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Abstract—In this paper, we consider an enhanced
quasi-Monte Carlo (QMC) method for pricing deriva-
tive securities when the underlying asset price follows
an exponential Lévy process. In particular, we fo-
cus on a special family of the Lévy process known as
the Meixner process. The enhanced QMC is based
on a generalization of the linear transformation (LT)
method of Imai and Tan (2006). The generalized LT
method can be used to simulate general stochastic
processes and hence has a wider range of application
than the original LT which only applies to the Gaus-
sian process. Using some option examples with di-
mensions ranging from 4 to 250 as test cases, the nu-
merical results suggest that the generalized LT-based
QMC substantially outperforms the standard applica-
tions of quasi-Monte Carlo and Monte Carlo methods.

Keywords: Quasi-Monte Carlo, computational finance,

derivative securities, dimension reduction

1 Introduction

In the last few decades, we have observed significant ad-
vances in the field of financial mathematics. Sophisti-
cated financial models (such as for modeling the dynamics
of the asset prices, interest rates, currencies, etc.) have
been proposed. New mathematical tools and innovative
numerical methods have also been discovered. The new
era of financial mathematics has, in part, been spurred
by the celebrated Black-Scholes models [3] introduced in
1973 and, in part, due to the subsequent tremendous ex-
pansion and sophistication of the financial markets.

The basic assumption of the Black-Scholes model is the
normality of the log-returns of the underlying asset price.
Numerous empirical studies, on the other hand, have
clearly pointed the inadequacy of the normality assump-
tion since empirically the log-returns of the underlying
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typically have higher kurtosis than that of the normal
distribution. For this reason, a number of more elabo-
rate models including GARCH models (e.g. see [6]) and
models with stochastic volatility (e.g. see [11]) has been
proposed. More recently, the Lévy process as an alter-
nate process for modeling the dynamic of the log-returns
of the underlying and in derivative pricing has been gain-
ing popularity (e.g. see [23] and [15]).

The sophistication of the models and the complexity of
the financial products also imply that only in rare cases
there exists tractable pricing formulaes for these prod-
ucts. In pricing most exotic derivative securities, we typ-
ically resort to numerical methods such as the binomial
models, finite difference methods, Monte Carlo (MC), or
quasi-Monte Carlo (QMC) methods. In the past decade,
QMC has become a popular tool in computational fi-
nance. Early finance applications of QMC mainly fo-
cus on the Black-Scholes type models; see [14]. More
recently, this method has been extended to other more
exotic models, particularly the Lévy models (see [8], [19],
[2], [16], [13]). Many numerical studies seem to suggest
that the success of QMC is intricately related to the no-
tion of effective dimension. Dimension reduction tech-
niques such as the Brownian bridge construction ([17]
and [4]), the principal component construction [1], and
the linear transformation (LT) method [12] have been
proposed to further enhance QMC.

In this paper, we provide further numerical evidence on
the efficiency of the generalized LT method that has re-
cently been proposed by [13]. The generalization has the
advantage that it no longer confines to the Gaussian pro-
cess, as in the original LT method. This implies that the
generalized LT has a wider range of applications, partic-
ularly effective for simulating Lévy processes. The rest
of the paper is organized as follows. Section 2 describe
the original LT method as well as our proposed gener-
alization. Section 3 presents numerical evidences on the
effectiveness of the proposed dimension reduction tech-
nique. A special family of Lévy process is used in our
illustration. Section 4 concludes the paper.

2 An extension of the LT method

In [12], Imai and Tan demonstrated that the efficiency of
the QMC can be increased by applying the linear trans-
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formation (LT) dimension reduction technique. This
method exploits explicitly the payoff structure of deriva-
tive securities and works as long as the underlying assets
follow Gaussian process. Suppose we are interested in es-
timating E[g(Z)], where g(Z) corresponds to the payoff
function of a derivative security and Z is a d-dimensional
standardized normal random vector. Problems of this
kind are of interest to us as E[g(Z)] can be interpreted
as the price of a derivative security when g corresponds
to its discounted payoff function. The standard MC es-
timate of E[g(Z)] is given by the sample average over
all simulated g with Z randomly sampled. The standard
QMC application is similar to MC except that Z is now
generated via inverse transforms from a (randomized) low
discrepancy sequence.

