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Abstract—The design of dynamic, adaptable
discrete-event systems calls for adequate modeling
formalisms and tools in order to manage possible
changes occurring during system’s lifecycle. A com-
mon approach is to pollute the design with details
not concerning the current system behavior, rather
its evolution. That hampers analysis, reuse and main-
tenance in general. A Petri net-based reflective model
(based on classical Petri nets) was recently proposed
to support dynamic discrete-event system’s design,
and was applied to dynamic workflow’s management.
Behind there is the idea that keeping functional as-
pects separated from evolutionary ones, and applying
evolution to the (current) system only when neces-
sary, results in a clean formal model for dynamic sys-
tems. This model preserves the ability of verifying
properties typical of classical Petri nets. As a first
step toward the implementation (in the short time) of
a discrete-event simulator, Reflective Petri nets are
provided in this paper with a semantics defined in
terms of labeled state-transitions.

Keywords: Petri nets, dynamic systems, evolution,

state-transition graph, symbolic techniques

1 Introduction

Most existing discrete-event systems are subject to evo-
lution during their lifecycle. Think e.g. of mobile ad-
hoc networks, adaptable software, business processes, and
so on. Designing dynamic/adaptable discrete-event sys-
tems calls for adequate modeling formalisms and tools.
Unfortunately, the known well-established formalisms for
discrete-event systems, such as classical Petri nets [1],
lack features for naturally expressing possible run-time
changes to system’s structure. An approach commonly
followed consists of polluting system’s functional aspects
with details concerning evolution. That practice hampers
system analysis, reuse and maintenance.

Reflective Petri nets [2] have been recently proposed as
design framework for dynamic discrete-event systems,
and successfully applied to dynamic workflows [3]. They
rely on a reflective layout formed by two logical levels.
The achieved clean separation between functional and
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evolutionary concerns results in a simple formal model
for systems exhibiting a high dynamism, which should
preserve the analysis capabilities of classical Petri nets.

On the perspective of implementing in the short time
an automatic solver and a discrete-event simulation en-
gine, Reflective Petri nets are provided in this paper
with a (labeled) state-transition semantics. Any analy-
sis/simulation techniques based on state-space inspection
has to face a crucial question, that is how to recognize
possible equivalent states during base-level’s evolution.
That major topic is managed by exploiting the symbolic
state definition the particular Colored Petri net flavor [4]
used for the meta-level is provided with, and represents
the paper’s original contribution.

The balance is as follows: background information on Re-
flective Petri nets and the employed Petri net formalisms
are given in sections 2,3. The focus is put there on those
elements directly connected to the paper’s main contri-
bution, the definition of a state-transition semantics for
Reflective Petri nets (section 4). An application of the
semantics to a dynamic system taken from literature is
summarized in section 5. Related works are mentioned
and discussed in section 6. Finally section 7 is about
work-in-progress. Assuming the readers have some basic
knowledge about Petri nets, a semi-formal presentation
is adopted, and a few simple examples are used.

2 WN Basics

The formalisms employed for the two layers (meta- and
base-level) of the reflective layout are Well-formed Nets
(WN) [5], a flavor of Colored Petri nets (CPN) [4],
and their unfolded counterpart, an extension of ordinary
Place/Transition nets [1], respectively. This choice has
revealed convenient for two main reasons: first, the be-
havior of Reflective Petri nets can be formally stated in
terms of classical Petri nets; secondly, the symbolic state
representation the WN formalism is provided leads to
an effective state-transition semantics for Reflective Petri
nets, in which the intriguing question related to recogni-
tion of equivalent evolutions is efficiently handled.

There is also a third reason, which is interesting in
the perspective of doing performance analysis: our feel-
ing is that if we considered the stochastic extension of
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WNs (SWN) [6], and their unfolding, that is General-
ized Stochastic Petri nets (GSPN) [7], for the meta- and
base-level, we might set a timing semantics for Reflective
Petri nets inherited in large part from the GSPN (SWN)
timing semantics (which is defined in terms of a Markov
process). In the sequel of this work only the untimed
behavior of Reflective Petri nets will be defined.

