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Abstract
In this communication a moving boundary approach
has been proposed to valuate a fixed rate mortgage
contract which allows the mortgage holder to prepay
the outstanding balance of the mortgage. This new
method transforms the free-boundary problem into
a monotonic sequence of moving boundary problems
each of which can be solved by standard techniques.
Illustrative examples demonstrate that the moving
boundary approach is able to provide an accurate ap-
proximation to both the early exercise boundary and
the contract value very efficiently. Furthermore, the
approximate results can be systematically improved
by the multi-stage approximation to the early exercise
boundary.
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1. Introduction

The analysis of contingent claims (financial deriv-
atives) of the American style remains to be a funda-
mental problem in mathematical finance. Despite
more than three decades of efforts, no exact ana-
lytical solution to these free boundary problems is
known yet, and one often resorts to time-consuming
direct numerical valuation. In this communication
we present a moving boundary approach to tackle
one of these free boundary problems, namely the val-
uation of a fixed rate mortgage contract which pro-
vides the mortgage holder the right to prepay the out-
standing balance of the mortgage. In analogy to the
standard problem of bond valuation, the fixed rate
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mortgage contract can be formulated as a derivative
product of the stochastic interest rate. Assuming
that the stochastic interest rate r follows the Vasicek
model:

dr = κ (θ − r) dt+ σdZ , (1)

where κ is the mean reverting speed, θ is the long term
mean of r, σ is the volatility of r and dZ refers to a
standard Wiener process, the standard risk-neutral
pricing of an amortized mortgage contract V (r, τ)
with a duration T and a fixed mortgage interest rate c
is obtained by solving the partial differential equation

∂V (r, τ)

∂τ
=

1

2
σ2

∂2V (r, τ)

∂r2
+ κ (θ − r)

∂V (r, τ)

∂r
−rV (r, τ) +m (2)

for r > h (τ) and τ > 0, subject to the boundary
conditions

V (r, τ) = M (τ) for r = h (τ)

∂V (r, τ)

∂r
= 0 for r = h (τ)

V (r, 0) = 0 for r > h (0) = c .(3)

Here τ = T − t is the time to maturity, m is the
rate of payment of the mortgage, and M (τ) is the
outstanding loan balance given by

M (τ) =
m

c
{1− exp (−cτ)} . (4)

Provided that the mortgage holder always has suffi-
cient funds for prepayment, the decision on exercis-
ing the right to prepay obviously depends upon the
rate of return r that can be obtained by investing the
amount M (τ) in other financial instruments. The
optimal strategy for the mortgage holder is to exer-
cise the option to pay off the mortgage the first time
that the rate r falls below h (τ), i.e. the unknown
early exercise boundary. By means of a variational
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analysis Jiang et al. (2005) has proven the mathemat-
ical well-posedness of this problem and the existence
of a unique solution.
Standard numerical techniques such as the finite

difference method and binomial tree method have
been applied to this problem, but they all suffer from
poor accuracy and stability in addition to slow con-
vergence. Recently, an algorithm using integral equa-
tions was proposed by Xie et al. (2007 and 2008)
to determine the early exercise boundary and valu-
ate the mortgage contract. Owing to the iterative
nature of the method, we find that the computing
time required appears to increase rapidly with the
time to maturity of the contract. Nevertheless, these
shortcomings do not appear in the proposed moving
boundary approach. Our method is based upon solv-
ing the pricing equation of the mortgage contract for a
parametric class of moving boundaries, among which
the optimal solution is selected to approximate the
exact result. Thus, the moving boundary approach
merely transforms the free-boundary problem into a
monotonic sequence of moving boundary problems,
each of which is linear and can be solved by standard
techniques. As shown in the following, the moving
boundary approach allows us to reduce the problem
to one involving simple one-dimensional numerical in-
tegrals only and thus is capable of producing accurate
estimation of the contract value efficiently. It should
be pointed out that the approximate optimal exercise
boundary is not only very close to the exact one but it
is also an upper bound of the exact boundary. From
the financial point of view, the upper bound provides
an early signal for optimal exercising of the mortgage
contract, which is believed to be useful information
for any interested parties such as the borrower or po-
tential buyers of the contract. Furthermore, the ap-
proximate results can be systematically improved by
applying the multi-stage approximation proposed by
Lo et al. (2003) to the early exercise boundary.
In next section we outline the proposed moving