The essence of the LT-based QMC is to exploit a simple
fact that E[g(Z)] = E[g(AZ)] for any orthogonal ma-
trix A; i.e. A′A = I and I is the identity matrix. This
implies that for an arbitrary orthogonal matrix A, an-
other consistent estimate of E[g(Z)] can be obtained by
taking the sample average based on g(Aεi), i = 1, . . . N .
To contrast the difference between MC and QMC, it is
important to point out that if we were to use MC to
estimate E[g(Z)], both g(εi)-based and g(Aεi)-based es-
timators are equivalent and that there is no difference
in terms of numerical efficiency. On the other hand if
QMC were used, the numerical accuracy of these esti-
mators can be very different. In fact, [12] demonstrates
that a careful choice of A leads to a much greater preci-
sion of g(Aεi)-based QMC estimator relative to the crude
g(εi)-based QMC estimator. The numerical examples in
[12], [20] and [21] even suggest that the LT-based QMC
can be more efficient relative to the Brownian bridge
construction-based QMC [17] and the principal compo-
nent construction-based [1]. One possible explanation
accounts for the difference between MC and QMC can
be attributed to the impact due to effective dimension.

Motivated by the dimension reduction and its intri-
cate connection to variance decomposition, [12] proposes
an algorithm that optimally determining the orthogo-
nal matrix column by column. To describe the algo-
rithm, it is essential to introduce some additional nota-
tion. Let A·k denote the k-th column of A, 〈a, b〉 denote
the inner product between vectors a and b, and ε̂k =
(v1, . . . , vk−1, 0 . . . , 0)� denote the d-dimensional vec-
tor with arbitrary chosen random variables v1, . . . , vk−1.
Then the optimal A·k can be obtained by solving the
following optimization problem:

max
A·k∈�d

(
∂g(Aε)

∂εk

∣∣∣∣
ε=ε̂k

)2

subject to ‖A·k‖ = 1 and
〈A∗

·j , A·k〉 = 0, j = 1, . . . , k − 1.

(1)

We emphasize that the above algorithm is carried out
iteratively for k = 1, 2, . . . , d. This implies that in the
k-th iteration, A·j , j = 1, . . . , k− 1 are already optimally
determined in the earlier iteration steps. When QMC
is combined with the optimally determined A using the
above algorithm to estimate E[g(Z)] (via E[g(AZ)]), [12]
refers the resulting method as the QMC-LT.

There are several advantages associated with the LT-
based QMC. First, it exploits explicitly the payoff struc-
ture of the derivative securities. Second, and more im-
portantly, the numerical studies conducted in [12], [21]
and [20] have concluded the competitive advantage of
LT-based QMC relative to other QMC-based methods,
even for dimensions of several hundred. On the other
hand, one severe limitation of QMC-LT is that it is re-
stricted to a class of function which depends on a vector
of normal random variables. This poses no problem for
derivative pricing under Black-Scholes framework as il-
lustrated in [12], [20] and [21]. For other models, such
as those involving Lévy process, this requirement is no
longer met. It is therefore of significant interest to ad-
dress the general problem of estimating E[g(X)], where
X = (X1, . . . , Xd)� is a vector of d iid random vari-
ables with arbitrary probability density function (pdf)
f(x) and cumulative distribution function (cdf) F (x).
We emphasize here that the distribution of X needs not
be normally distributed. Motivated by this, [13] proposes
an extension of LT which is based on the following series
of transformations. First note that

E [g (X)] =
∫

Ω

g (x) f (x1) · · · f (xd) dx1 · · · dx
d
,

where Ω is the domain of X. By substituting yi =
F (xi) , i = 1, . . . , d, the above integration reduces to an
integration problem over [0, 1]d:

E [g (X)] =
∫

[0,1]d
g
(
F−1 (y1) , . . . , F−1 (yd)

)
dy1 · · · dy

d
.

Now consider the transformation Z = Φ−1 (Y ) where Φ
represents the cdf of the standard normal distribution.
Then E [g (X)] can be expressed as follows:∫ · · · ∫∞−∞ g

(
F−1 (Φ (z1)) , . . . , F−1 (Φ (zd))

)×
φ (z1) · · ·φ (zd) dz1 · · · dz

d

= E
[
g
(
F−1 (Φ (Z1)) , . . . , F−1 (Φ (Zd))

)]
, (2)

where φ is the pdf of the standard normal, and Z =
(Z1, . . . , Zd)

� is a vector of independent standard normal
random variable. The significance of (2) is that after some
trivial transformations, the expectation is now taken with
respect to the normal distribution. This implies that an-
other consistent estimator of E[g(X)] can be obtained via
E
[
g
(
F−1 (Φ (A1·Z)) , . . . , F−1 (Φ (Ad·Z))

)]
, for any or-

thogonal matrix A where Aj· corresponds to the j-th
row of A. We refer this approach as the generalized LT
method (GLT) and when this method is combined with
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Figure 1: QMC-GLT Algorithm for Estimating E[g(X)]

Initialization step: Initialize the orthogonal matrix A.