While retaining CPN’s expressive power, WNs are char-
acterized by a structured syntax which is used by efficient
analysis algorithms, based on the symbolic marking no-
tion. This section does not present all the features of
WNs, for which the reader is suggested to look at the
original work, but just introduces them informally, fo-
cusing on the symbolic marking definition.

Unlike CPNs, WNs (and their unfolding as well) include
transition priorities and inhibitor arcs. Both these fea-
tures enhance the CPN formalism expressiveness. In par-
ticular, priorities are useful to represent the transactional
execution of evolutionary strategies, as well as the im-
plicit synchronization between base- and meta-level.

Because of the structured syntax of WN color annota-
tions, behavioral symmetries can be automatically dis-
covered and exploited to build an aggregate state space
(called symbolic reachability graph or SRG) and (in SWN)
a corresponding lumped CTMC.

2.1 WN color annotations

In Colored Petri nets [8] places, as well as transitions, are
associated to color domains, i.e., tokens in places have an
identifier (color), similarly transitions are parameterized,
so that different color instances of a given transition can
be considered. A marking M maps each place p to a
multiset on the corresponding color domain C(p). Any
arc connecting p to a transition t is labeled by a function
mapping any element of C(t) (i.e., any color instance of
t) to a multiset on C(p).

The peculiar and interesting feature of the WN formal-
ism is the ability of capturing system’s symmetries thanks
to the structured syntax of color annotations. Efficient
analysis/simulation algorithms can be applied that ex-
ploit such symmetries. These algorithms rely upon the
notion of symbolic marking (SM).

SWN color domains are defined as Cartesian products of
basic color classes Ci, that may be in turn partitioned
into static subclasses Ci,k. A SM provides a syntactical
equivalence relation on ordinary colored markings: two
markings belong to the same SM if and only if they can
be obtained from one another by means of permutations
on color classes that preserve static subclasses. A SM is
formally expressed in terms of dynamic subclasses.

guards checking

begin strategies

strategies

Reflective Framework

Shift Up Action

Base Level Petri Net

Evolutionary Meta-Program

Evolutionary Interface
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Figure 1: A snapshot of the reflective PN model.

2.2 The Symbolic Marking (SM) notion.

The definition of a SM (denoted M̂) [9] comprises two
parts specifying the so called dynamic subclasses and the
distribution of colored symbolic tokens (tuples built of
dynamic subclasses) over the net places, respectively.

Dynamic subclasses define a parametric partition of color
classes preserving static subclasses: let Di and si denote
the set of dynamic subclass of Ci (in M̂), and the number
of static subclasses of Ci (if Ci is not split then si = 1).
The j-th dynamic subclass of Ci, Z i

j ∈ Di, refers to a
static subclass, denoted d(Z i

j), 1 ≤ d(Z i
j) ≤ si, and has an

associated cardinality |Z i
j |, i.e., it represents a parametric

set of colors (in the sequel we shall consider cardinality
one dynamic subclasses). It must hold, for each k : 1...si,∑

j:d(Zi
j)=k

∣∣Z i
j

∣∣= | Ci,k |

The token distribution in M̂ is defined by a function (de-
noted itself M̂) mapping each place p to a multiset on
the symbolic color domain of p, obtained replacing each
Ci with Di in C(p).

Among several possible equivalent representations, the
canonical representative [9] provides SM with a univocal
formal expression, based on a lexicographic ordering of
dynamic subclass distribution over the net places.

3 Reflective Petri Nets

The reflective Petri nets approach permits developers to
model a discrete-event system and separately its possi-
ble evolutions, and to dynamically adapt system’s model
when evolution occurs.

The approach is based on a reflective architecture struc-
tured in two logical layers (figure 1). The first one,
called base-level, is an ordinary Petri net (a P/T net
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with priorities and inhibitor arcs) representing the sys-
tem prone to evolve (base-level PN ); while the second
layer, called meta-level, consists of a high-level Petri net
(a colored Petri net) representing the evolutionary strate-
gies (the meta-program, following the reflection parlance)
that drive(s) the evolution of the base-level when certain
conditions/events occur.