boundary approach for obtaining an accurate estima-
tion of the exact result of the free boundary prob-
lem. Then, in section 3 some numerical results are
presented and the performance of our method is dis-
cussed. Finally, a brief summary of our investigation
is presented in the last section.

2. Moving boundary approach

The essence of the moving boundary approach is
that instead of solving the free boundary problem de-
fined by Eqs.(2)-(4), we tackle a less difficult problem,
namely a boundary-value problem associated with
Eq.(2) subject to the constraints given in Eq.(3) for

a parametric class of moving boundaries:

h (τ) = {c− 2βη (τ)− α3 (τ)} exp {−α1 (τ)} (5)

where β is an adjustable real parameter and

α1 (τ) = −κτ
α3 (τ) =

µ
θ − σ2

2κ2

¶
−
µ
θ − σ2

κ2

¶
exp (−κτ)

− σ2

2κ2
exp (−2κτ)

η (τ) =
σ2

4κ
{1− exp (−2κτ)} . (6)

Among this parametric class of solutions, the optimal
solution is then selected to approximate the exact so-
lution of the free boundary problem. To solve the
boundary-value problem, we first assume that the so-
lution V (r, τ) takes the form

V (r, τ)

= exp
©
α4 (τ) + βα3 (τ) + β2η (τ)

ª×
exp {[β + α2 (τ)] exp {α1 (τ)} r} ×
U
³
reα1(τ) + 2βη (τ) + α3 (τ)− c, η (τ)

´
(7)

where

α2 (τ) =
1

κ
{1− exp (κτ)}

α4 (τ) =

µ
θ

κ
− 3σ

2

4κ3

¶
−
µ
θ − σ2

2κ2

¶
τ −µ

θ

κ
− σ2

κ3

¶
exp (−κτ)−

σ2

4κ3
exp (−2κτ) . (8)

By direct substitution, we are able to re-cast Eq.(2)
into an inhomogeneous diffusion equation:

∂U(r, η (τ))

∂η
− ∂2U(r, η (τ))

∂r2
= p (r, η (τ)) (9)

where

p (r, η (τ)) =
2m

σ2
exp {−2α1 (τ)} ×

exp {− [β + α2 (τ)] (r + c)} ×
exp {−α4 (τ) + α2 (τ)α3 (τ)+

β2η (τ) + 2βη (τ)α2 (τ)
ª

. (10)

Accordingly, the boundary conditions defined by
Eq.(3) becomes

U (0, η (τ)) = F (η (τ))

∂U (r, η (τ))

∂r

¯̄̄̄
r=0

= − [β + α2 (τ)]F (η (τ))

U (r, η (τ) = 0) = 0 (11)
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where

F (η (τ)) = M (τ) exp {− [β + α2 (τ)] c} ×
exp {−α4 (τ) + α2 (τ)α3 (τ)+

β2η (τ) + 2βη (τ)α2 (τ)
ª

. (12)

As a result, we are now left with a boundary-value
problem associated with an inhomogeneous diffusion
equation.
By introducing W (r, η) = U (r, η) − F (η), the

boundary-value problem can be reduced to

∂W (r, η)

∂η
− ∂2W (r, η)

∂r2
= p (r, η)− dF (η)

dη
(13)

with

W (0, η) = W (r, 0) = 0

∂W (r, η)

∂r

¯̄̄̄
r=0

= − [β + α2 (τ)]F (η) . (14)