For i = 1, 2, . . . , N
step 1: Draw (x1, . . . , xd) ∈ [0, 1)d from a

d-dimensional low discrepancy sequence.
step 2: Generate ε = (ε1, . . . , εd)�,

where εj = Φ−1(xj), j = 1, . . . , d
step 3: Set yj = Φ(Aj·ε), j = 1, . . . , d
step 4: Set gi = g(F−1(y1), . . . , F−1(yd)).

QMC-GLT estimate of E[g(X)] =
1
N

N∑
i=1

gi.

QMC, we denote as QMC-GLT. Figure 1 describes the
QMC-GLT method in algorithmic form. We now make
the following remarks with regards to the GLT-based
QMC.

Remark 1. The GLT-based QMC assumes that F is in-
vertible. For applications where F is a complicated func-
tion and cannot be inverted analytically, one can still
apply GLT by resorting to some high precision numeri-
cal inversion techniques for inverting F . For example, we
have employed the numerical inversion method of [10] in
our numerical illustrations in Section 3.

Remark 2. Both LT and GLT require pre-computation
of the orthogonal matrix A. Initializing all columns of A
can be quite time consuming, particularly for large di-
mensional application. One way of reducing the compu-
tational burden is to exploit the iterative design of the op-
timization problem. Instead of optimizing all d columns
of A, one can use a sub-optimal A by only optimizing
its first d columns with the remaining columns randomly
assigned (but subject to the orthogonality conditions).
When d∗ � d, this translates into a significant reduction
in the pre-computation effort. The numerical examples
to be presented later indicate that GLT is so effective at
dimension reduction that the loss of efficiency induced by
the sub-optimal A is negligible and more than compen-
sated by the saving in computational burden.

Remark 3. When X is a vector of d iid normal vari-
ates, then the proposed GLT reduces to the original LT
method. If we further assume that the orthogonal matrix
A is the identity matrix, then we recover the standard
application of QMC.

3 Numerical Illustrations

In this section, we offer some numerical evidences on the
effectiveness of the QMC-GLT relative to standard MC

and standard QMC. Subsection 3.1 describes the setup
of our numerical examples. Subsection 3.2 evaluates the
efficiency of the various simulation methods by comparing
the simulated option prices. Subsection 3.3 examines the
effectiveness of GLT on dimension reduction.

3.1 Model Setup

For our numerical illustration we use the plain-vanilla
European call options and the Asian call options as test
cases. The payoffs at the maturity of these options are
given, respectively, by

h(St1 , . . . , Std
) = (Std

−K)+ (3)

and

h(St1 , . . . , Std
) =

(
1
d

d∑
i=1

Sti −K

)+

, (4)

where (x)+ = max(x, 0), K is a pre-specified strike price
of the option, St is the price of the underlying asset at
time t, ti, i = 1, . . . , d denotes the discretized set of time
points for which the prices are simulated and td = T .
Note that the plain-vanilla option depends on the prices
at maturity T while the Asian option is a classical exam-
ple of a path-dependent option in that its payoff depends
on the historical prices.

The fundamental theorem of asset pricing (see [5]) asserts
that its time-0 no-arbitrage price is given by

EQ[e−rT h(St1 , . . . , Std
)], (5)

where r is the risk-free rate of return and the expecta-
tion is taken with respect to an equivalent martingale
measure Q. Even if we were to impose the simplifying
assumption that the log-returns of the underlying asset
follows a Gaussian process (i.e. Black-Scholes model),
simple closed-form solution to the Asian option (5) does
not exist. Consequently this calls for numerical methods
and this, in turn, has stimulated some ingenious approx-
imation algorithms. For example, dimension reduction
techniques that have been applied to pricing Asian op-
tion in the Black-Scholes model can be found in [1], [26]
and [12].

Here we are interested in the effectiveness of GLT on
non-Gaussian applications. We assume the dynamic of
the log-returns of the underlying asset follows a partic-
ular family of Lévy process called Meixner process. A
Meixner Lévy process {Xt, t ≥ 0} is a stochastic process
which starts at zero, i.e. X0 = 0, has independent and
stationary increments, and Xt has the Meixner distribu-
tion with pdf given by

fMeixner (x; a, b, d, m) =

(
2 cos

(
b
2

))2d

2aπΓ (2d)
exp

(
b (x−m)

a

) ∣∣∣∣Γ
(

d+
i (x−m)

a

)∣∣∣∣
2

,
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where a > 0,−π < b < π, d > 0, m ∈ �, and Γ(·) is the
Euler gamma function. Option pricing associated with
this model can be found in [7]. See [22] for additional
studies, particularly with emphasis on finance applica-
tions and fitting of the financial data. For example, by
fitting Meixner Lévy process to the daily log-returns of
the Nikkei-225 Index for the period January 1,1997 to
December 31, 1999, [22] obtains the following set of pa-
rameter values: a = 0.02982825, b = 0.12716244, d =
0.57295483, m = −0.00112426. These parameter values
are used to simulate the asset prices as reported in the
following two subsections.