Meta-level computations operate on a representative of
the base-level, called reification. It is defined as a (high-
level Petri net) marking, a portion of which (encoding
the base-level current state) is updated every time the
base level Petri net enters a new state. The reification is
used by the meta-program to observe (introspection) and
manipulate (intercession) the base-level PN. The changes
to the reification are reflected to the base-level at the end
of a meta-computation (shift-down).

The meta-program is implicitly activated (shift-up), then
a suitable strategy (evolution rule) is put into action, un-
der two conditions: i) either when it is triggered by an
external event, or ii) the base-level enters a given state.
The meta program can also include an evolution model,
that is, an evolutionary strategy which does not depend
on the current state of the base-level. That capability
enhances the flexibility of the reflective layout.

The reflective framework, a high-level Petri net compo-
nent as well, is responsible for really carrying out the
base-level evolution in a transparent way. It should be
considered as a transparent (meta-)layer of the reflective
model, therefore it is formed by higher-priority transi-
tions. Intercession on the base-level PN is carried out in
terms of a minimal but complete set of basic operations
(called the evolutionary interface): addition/removal of
places, transitions, arcs - change of transition priorities
(base-level’s structure change), free moving tokens overall
the base-level PN places (base-level’s state change).

If one such operation reveals inconsistent, the meta-
program is restarted and any changes caused in the mean-
time to the base-level reification are discarded. Trying
to delete a node/arc yet not existing is an example of
inconsistent operation. The consistency checks are auto-
matically performed by the framework, the evolutionary
engine of the whole layout. In other words, the evolution-
ary strategies have a transactional semantics. Only after
a strategy’s succeeding run, changes are reflected down
to the base-level Petri net.

Developers have been provided with a tiny ad-hoc lan-
guage, inspired to Hoare’s CSP that allows anybody to
specify his own strategy in a simple way, without any
skills in high-level Petri net modeling being required. An
automatic translation to a corresponding high-level Petri
net is done. Several strategies could be candidate for
execution at a given instant: different policies might be
adopted to select one, ranging from a deterministic choice

to a static assignment of priorities.

According to the reflective paradigm, the base-level runs
irrespective of the meta-program, being even not aware
of its existence. That raises intriguing consistency issues,
which are faced by determining, for any strategies, lo-
cal influence areas on the base-level. One such area is
temporarily locked by the meta-program, until the corre-
sponding strategy is completed.

The interaction between base- and meta- levels, and be-
tween meta-level entities, is formalized in [2]. Let us only
outline here some essential points:

NODE
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base-level petri net

meta-level petri net

t1
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p 1

>+
2<
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>
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>

2

x1
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ShUp|shift-up

Figure 2: Reification implemented at net level.

1. The structure of the reflective framework is fixed,
while the evolutionary strategies are coupled to the
base-level PN, so they vary from time to time. More
precisely, the meta-program’s model is built accord-
ing to a predefined pattern, whose the strategies rep-
resent the variable component.

2. The reflective framework (the fixed part of the re-
flective layout) and the meta-program are separated
high-level Petri net components, sharing two disjoint
sets of boundary places denoted hereafter reification-
set and evolutionary interface, respectively. Their
composition through a simple place superposition
gives rise to the meta-model, called hereafter meta-
level PN.

3. The reification-set is formed by the following colored
places: {reifN, reifA, reifΠ, reifM}. The corre-
sponding color domains, which will be specified later,
are built of basic color class Node, a logically un-
bounded repository holding all potential base-level
nodes, considering any evolutions. A well-defined
marking of the set above, hereafter simply denoted
reification, encodes the structure (i.e., nodes, arc
connections and transition priorities, respectively),
and the current marking, of the base-level PN. What
is most important, there is a one-to-one correspon-
dence, formalized by a bijection, between reifications
and P/T nets.

4. The initial reification refers to the base-level Petri
net modeling the initial system configuration.
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5. The shift-up, and the reification update, are imple-
mented in transparent way at net level by suitably
connecting every base-level PN transition to place
reifM , which holds the reification of base-level PN’s
current marking. The resulting model will be here-
after denoted base-meta PN. The idea is illustrated
in Fig. 2. Any state changes at the base-level Petri
net are instantaneously reproduced on the reifica-
tion, conceptually maintaining base-level’s unaware-
ness about the meta-program. As an example, the
firing of transition t1 results in withdrawing one and
two tokens from places p1 and x1, respectively, and
putting one in p2. While token consumption is em-
ulated by (input) arc function 〈S p1〉+ 2 · 〈S x1〉, to-
ken production is emulated by (output) arc function
〈S p2〉. A complete splitting of class Node is required
to refer to any places added from to time to the base-
level (e.g., x1), by means of WN constant functions.