In terms of the classical Green’s function of the dif-
fusion equation (Kevorkian, 2000):

G (r, η; r0, η0)

=
1p

4π (η − η0)
exp

(
− (r − r0)2

4 (η − η0)

)
, (15)

the solution of Eq.(13), subject to the homogeneous
boundary conditions: W (0, η) = W (r, 0) = 0, is
given by

W (r, η)

=

Z η

0

dη0
Z ∞
0

dr0 [G (r, η; r0, η0)−G (r, η;−r0, η0)]

×
½
p (r0, η0)− dF (η0)

dη0

¾
= F (η)− 2

Z η

0

dη0
"
dF (η0)
dη0

N

Ã
rp

2 (η − η0)

!
−(

N

Ã
r − 2 (η − η0) [β + α2 (τ

0)]p
2 (η − η0)

!
×

e−[β+α2(τ
0)]r − e[β+α2(τ

0)]r ×

N

Ã
−r + 2 (η − η0) [β + α2 (τ

0)]p
2 (η − η0)

!)
×

mF (η0)
σ2M (τ 0)

e−2α1(τ
0)+(η−η0)[β+α2(τ 0)]2

¸
(16)

where N (·) denotes the cumulative normal distribu-
tion function,

η0 (τ 0) =
σ2

4κ
{1− exp (−2κτ 0)} (17)

and the one-dimensional integral over η0 can be ef-
ficiently evaluated by Gaussian quadrature. Once
W (r, η) is known, the price V (r, τ) of the mortgage
contract can be obtained readily.
The remaining task is to determine the parameter

β that characterizes the optimal moving boundary
to approximate the free boundary of the mortgage
problem. It was rigorously proven by Jiang et al.
(2005) that the price V (r, τ) of the mortgage contract
is a monotonic decreasing function of the short term
interest rate r.1 That is, the admissible values of β
must ensure that

∂V (r, τ)

∂r

¯̄̄̄
r=h(τ)

6 0 . (18)

Thus, to fix the optimal value of β, we can simply
require that the solution V (r, τ) of Eq.(2) satisfies
the boundary condition:

∂V (r, τ)

∂r

¯̄̄̄
r=h(τ)

= M (τ) exp {α1 (τ)} ×½
[β + α2 (τ)] +

1

F (η)

∂W (r, η)

∂r

¯̄̄̄
r=0

¾
= 0 , (19)

where

∂W (r, η)

∂r

¯̄̄̄
r=0

= −2
Z η

0

dη0
·
2mF (η0) [β + α2 (τ

0)]
σ2M (τ 0)

×

e−2α1(τ
0)+(η−η0)[β+α2(τ 0)]2 ×

N
³
− [β + α2 (τ

0)]
p
2 (η − η0)

´
+

1p
4π (η − η0)

½
dF (η0)
dη0

−

2mF (η0) exp {−2α1 (τ 0)}
σ2M (τ 0)

¾¸
, (20)

at τ = T . It is not difficult to show that the require-
ment in Eq.(18) is automatically satisfied by this op-
timal β for τ < T , too. The root-finding task which
can be easily achieved by standard algorithms is sig-
nificantly simplified by considering the behaviour of
the free boundary h (τ) near τ = 0+. From Eq.(5),
we can easily see that for 0 < τ ¿ 1,

h (τ) ≈ c−
h
β + (θ − c)

κ

σ2

i
σ2τ . (21)

1As the market return rate increases while the mortgage
interest rate remains the same, the relative return rate of the
mortgage contract would decrease and hence the fair price of
the mortgage contract drops.
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Since h (τ) < c for τ > 0, we must require that

β > − (θ − c)
κ

σ2
. (22)

Moreover, in Jiang et al. (2005) it has been proven
that the exact free boundary hexact (τ) is a smooth
curve with dhexact (τ) /dτ being always negative, and
that near τ = 0+ it has the asymptotic behaviour:

hexact (τ) ≈ c− ζ√
2

√
σ2τ (23)

where ζ (> 0) is the solution of the following equation:

