-
RUN, VMLOAD, VMSAVE, VMMCALL, STGI, CLGI,
SKINIT, and INVLPGA [1].

Another feature provided by the architecture is a new
processor mode called Guest Mode entered through the
VMRUN instruction. While executing in Guest Mode,
there are subtle changes introduced in the behavior of
some x86 instructions in order to facilitate Virtualization
[1].

There is also a new memory resident data structure
called Virtual Machine Control Block (VMCB) for each
running Guest OS. The VMCB is divided into the Control
area and the State area. Control area contains various
control bits including the intercept vector with settings
that determine what actions cause #VMEXIT (transfer
of control from the Guest to Host). The CPU state for
each Guest is saved in the state area. Also, Information
about the intercepted event is put into the VMCB on
#VMEXIT [2].

The SVM also includes Nested Paging facility to al-
low two levels of address translation in hardware, thus
eliminating the need for the VMM to maintain the so
called shadow page table structures that are involved in
software Virtualization techniques [1].

With nested paging enabled, the processor applies two
levels of address translation. A guest Page Table (gPT)
maps Guest virtual address to Guest physical addresses
located in Guest physical space. Each Guest also has
a host Page Table (hPT) which maps Host virtual ad-
dresses to Host physical addresses located in Host phys-
ical space. Both Host and Guest levels have their own
copy of the CR3 register, referred to as hCR3 and gCR3,
respectively. The complete translation from Guest vir-
tual to Host physical address is cached in the TLB and
used on subsequent Guest accesses [1].

In addition, the TLB entries are tagged with an Ad-
dress Space Identifier (ASID) distinguishing Host-space
entries and different Guest-space entries from each other.
The ASID tag specifies to which Virtual Machine, the
corresponding memory page is assigned. This eliminates
the need for TLB flushes each time a different Virtual
Machine is scheduled [1].

3 HARDWARE-ASSISTED VIRTUAL
MACHINE MONITOR

The HVMM which we use for performance analysis com-
pletely relies on the AMD SVM Hardware Virtualization
support. It is based on an open source prototype VMM
called Tiny Virtual Machine Monitor (TVMM) by Dr.
Kenji Kaneda [10].

The TVMM is a simple VMM developed for the pur-
pose of education and verification and has the following
functionalities [10]. It performs the basic tasks necessary
to initialize the AMD SVM processor extensions. It suc-
cessfully creates a single VM and then boots a skeletal
Guest OS within the VM. Our HVMM is an extended

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



version of the TVMM with the following additional ca-
pabilities.

• It can handle multiple Guest Operating Systems.

• It creates multiple Virtual Machines each of which
runs different Guest Operating Systems.

• It has the functionality to schedule the guests one
after the other in a Round Robin fashion.

3.1 HVMM Design

The pseudo code contained in Table 1 and 2 describes the
control flow behind the working of the HVMM.

3.2 HVMM Implementation

The HVMM is designed to run on AMD64 machines with
the 64-bit Long mode and SVM extensions enabled. The
bulk of the HVMM code is written in ’C’ language. The
startup code needs to be in assembly and is done using
the GNU Assembler [3]. HVMM development environ-
ment is listed in Table 3. The object files from AS and
GCC are linked together to form a single x86-64 Exe-
cutable and Linkable Format (ELF) binary file ’hvmm’
by the linker ’ld’ using a separate custom linker script.

A disk image is created using the dd utility to emulate
a real physical disk. The virtual disk created is mounted
on a 64 bit Linux machine installed on AMD SVM sup-
ported hardware. The binary files of one or more guest
kernels, HVMM along with GRUB boot files, and settings
are copied to the disk. Then the disk is loaded in AMD
SimNow and the kernel is run from within the HVMM.