6. The reflection of changes performed by the meta-
program, or shift-down, is simulated by the
homonym highest-priority transition of the meta-
level PN; it is a kind of meta-transition, which ad-
heres to the usual firing rule as concerns the meta-
level PN, further, it makes the (current) base-level
PN to be replaced by the P/T net encoded by the
reification.

4 State-transition semantics for reflec-
tive PN

The usage of the WN formalism [5] at the meta-level of
the reflective layout permits a simple, effective character-
ization of reflective Petri net’s behavior, in terms of state-
transitions. Using an apparently low-level semantics, as
the state-transitions one, rather than an higher-level se-
mantics defined in terms of an expressive standard Petri
net class (e.g., algebraic nets) is justified by efficiency
needs. In the perspective of implementing a discrete-
event simulator for reflective Petri nets, the WN’s sym-
bolic state notion can be exploited to identify and fold
possible equivalent evolutions of a Reflective Petri net
model.

On the light of the causal connection established between
base- and meta-level, the behavior of a Reflective Petri
net model between consecutive meta-level activations is
fully described in terms of a WN model: the meta-level
PN, which includes (or better, is suitably connected to)
an uncolored part, the base-level PN. This model will be
hereafter denoted base-meta PN. Therefore, it comes to
be natural providing Reflective Petri nets with the notion
of state below:

Definition 1 (state) A state of a Reflective Petri net is
a marking Mi of the base-meta PN obtained by suitably
composing the base-level PN and the meta-level PN.

Letting t (6= shiftdown) be any transition (color in-
stance) enabled in Mi, according to the classical Petri
net’s firing rule, and Mj be the marking reached upon
its firing, we have the labeled state-transition

Mi
t−→ Mj

There is nothing to do but consider the case where mf

is a marking enabling the pseudo-transition shift-down:
then,

Mf
shift−down−→ M′

0,

M′
0 being the marking of the base-meta PN obtained by

first replacing the (current) base-level PN with that one
which is isomorphic to the reification marking (once it
has been suitably connected to the meta-level PN), then
firing shift-down as it were an ordinary transition.

4.1 Recognizing Equivalent Evolutions

The state-transition graph semantics just introduced pre-
cisely defines the (timed) behavior of a reflective Petri net
model, but suffers from two evident drawbacks.

First, it is highly inefficient: the state description is ex-
ceedingly redundant, comprising a large part concerning
the meta-level PN, which is unnecessary to describe the
evolving system. The second concern is even more crit-
ical, and indirectly affects efficiency: there is no way of
recognizing whether the modeled system, during its dy-
namics/evolution, reaches equivalent states.

The ability of deciding about a system’s state-transition
graph finiteness and strongly-connectedness (both issues
being strictly related to the ability of recognizing equiva-
lent states) are in fact mandatory preconditions for per-
formance analysis: we know that a sufficient condition for
a finite CTMC to have stationary solution (steady-state)
is to include one maximal strongly connected component.
More generally, any technique based on state-space in-
spection relies on the ability above.

Recognizing equivalent evolutions is a tricky question.
For example, it may happen that (apparently) different
strategies cause in truth equivalent transformations to
the base-level Petri net (the evolving system), that cannot
be identified by Def. 1. Yet, the combined effect of dif-
ferent sequences of evolutionary strategies might produce
the same effects. Even more likely, the internal dynam-
ics of the evolving system might lead to reach equivalent
configurations.

The above question, that falls into a graph isomorphism
sub-problem, as well as the global efficiency of the ap-
proach, are tackled by resorting to the peculiar charac-
teristic of WN: the symbolic marking notion.