¡
ζ5 + 10ζ3

¢
exp

½
1

4
ζ2
¾Z ζ

−∞
exp

½
−1
4
φ2
¾
dφ

= 16− 16ζ2 − 2ζ4 . (24)

On the contrary, the free boundary h (τ) is not
monotonically decreasing and has a minimum point
at

τ =
1

2κ
ln

½
1/κ+ β

1/κ− β + 2κ (c− θ) /σ2

¾
. (25)

Hence, we can conclude that the approximate opti-
mal exercise boundary is an upper bound of the exact
boundary. Finally, once the optimal β is obtained, the
price V (r, τ) of the mortgage contract can be evalu-
ated readily.

3. Numerical results

For illustration, in Figure 1 we plot V (r, τ) com-
puted by our moving boundary approach for a mort-
gage contract of a duration of 10 years versus the
short term interest rate r. The exact prices gen-
erated by Xie et al.’s approach (2007 and 2008) are
also included for comparison. Following Xie et al.
(2008), other input model parameters are selected as
follows: c = 0.085, m = 1.0, θ = 0.07, k = 0.25 and
σ = 0.03. It is found that not only our estimates
are very close to the exact results, but our moving
boundary approach is also much more efficient. The
percentage errors of our estimates are found to be
not more than 1.2% for r 6 0.5. The corresponding
moving boundary and the exact early exercise bound-
ary are displayed in Figure 2. It is evident that our
method provides an upper bound for the exact early
exercise boudary at any time t.
Moreover, in order to systematically improve the

approximate results, we hereby adopt the multi-stage
approximation scheme proposed by Lo et al. (2003)
for the moving boundary h (τ). The essence of the
approximation scheme is to replace the above smooth

boundary h (τ) by a continuous and piecewise smooth
boundary in order that the deviation from the exact
early exercise boundary is minimized in a systematic
manner, as shown in Figures 3. We then need to
perform some simple one-dimensional numerical inte-
grations (e.g. using the Gauss quadrature method) at
the connecting points of the piecewise smooth bound-
ary in order to evaluate the price V (r, τ) of the mort-
gage contract. As expected, the multi-stage approxi-
mation becomes better and better as the numberN of
stages increases. In practice, even a rather low-order
approximation can yield very accurate estimates of
the exact results. As demonstrated by Figure 4, the
estimates of the price V (r, τ) of the mortgage con-
tract of a duration of 30 years obtained by the three-
stage approximation with 10 years each stage are ap-
parently very accurate. The percentage errors of the
estimates are less than 0.6% for r 6 0.5.

4. Conclusion

In this communication a moving boundary ap-
proach has been proposed to valuate a fixed rate
mortgage contract which allows the mortgage holder
to prepay the outstanding balance of the mortgage.
Unlike previous approaches, this new method trans-
forms the free-boundary problem into a monotonic
sequence of moving boundary problems each of which
can be solved by standard techniques. It has been
found that the moving boundary approach is able to
provide an accurate approximation to both the early
exercise boundary and the contract value very effi-
ciently. Furthermore, the approximate results can be
systematically improved by the multi-stage approxi-
mation to the early exercise bounday.
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Figure 1 :  Mortgage contract value V(r, =10) versus the short term interest rate r.
Other input model parameters are selected as follows: c = 0.085, m = 1.0,

= 0.07, k = 0.25 and = 0.03.

Figure 2 :  The single-stage approximate moving boundary and the exact early 
exercise boundary.
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Figure 3 :  The multi-stage approximate moving boundary and the exact early 
exercise boundary.

Figure 4 :  Mortgage contract value V(r, =30) versus the short term interest rate r.
Other input model parameters are selected as follows: c = 0.085, m = 1.0,

= 0.07, k = 0.25 and = 0.03.
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