3.2 Efficiency in terms of accuracy and com-
putational effort

For option specifications, we set the initial asset price
S0 = 100, strike price K = 100, interest rate r = 4%,
maturity T = 1 year, and asset prices are sampled at
quarterly, monthly, weekly and daily time intervals so
that d = 4, 12, 50, and 250, respectively.1 Note that d
also corresponds to the nominal dimension of the options.
This allows us to assess the impact of the nominal di-
mensions on the various simulation techniques by merely
increasing the frequency of the monitoring time points.

For each set of the option contract specification, we es-
timate its price using three simulation techniques: the
standard MC, the standard QMC, and the QMC-GLT.
In order to simulate the trajectories of the asset prices,
we need a fast and efficient Meixner variate generator.
Here we use the numerical inversion method [10] while
[13] uses [9]. The newer inversion algorithm [10] is more
efficient than [9] for two reasons. One is that we can
avoid inverting the function numerically with the New-
ton method by adopting the Newton interpolation and
hence it is more efficient especially when the computation
of the pdf is time-consuming. The other reason is that
we can use the same subintervals for the Gauss-Lobatto
integration and the Newton interpolation, which makes
the algorithm simpler and also increases its efficiency.

The method of GLT requires pre-computation of the or-
thogonal matrix A, which in turn depends problem of
interest. This implies that we need to solve for the op-
timal A for each plain-vanilla option and Asian option.
As pointed out in Remark 2 that a significant saving in
computation time can be achieved by partially optimizing
A. In our numerical results, we only optimize the first
four columns of A, regardless of the nominal dimensions
of the problems. Hence only the option examples with
d = 4 are simulated optimally under the QMC-GLT. To
further isolate the effect of the dimension reduction as
induced by the GLT method, the same set of scrambled
Sobol’ low discrepancy sequence is used for both standard
QMC and QMC-GLT.

1Assume a year has 50 trading weeks or 250 trading days.

Table 1: Simulated plain-vanilla call options and Asian
call option prices under the Meixner Lévy process
with d = 4, 12, 50, 250. Efficiency ratios of QMC and
QMC-GLT, relative to MC, are reported in parentheses.

MC QMC QMC-GLT
Plain-vanilla call options

d = 4 11.918 11.951(122) 11.952(1147)
d = 12 11.898 11.953(9) 11.952(731)
d = 50 11.975 11.986(1.5) 11.954(515)
d = 250 12.027 11.959(0.4) 11.950(5)
Asian call options

d = 4 7.985 8.015(340) 8.016(1826)
d = 12 7.112 7.133(11) 7.133(680)
d = 50 6.802 6.810(3) 6.795(106)
d = 250 6.743 6.711(0.4) 6.709(6)

Table 1 reports the simulated option prices. These values
are based on 30 independent batches, with each batch
consists of 4096 trajectories. To gauge the efficiency of
QMC and QMC-GLT relative to MC, we calculate the
efficiency ratio defined as:

Efficiency Ratio =
σ2

MCtMC

σ2
xtx

,

where σ2
MC and tMC denote, respectively, the estimated

variance and the computation time for the MC method.
Similarly, σ2

x and tx are the corresponding estimates for
method x, which is either QMC or QMC-GLT in our nu-
merical comparisons. Consequently, the above ratio is a
better measurement of efficiency since it takes into the
account of both accuracy (as measured by the variance)
and computational effort (as measured by the computa-
tion time). An efficiency ratio grater than one implies
that method x is more efficient relative to MC and vice
versa if the ratio is less than one. The efficiency ratios
are reported in parentheses in Table 1.

The simulated results demonstrate that the efficiency of
QMC deteriorates with dimensions, consistent with the
findings in [25]. While the standard QMC offers a sub-
stantial improvement relative to MC for low dimensional
applications, its effectiveness quickly diminishes with in-
creasing dimensions. In fact when d = 250, QMC is less
effective than MC for both plain-vanilla and Asian op-
tions.