The color domains of the meta-level PN are built of color
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class Node, representing the base-level PN nodes (places
plus transitions ) at the meta-level. As concerns the
reification-set, they are:

C(reifN),C(reifM),C(reif) : Node

C(reifA) : Node×Node

Arcs are represented by 2-tuples belonging to Node ×
Node, since there are no inhibitor arcs in the running
example (Fig. 3).

Class Node is logically partitioned as follows:

namedp︷ ︸︸ ︷
p1 ∪ . . . pk ∪Unnamedp︸ ︷︷ ︸

places

∪
namedt︷ ︸︸ ︷

t1 ∪ . . . tn ∪Unnamedt︸ ︷︷ ︸
transitions

.

Symbols {pi}, {tj} denote singleton static subclasses.
Conversely, Unnamedp and Unnamedt are static sub-
classes collecting all anonymous (i.e., indistinguishable)
places/transitions.

The intuition behind is simple: while some (”named”)
nodes, for the particular role they play, preserve the iden-
tity during base-level evolution, and may be explicitly
referred to during base-level manipulation, others (”un-
named”) are indistinguishable from one another. In other
words any pair of ”unnamed” places (transitions) might
be freely exchanged on the base-level PN, without alter-
ing the model’s semantics.

There are two extreme cases: namedp (namedt) = ∅ and,
on the opposite, Unnamedp (Unnamedt) = ∅. The for-
mer meaning that all places/transitions can be permuted,
the latter instead that all nodes are distinct. Note that
this static partition is different from that one actually
used on the base-meta PN, where any places of base-
level PN must be explicitly referred to when connecting
the base-level PN to the meta-level PN (Fig. 2).

The technique we use to recognize equivalent base-level
evolutions relies on the base-level reification and the
adoption of a symbolic state representation for the base-
meta PN that, we recall, results from composing in trans-
parent way the base-level PN and the meta-level PN.

We only have to set as initial state of the Reflective Petri
net model a symbolic marking (M̂0) of the base-meta
PN, instead of an ordinary one: any dynamic subclass
of UnnamedP (UnnamedT ) will represent an arbitrary
”unnamed” place (transition) of the base-level PN.

Because of the simultaneous update mechanism of the
reification, and the consequent one-to-one correspon-
dence along the time between the current base-level PN

and its reification at the meta-level, we can state the fol-
lowing:

Definition 2 (equivalence relation) let M̂i, M̂j be
two symbolic states of the reflective Petri net model.
M̂i ≡ M̂j if and only if their restrictions on the reifica-
tion set of places have the same canonical representative.

Lemma 1 let M̂i ≡ M̂j. Then the base-level PNs at
states M̂i and M̂j are isomorphic.

Consider the very simple example in Fig. 3, that depicts
three base-level PN configurations, at different time in-
stants. The hypothesis is that while symbols t2 denote
a “named” transition, symbols xi and yj denote “un-
named” places and transitions, respectively. We assume
that all transitions have the same priority level, so we
disregard the reification of priorities.

We can observe that the Petri nets on the left and on
the middle are the same, but for their current marking:
we can imagine that they represent a possible (internal)
dynamics of the base-level Petri net, corresponding to the
firing sequence y3; t2; y3. Conversely, we might think of
the right-most Petri net as an (apparent) evolution of the
base-level PN on the left, in which new connections are
set, and a new marking is defined.

Nevertheless, the three base-level configurations are
equivalent, according to definition 2. It is sufficient to
take a look at their respective reifications, that are en-
coded as symbolic markings (multisets are expressed as
formal sums): consider for instance the base-level PN on
the left and on the middle of Fig. 3, whose reification are:

M̂(reifN) = y1 + y3 + t2 + x1 + x2 + x3 + x4,

M̂(reifM) = x1 + x4,

M̂(reifA) = 〈x1, t2〉 + 〈t2, x3〉 + 〈x3, y1〉 + 〈y1, x1〉 +
〈x2, t2〉+ 〈t2, x4〉+ 〈x4, y3〉+ 〈y3, x2〉

and

M̂′(reifN = y1 + y3 + t2 + x1 + x2 + x3 + x4,

M̂′(reifM) = x3 + x2,

M̂′(reifA) = 〈x1, t2〉 + 〈t2, x3〉 + 〈x3, y1〉 + 〈y1, x1〉 +
〈x2, t2〉+ 〈t2, x4〉+ 〈x4, y3〉+ 〈y3, x2〉

respectively. They can be obtained from one another by
the permutation (a ↔ b denotes the bidirectional map-
ping: a→ b, b→ a):

