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Abstract—Two-factor Hull-White/G2++ trinomial
trees can reproduce the continuous model’s correla-
tion structure by using a high discretization resolu-
tion, or by tweaking the transition probabilities. This
paper investigates the approaches’ correlation error
and gives minimal discretization resolutions that ob-
serve some error limit. The results help make value-
at-risk calculations more efficient.
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1 Handling Discrete Transitions

Given the usual two-factor Hull-White [2] dynamics in a
G2++ notation

r(t) = x(t) + y(t) + φ(t), r(0) = r0,

x(t) = −ax(t)dt + σdW1(t), x(0) = 0,

y(t) = −by(t)dt + ηdW2(t), y(0) = 0,

dW1(t)dW2(t) = ρdt,

a trinomial tree implementation [3] must set discrete joint
transition probabilities that match the marginal distribu-
tions of x(t) and y(t), and lead to a discrete correlation
that approximates ρ.

One way to determine the transition probabilities is Brigo
and Mercurio’s [1] one (BM ):

1: For every node, determine the marginal transition
probabilities and the resulting uncorrelated joint tran-
sition probabilities Π0.

2: Set the transition probabilities Πρ to

Πρ = Π0 + Π∆,

Π∆ = 1ρ>0
ρ
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3: If Πρ contains negative values, set Πρ = Π0.

This approach “loses” correlation in step 3; the remedy
is to increase the discretization resolution.
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One alternative is effective and computationally cheap—
discard step 3, and modify step 2 (BM’ ) [2]:

2: Set Πρ to:

Πρ = Π0 + s̄Π∆.

s̄ = max{s|s ∈ [0, 1],Π0 + sΠ∆ >c 0}

Intuitively, Π∆ moves—proportinally to ρ—mass towards
the matrix diagonals; s̄Π∆ moves as much of that mass
as possible without violating the probability constraints.
The computational costs are negligible, because s̄ is

s̄ =
36
ρ

{
min{Π0

ud, 4Π0
um, 4Π0

md, 4Π0
mu, 4Π0

dm,Π0
du}, ρ > 0

min{Π0
uu, 4Π0

um, 4Π0
md, 4Π0

mu, 4Π0
dm,Π0

dd}, ρ < 0

In x, y-regions where the mean reversion is weak, it is
equivalent to the old approach; in outer regions (i.e., with
large x, y), it avoids falling back to the uncorrelated prob-
abilities, and thus a large correlation loss.

Finally, the transition probabilities can be tweaked even
further—a minimization or a brute-force approach can
determine the probabilities that best match ρ, subject to
the marginal distribution constraints (BF ) [4].

2 Minimal Discretization Resolution

No approach can guarantee to exactly match the desired
instantaneuous correlation if ρ is large; all must rely on
higher discretization resolutions to match the instanta-
neous, and in turn the terminal, correlation more closely.
We can quantify this required increase in the discretiza-
tion resolution for BM, BM’, and BF.

Let I be the number of discrete equispaced time steps,
and Corrx,y(i) the tree’s discrete terminal correlation at
time step i. Let Et denote the relative error between
this discrete correlation and the analytical correlation
Corrx,y(t) at time t:1

Et = −Corrx,y(bt/δc)− Corrx,y(t)
Corrx,y(t)

,

Corrx,y(t) =
2ρ
√

ab(1− e−(a+b)t)
(a + b)

√
1− e−2at

√
1− e−2bt

,

1Because step 3 loses correlation, the numerator is negative; we
revert the sign for convenience.
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Et has several properties:

• It increases with ρ: BM produces negative, invalid
transition probabilities more often; BM’ and BF are
unable to match higher ρ values closely.

• It increases with t due to the cumultive way correla-
tion is lost in the tree; we thus only examine ET .

• It increases with the process parameters a, b: higher
mean reversion skews the marginal probabilities due
to the discretization; the smaller of the outer prob-
abilities can then lead to negative values or mis-
matches.

• It does not, however, depend on σ and η, because
the spatial discretizations of x and y are determined
by their variances.

To illustrate the necessary increase in the discretization
resolution, let Ie

min(a, b, ρ) be the minimal discretization
resolution I such that ET 6 e, given the process param-
eters a, b, ρ. Figure 1 gives such (empirically computed)
minimal discretization resolutions which guarantee that
ET < 1% (for T = 1 and ρ = 0.9, with the BM approach).
Figure 2 compares BM, BM’ and BF for ρ = .95 and three
levels of b.

Figure 1: Minimal discretization resolution for BM such
that ET=1 < 1%, as a function of a and b (ρ = 0.9).

0

1000

2000

3000

I
min

0

1

2

a b

2

1

 

Figure 2: Minimal discretization resolution for BM, BM’,
BF such that ET=1 < 1%, as a function of a (ρ = 0.95).
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Table 1 gives approximate minimal discretization resolu-
tion for BM, BM’, BF and various e, ρ, obtained via em-
pirical search for Imin and OLS regression. Note: T = 1

Table 1: Approximate minimal discretization resolution
for a, b, ρ and e: Ie,ρ

min(a, b) ≈ int + caa + cbb + cabab +
ca2a2 + cb2b

2. WLOG, a < b. T = 1, a, b 6 2.

e = 2% e = 1% e = .5%

BM: ρ = .9 int -110.85 -138.70 -164.07
ca 135.85 89.52 140.90
cb 484.01 666.02 777.95
cab -151.77 -111.76 -162.40
ca2 158.93 154.99 173.78
cb2 142.43 131.62 172.23

ρ = .95 int -463.59 -571.17 -670.40
ca 375.01 369.93 402.28
cb 2142.73 2746.27 3290.64
cab -469.65 -500.40 -525.16
ca2 587.01 635.99 641.48
cb2 499.75 554.13 661.26

BM’: ρ = .9 int -15.47 -27.26 -41.67
ca 20.39 29.04 38.26
cb 73.23 123.88 188.64
cab -18.53 -29.34 -38.39
ca2 29.09 41.88 52.53
cb2 25.81 38.48 52.54

ρ = .95 int -42.68 -75.41 -124.41
ca 43.46 61.03 99.58
cb 178.64 329.04 546.68
cab -41.15 -70.10 -103.20
ca2 63.74 104.52 138.34
cb2 59.69 103.12 154.79

BF: ρ = .9 int 11.88 8.28 5.71
ca 1.49 -11.77 -20.06
cb -6.61 9.05 21.18
cab -35.12 -45.23 -69.11
ca2 23.85 33.76 48.87
cb2 16.08 18.15 27.10

ρ = .95 int 8.27 1.59 -5.79
ca -31.34 -69.41 -148.79
cb 21.61 69.17 152.67
cab -90.78 -181.58 -290.69
ca2 67.72 135.71 212.79
cb2 33.78 59.93 97.57

is used for these approximations; to obtain Imin for other
T , one can rescale the process parameters a, b, ρ before
using the regressions. Clearly, even relatively moderate
values for ρ, a, b require high discretization resolutions in
case of BM; BM’ is preferable. BF further reduces the
necessary discretization resolution, but at a higher com-
putational cost; it is an alternative when a tree setup
becomes memory-bound.

Finally, the regressions help minimze the discretization
resolutions and thus the computational costs for the main
task in a financial organization’s daily value-at-risk cal-
culation: pricing large product portfolios under different
interest rate scenarios and thus Hull-White setups.
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