We use simple skeletal 64-bit kernels in ELF format for
our purpose [11]. The OS kernels complete the minimal
initialization tasks and then simply loop infinitely print-
ing dummy messages on to the screen. We can load any
number of OS kernels provided as separate GRUB mod-
ules along with the HVMM kernel. The OS kernels are
copied to disjoint locations in memory from within our
HVMM. Then Virtual Machines are created for each OS
which involves populating SVM specific data structures
such as the VMCB to control the VM execution [12]. The
VMM finally boots the kernels within the corresponding
Virtual Machines in a Round Robin fashion with a spe-
cific time slice. Once an OS gains control, it continues
to execute until certain specific operations, such as the
completion of a time slice causes a #VMEXIT, forcing
transfer of control back to the VMM. The OS can also
transfer the control explicitly to the VMM using a special
VMMCALL instruction.

4 PERFORMANCE ANALYSIS

In this section, we present a quantitative study of perfor-
mance overheads associated with Hardware-assisted Vir-

Table 1: HVMM Pseudo Code

HVMM {
INITIALIZE SVM();
HYPERVISOR CORE();

}

INITIALIZE SVM() {
ENABLE SVM();
SETUP HYPERVISOR();

}

ENABLE SVM(){
//Initialize SVM specific flags such as

EFER, SVME with appropriate value;
}

SETUP HYPERVISOR(){
//Allocate and setup basic VMM data

structures such as Host State Save Area
}

HYPERVISOR CORE(){
for(each Guest OS gos) {

vm=VM CREATE(gos);
ADD ACTIVE(vm);

}
while(1) {

vm=GET NEXT VM();
if(no active vm) break;
VM BOOT(vm);
HANDLE VMEXIT(VM);

}
}

VM CREATE(gos) {
vm− >VMCB=SETUP VMCB();
LOAD GUEST IMAGE(gos);
}

SETUP VMCB(){
ALLOCATE VMCB();
SETUP CONTROL AREA();
SETUP STATE AREA();
}

ALLOCATE VMCB(){
//Allocate a region of physically contigu-

ous, page-aligned memory
}

SETUP CONTROL AREA(){
//Initialize the control area of the VMCB

with conditions that will control the guest OS ex-
ecution
}

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



Table 2: HVMM Pseudo Code (cont’d.)

SETUP STATE AREA(){
//Initialize the state area of the VMCB

with the initial machine sate of the guest OS
}

LOAD GUEST IMAGE(gos){
//Load the image of the guest OS gos into

memory
}

ADD ACTIVE(vm){
//Adds the Virtual Machine vm to the list

of VMs considered for Round Robin execution
}

GET NEXT VM(){
//Return one from the active list of VMs

following a simple Round Robin rule
}

VM BOOT(vm){
//Transfer control to the Guest OS within

the vm using special SVM Instructions
}

HANDLE VMEXIT(vm){
//A naive #VMEXIT handle which just

displays the information associated with the
#VMEXIT
}

Table 3: HVMM Development Environment
CPU AMD x2 3800+
Base OS Open SUSE 10.3
Simulator AMD SimNow V 4.4.2
Compiler GCC 4.3
Assembler GNU AS
Linker GNU ld
Image Tool dd
Bootloader GRUB
Other GNU Make utility

Table 4: HVMM Test Environment
CPU AMD x2 Turion, AMD x2 3800+, 4400+
Base OS Open SUSE 10.3 64 bit
Simulator AMD SimNow V 4.4.2
Host HVMM
Guests 64 bit skeletal OS kernel

Table 5: Comparisons of Switch Log values
Processor Clock Speed Switch lag
AMD x2 Turion 1.6 GHz 89 ms
AMD x2 3800+ 2.0 GHz 79 ms
AMD x2 4400+ 2.2 GHz 75 ms

tualization using the AMD SVM. The overhead is mea-
sured in terms of CPU time consumed by certain critical
sections of HVMM code.

4.1 Experimental Setup

The HVMM is made to boot and run two Guest Oper-
ating Systems one after the other. It is possible to setup
break points at critical points in the OS code with the
help of the SimNow debugger [9]. We setup break points
at the following two points (1) Immediately before the
#VMEXIT in the Guest OS 1, and (2) Just before start
of Guest OS 2.