{x1 ↔ x2, x3 ↔ x4, y1 ↔ y3},

in other words, they are equivalent.
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Figure 3: Equivalent base-level Petri Nets

Using similar arguments we could show that the base-
level PN on the left and on the right of Fig. 3 are equiv-
alent too. The right-hand Petri net’s reification is:

M̂′′(reifN) = y1 + y3 + t2 + x1 + x2 + x3 + x4

M̂′′(reifM) = x1 + x2

M̂′′(reifA) = 〈x1, t2〉 + 〈t2, x3〉 + 〈x3, y1〉 + 〈y1, x1〉 +
〈x2, y3〉+ 〈y3, x4〉+ 〈x4, t2〉+ 〈t2, x2〉

M̂ and M̂′′ can be in turn obtained from one another by
the permutation: {x2 ↔ x4}. Their canonical represen-
tative is M̂.

A transition between symbolic states of of the reflective
Petri net model is defined as follows.

Definition 3 (symbolic state’s transition) Let σ be
a (possibly empty) meta-level PN’s transition firing se-
quence, shiftdown /∈ σ. Then

M̂i
t−→ M̂j ,

if and only if t is either shiftdown or a base-level PN’s
transition, and there exist σ, M̂′

i

M̂i
σ−→ M̂′

i
t−→ M̂j

Of course M̂′
i, as well as any intermediate marking

crossed by σ, is equivalent to M̂i. This concept is il-
lustrated in Fig. 4. Rounded boxes represent classes of
equivalent markings: they are the nodes of the symbolic
state-transition graph describing the behavior of a Reflec-
tive Petri net. Visible state-transitions are only due to
the occurrence of either shiftdown, or any base-level PN
transition (like t in the picture). Meta-level transition
sequences (σ) between equivalent markings (represented
by circles) are represented by dashed arrows, meaning
that they are not visible by an external observer. If the
meta-level PN never enters a deadlock or a livelock, the
reachability information provided by the symbolic state-
transition graph are complete and reliable.

Figure 4: Transitions between state-equivalent classes

5 An application example

The (symbolic) state-transition semantics of Reflective
Petri nets has been tested on the hurried philosophers
problem [10], a variant of the well known dining philoso-
phers problem that introduces a high dynamism and mo-
bility degree. The version here considered meets the fol-
lowing requirements:

• two philosophers initially sit on the table;

• a philosopher can start eating only when he contem-
porary gets both the adjacent forks, according to the
classical problem’s formulation;

• a philosopher sitting on the table has additional fac-
ulties: he/she can invite a colleague (arbitrarily cho-
sen) to join the table and sit down on either side;
he/she can ask one of his/her neighbors to leave the
table

each philosopher is going around with his own fork; when
he joins the table he keeps the fork, when he leaves he
brings it with him.

The base-level Petri net representing the initial system,
as well as the meta-program which is in charge of man-
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aging the evolution, are specified in [2]. Any invita-
tion/chasing away requests activate the meta-program.
The arrival/departure of a philosopher causes a local re-
configuration of the table, in which the fork sharing by
adjacent philosophers is rearranged in a consistent way.

Table 5 reports some evidences of the effectiveness of the
symbolic state representation adopted for Reflective Petri
nets, versus the ordinary one. The experiment was con-
ducted using the GreatSPN tool, and an ad-hoc script pro-
cedure emulating the shift-down effect on the base-level.
The first column indicates the problem size, i.e., the ta-
ble capacity. All philosophers can be permuted with one
another. We can appreciate a sensible reduction, even
for small problem sizes, due to the very high symmetry
degree exhibited by the system during its evolution.

Table 1: Symbolic vs. ordinary state-space size

#philosophers symbolic states ordinary states
3 423 2567
4 2843 374809
5 23560 1765836
6 147812 96905034
7 960345 n.a.
8 4767385 n.a.
9 12097086 n.a.