The method of QMC-GLT also exhibits a decline in ef-
ficiency with increasing dimensions. The deterioration,
however, is less pronounced which in part can be at-
tributed to its effectiveness on dimension reduction (see
next subsection). For dimension as low as d = 4, QMC-
GLT attains a remarkable efficiency gain of more than
a thousand for both option examples. When the dimen-
sion increases to as high as d = 250, the simulated results
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still indicate an order of improvement of at least 5 times,
even when we take into consideration the additional com-
putational effort required to pre-determine the optimal
orthogonal matrix A.

3.3 Efficiency in terms of dimension reduc-
tion

In this subsection, we provide additional evidence on the
effectiveness of the GLT-based QMC by examining its
effectiveness on dimension reduction. This is motivated
by the numerical studies in [17] (see also [4], [1], [26],
[27]) which suggests that one way of increasing the ef-
ficiency of the underlying QMC is via dimension reduc-
tion. This could be attributed to the greater uniformity
inherence in the lower dimensional structure of the low-
discrepancy sequences (see [28]). By using the analysis
of variance (ANOVA) decomposition, [4] formally intro-
duces two notions of effective dimension known as the
truncation dimension and the superposition dimension.
The effective dimension of function f in the truncation
sense is defined as the smallest integer dT such that∑

u∈{1,2,...,dT }σ
2 (fu) ≥ pσ2 (f) where σ2 (fu) represents

the variance of f attributes to the set u, σ2 (f) represents
the total variance of the function f and p (typically close
to 1, say 0.99) corresponds to some percentile. This idea
is related to the sensitivity indices [24] or the dimension
distribution [18]. When the truncation dimension of a
function f is much smaller than its nominal dimension
d, then f is said to have low effective dimension and its
total variance is sufficiently captured by the first dT com-
ponents.

A simple way of gauging the effectiveness of dimension
reduction is to compute the following ratio:

CER (d) =

∑
u∈{1,2,...,d}σ

2 (fu)

σ2 (f)
.

Note that the numerator sums up all the variances con-
tributed by the components up to dimension d while
the denominator represents the total variance. Hence
the ratio is between 0 and 1 and can be interpreted as
the cumulative explanatory ratio (CER). By definition,
CER(dT ) ≥ p.

Using the same option examples as in the last subsection,
Table 2 produces CER(d), for d = 1, . . . , 5 for both QMC
and QMC-GLT. The ratio can be estimated numerically
(based on MC with 100,000 sample size) using the pro-
cedure described in [26]. It is reassuring to note that
the GLT is extremely effective at dimension reduction,
even for large nominal dimension. For the option exam-
ples with d = 250 and the standard application of QMC,
the first dimension accounts only 1% of the total variance
while under the GLT, it captures at least 97% of the total
variance. These results also justify using a sub-optimal
orthogonal matrix A to simulate the Meixner Lévy pro-
cess. The loss of accuracy induced by the sub-optimal A

Table 2: Cumulative explanatory ratio (in percentage)
up to first five dimensions

d dimension u
1 2 3 4 5

Plain-vanilla options
4 QMC 19 42 69 100 -

QMC-GLT 100 100 100 100 -
12 QMC 6 12 19 26 34

QMC-GLT 100 100 100 100 100
50 QMC 1 3 5 6 8

QMC-GLT 100 100 100 100 100
250 0 0 0 1 1 1

QMC-GLT 98 98 98 98 98
Asian options
4 QMC 44 78 95 100 -

QMC-GLT 99 100 100 100 -
12 QMC 16 33 47 60 71

QMC-GLT 100 100 100 100 100
50 QMC 4 8 12 17 21

QMC-GLT 100 100 100 100 100
250 QMC 1 1 2 3 3

QMC-GLT 97 97 98 98 98

tends to be negligible due to the overwhelming success of
the dimension reduction.

4 Conclusion

In this paper, we consider the generalized LT method
and the numerical inversion method recently proposed
by [13] and [10], respectively. The numerical illustrations,
involving simulating plain-vanilla options and Asian op-
tions in the context of the Meixner Lévy process, demon-
strated the competitive advantage of the QMC-GLT rel-
ative to the the standard MC and QMC. This conclusion
is consistent with that reported in [13] which focuses on
the generalized hyperbolic Lévy process. The real advan-
tage of the GLT lies in its generality. It can be used to
simulate a wide range of stochastic process, in addition
to the Gaussian process.

It should be pointed out that [16] proposes a Brownian-
bridge based approach for simulating Lévy process. It
will be of interest to compare the relative efficiency of the
proposed GLT to that of [16]. We leave this for future
research.
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