The time at the two instances are noted as the value
given by the Host seconds field in the SimNow main win-
dow. The difference between the two values gives the time
taken to execute minimal VMM specific tasks before the
next OS gets control. We call this value as “Switch Lag”.
Here, we neglect the time taken for specific #VMEXIT
handling code and just consider the minimal time taken
for a blind transfer of control back to the next Guest OS.

The test is performed on processors with three differ-
ent clock speeds - AMD x2 Turion, AMD x2 3800+, and
AMD x2 4400+ all of which have AMD SVM extensions
and a comparison is made between the values of Switch
Lag obtained. Table 4 shows the Test Environment

4.2 Results

Table 5 shows the switch lags corresponding to differ-
ent processors having various clock speeds while running
HVMM with identical virtual machines atop real ma-
chines.

Figure 1 demonstrates the variation of Switch Lag
corresponding to different clock speeds while running
HVMM with identical virtual machines atop real ma-
chines.

From Figure 1, It can be inferred that Switch Lag
decreases considerably with ascending clock speeds. But
the switch lag does not linearly decrease with increase
in clock speed. This implies that increase in clock cycle
and hardware enhancements will not reduce switch lag to
an acceptable level (order of micro seconds). The VMM
scheduler which enables the HVMM to execute multi-
ple guest operating systems in a round robin fashion is
obliged to set scheduling time quantum in the order of
seconds. It results in lower response time for Guest op-
erating systems running upon single threaded machines

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



Figure 1: CPU Speed vs Switch Lag

5 Conclusions and Future Work

Comparison of running times with the HVMM running
identical Virtual Machines atop real machines having dif-
fering processor speeds reveals that the performance over-
head diminishes with increasing processing power. With
evolving hardware enhancement techniques, the perfor-
mance impact due to Virtualization is expected to come
down. Hardware Virtualization is still at a nascent stage.
The results obtained from the test with different proces-
sors show that there is still a long way to go in reduc-
ing the performance overhead associated with Hardware-
assisted Virtualization.

A multithreaded implementation of VMM scheduler
with hardware assisted thread scheduling will bring down
the switch lag into order of microseconds. It will neces-
sitate additional inter process communication between
Host OS and Guest OS for exchanging Virtualization
events among them. This will results in higher response
time for Guest operating systems and more efficient CPU
utilization.

References

[1] AMD, AMD64 Virtualization Codenamed Pacifica
Technology Secure Virtual Machine Architecture
Reference Manual, Publication No.33047 Revision
3.01, May 2005

[2] AMD, AMD64 Architecture Programmer’s Man-
ual,Volume 2:System Programming, Publication
No.24593 Revision 3.13, July 2007.

[3] AMD, AMD64 Architecture Programmer’s Man-
ual Volume 3:General-Purpose and System Instruc-
tions,Publication No.24594 Revision 3.13, July 2007.

[4] Intel, “Intel Virtualization Technology,” Intel Tech-
nology Journal, Volume 10, Issue 3, August 2006.

[5] POPEK, G. J., GOLDBERG, R. P., “Formal re-
quirements for virtualizable third generation archi-
tectures,” ACM Communications,, July 1974

[6] Adams, Keith; Agesen; Ole, “A Comparison of Soft-
ware and Hardware Techniques for x86 Virtualiza-
tion,” ACM International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems,, 2006.

[7] Rosenblum, Mendel; Garfinkel, Tal. “Virtual ma-
chine monitors: current technology and future
trends,” IEEE Computer, volume 38, issue 5, May,
2005.

[8] J. Robin, C. Irvine, “Analysis of the Intel Pentiums
Ability to Support a Secure Virtual Machine Moni-
tor,” Proceedings of the 9th USENIX Security Sym-
posium, August 2000.

[9] AMD, AMD SimNow v4.4.2 Simulator Users Man-
ual..

[10] http://web.yl.is.s.u-tokyo.ac.jp/ kaneda/tvmm/,
Tiny Virtual Machine Monitor.

[11] http://osdever.net/ , An introduction to OS devel-
opment.

[12] http://www.osdev.org/, Advanced OS development.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009