6 Related Works

Many efforts have been devoted in trying to extend Petri
nets with dynamical features. Follows a non-exhaustive
list of relevant proposals appeared in the literature.
In [11], the author is proposing his pioneering work, self-
modifying nets, in which the flow relation between a place
and a transition is a linear function of the place marking.
Another major contribution of Valk is the so-called nets-
within-nets paradigm [12], where tokens flowing through
a net are in turn nets. In his work, Valk takes an object as
a token in a unary elementary Petri net system, whereas
the object itself is an elementary net system. Even if in
the original Valk’s proposal no dynamic changes are pos-
sible, and mobility is weakly supported, most extensions
introduced afterward rely upon his idea.

[13] defined a class of high level Petri nets, called recon-
figurable nets, which can dynamically modify their own
structure by rewriting some of their components. Re-
configurable nets can be unfolded to a subclass of self-
modifying Petri nets for which boundedness can be de-
cided. Mobile and dynamic Petri nets [14] integrate Petri
nets with RCHAM (Reflective Chemical Abstract Ma-
chine) based process algebra.

Tokens in self-modifying, mobile/dynamic and reconfig-
urable nets, are passive. To bridge the gap between to-
kens and active objects (agents) some variations on the

theme of nets-within-nets have been proposed. In [15]
objects are studied as high-level net tokens having an
individual dynamical behavior. Object nets behave like
tokens, i.e., they are lying in places and are moved by
transitions. However, they may also change their state.
Reference nets [16] are a flavor of high level Petri nets
which provides dynamic creation of net instances, refer-
ences to other nets/tokens, and communication via syn-
chronous channels (net-inscriptions are in ).

More recent proposals have some similarity with the work
we are presenting. In [17], a dynamic architecture model-
ing is presented which allows active elements to be nested
in arbitrary and dynamically changeable hierarchies, en-
abling the design of systems at different levels of abstrac-
tions, by using refinements of net models. In [18], the
paradigm of nets and rules as tokens is introduced, where
rules as tokens can be used, which permit the structure
and behavior of P/T systems to be changed. The new
concept is implemented using algebraic nets and graph
transformations.

Most dynamic extensions of Petri nets set up new (hy-
brid) paradigms. While the expressive power has in-
creased, the cognitive simplicity of Petri nets has de-
creased as well. As argued in [13], the intricacy of these
proposals leaves little hope to obtain significant mathe-
matical results and/or automated verification tools in a
close future. The Reflective Petri nets approach is dif-
ferent, because it tries to achieve a satisfactory compro-
mise between expressive power and analysis capability,
through a rigorous application of reflection concepts in a
consolidated high-level Petri Net framework.

7 Conclusions and Future Work

We have semi-formally introduced a state-transition
semantics for reflective Petri nets, a formal layout
based on classical Petri nets (Well formed Nets, and
their unfolded counterpart) well suited to model adapt-
able/reconfigurable discrete-event systems. In particu-
lar, we have addressed a major topic related to recog-
nizing equivalent system’s evolutions, through the WN’s
symbolic state notion. We are planning to integrate
the GreatSPN tool [19], that natively supports WN
(and their stochastic extension, SWN), with new mod-
ules (plug-in’s) for the graphical editing and the anal-
ysis/simulation of reflective Petri net models. We are
defining a stochastic process for Reflective Petri nets,
which is built from their state-transition graph, and
which is in large part inspired to the SWN (GSPN) timed
semantics.
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C. Böhm, Eds. Udine, Italy: Springer, Jul. 1978,
pp. 464–476.

[12] ——, “Petri Nets as Token Objects: An Introduction
to Elementary Object Nets,” in Proceedings of the
19th International Conference on Applications and
Theory of Petri Nets (ICATPN 1998), ser. LNCS
1420, J. Desel and M. Silva, Eds. Lisbon, Portugal:
Springer, Jun. 1998, pp. 1–25.

[13] E. Badouel and J. Oliver, “Reconfigurable Nets, a
Class of High Level Petri Nets Supporting Dynamic
Changes within Workflow Systems,” IRISA, IRISA
Research Report PI-1163, Jan. 1998.

[14] A. Asperti and N. Busi, “Mobile Petri Nets,” Univer-
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