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Abstract—Motived by the aim of modelling the be-
havior of swirling flow motion, we present a 1D hier-
archical model for an Rivlin-Ericksen fluid with com-
plexity n = 2 flowing in a circular straight tube with
constant radius. Integrating the equation of conserva-
tion of linear momentum over the tube cross-section,
with the velocity field approximated by the Cosserat
theory, we obtain a one-dimensional system depend-
ing only on time and on a single spatial variable.
The velocity field approximation satisfies both the in-
compressibility condition and the kinematic boundary
condition exactly. From this new system, we derive
the equation for the wall shear stress and the relation-
ship between average pressure gradient, volume flow
rate and swirling scalar function over a finite section
of the tube. Also, we obtain the corresponding partial
differential equation for the swirling scalar function.

Keywords: 1D model, average pressure gradient, vol-
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1 Introduction

In recent years the Cosserat theory approach has been
applied in the field of fluid dynamics (see e.g. [1], [2], [3],
[4], [11]) to reduce the full 3D system of equations of the
flow motion into a system of partial differential equations
which, apart from the dependence on time, depends only
on a single spatial variable. The basis of this theory (see
Cosserat [6], Duhen [8]) is to consider an additional struc-
ture of deformable vectors (called directors) assigned to
each point on a space curve (the Cosserat curve). The rel-
evance of using a director theory related to fluid dynam-
ics is not in regarding the equations as approximations
to three-dimensional equations, but rather in their use as
independent theories to predict some of the main prop-
erties of three-dimensional problems. Several important
features of a director theory are: (i) the director theory
incorporates all vector components of the equation of lin-
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ear momentum; (ii) it is a hierarchical theory, making it
possible to increase the accuracy of the model; (iii) the
system of equations is closed at each order and therefore
unnecessary to make assumptions about form of the non-
linear and viscous terms; (iv) invariance under a super-
posed rigid body motion is satisfied at each order; (v) the
wall shear stress enters directly as a dependent variable in
the formulation; (vi) the director theory has been shown
to be useful for modeling flow in curved tubes, consid-
ering many more directors than in the case of a straight
tube. We use this theory to predict some of the main
properties of a three-dimensional given problem where
the fluid velocity field ϑ(x1, x2, z, t) = ϑi(x1, x2, z, t)ei

can be approximated by (see Caulk and Naghdi [5]):

ϑ = v +
k∑

N=1

xα1 . . .xαN W α1...αN , (1)

with1

v = vi(z, t)ei, W α1...αN = W i
α1...αN

(z, t)ei. (2)

Here, v represents the velocity along the axis of symme-
try z at time t and xα1 . . .xαN are the polynomial base
functions with order k (this number identifies the order of
hierarchical theory and is related to the number of direc-
tors). Moreover, the vectorsW α1...αN are the director ve-
locities which are symmetric with respect to their indices
and ei are the associated unit basis vectors. In his work
we apply the nine-director theory (k = 3 in equation (1))
to study a specific viscoelastic fluid model with swirling
motion. Using this theory, we obtain the unsteady rela-
tionship between average pressure gradient and volume
flow rate over a finite section of a straight circular tube
with constant radius and the corresponding equation for
the wall shear stress. Also, we obtain the corresponding
partial differential equation for the swirling scalar func-
tion.

2 System Description

Let xi (i = 1, 2, 3) be the rectangular cartesian coordi-
nates and for convenience set x3 = z. We consider a

1Latin indices subscript take the values 1,2, 3; greek indices sub-
script 1,2, and the usual summation convention is employed over a
repeated index.
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homogeneous fluid moving within a circular straight and
impermeable tube, the domain Ω (see Fig.1) contained
in R

3. Also, let us consider the surface scalar function
φ(z, t), that is related with the cross-section of the tube
by the following relationship

φ2(z, t) = x2
1 + x2

2. (3)

The boundary ∂Ω is composed by, the proximal cross-
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Figure 1: General fluid domain Ω with the tangential components
of the surface traction vector τ1, τ2 and pe, where φ(z, t) denote the
radius of the domain surface along the axis of symmetry z at time
t.

section Γ1, the distal cross-section Γ2 and the lateral wall
of the tube, denoted by Γw.

The three-dimensional equations governing the motion of
an incompressible Rivlin-Ericksen fluid with complexity
n = 2, without body forces, defined in a straight circular
tube Ω with lateral wall Γw, is given by (in Ω × (0, T ))
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
= ∇ · T ,

∇ · ϑ = 0,

T = −pI + μA1 + α1A2 + α2A
2
1, T w = T · �,

(4)
with the initial condition

ϑ(x, 0) = ϑ0(x) in Ω, (5)

and the homogeneous Dirichlet boundary condition

ϑ(x, t) = 0 on Γw × (0, T ), (6)

where p is the pressure, −pI is the spherical part of the
stress due to the constraint of incompressibility and ρ is
the constant fluid density. Equation (4)1 represents the
balance of linear momentum and (4)2 is the incompress-
ibility condition. In equation (4)3, T is the constitutive
equation, T w denotes the stress vector on the surface
whose outward unit normal is �. Also, μ is the constant
fluid viscosity, α1 and α2 are material coefficients usually
called the normal stress moduli and the kinematic first
two Rivlin-Ericksen tensors A1 and A2 are given by (see
Rivlin and Ericksen [10])

A1 = ∇ϑ+
(∇ϑ

)T
(7)

and

A2 =
∂

∂t

(
A1

)
+ ϑ · ∇A1 +A1∇ϑ+

(∇ϑ
)T

A1. (8)

The classical constitutive equation related with Newto-
nian fluids is recovered with α1 = α2 = 0 at condition
(4)3.

The thermodynamics and stability of the fluids related
with the constitutive equation (4)3 have been studied in
detail by Dunn and Fosdick [12], who showed that if the
fluid is to be compatible with thermodynamics in the
sense that all motions of the fluid meet the Clausius-
Duhem inequality and the assumption that the specific
Helmholtz free energy of the fluid is a minimum in equi-
librium, then

μ � 0, α1 � 0, α1 + α2 = 0. (9)

Later, Fosdick and Rajagopal [13], based on the ex-
perimental observation, showed that for many non-
Newtonian fluids of current rheological interest the re-
ported values for α1 and α2 do not satisfy the restriction
(9)2,3, relaxed that assumption. Also, they showed that
for arbitrary values of α1 + α2, with α1 < 0, a fluid fill-
ing a compact domain and adhering to the boundary of
the domain exhibits an anomalous behavior not expected
on real fluids. The condition (9)3 simplifies substantially
the mathematical model and the corresponding analysis.
The fluids characterized by (9) are known as second-grade
fluids as opposed to the general second-order fluids. It
should also be added that the use of Clausius-Duheim
inequality is the subject matter of much controversy (see
e.g. Coscia and Galdi [7]). In the sequel we consider the
system (3) − (8) with μ � 0, α1 < 0 and α1 + α2 is a
arbitrary value.

Using the director theory approach (1) it follows (see
[5]) that the approximation of the velocity field ϑ =
ϑi(x1, x2, z, t)ei, with nine directors, is given by

ϑ =
[
x1(ξ + σ(x2

1 + x2
2))− x2(ω + η(x2

1 + x2
2))

]
e1

+
[
x1(ω + η(x2

1 + x2
2)) + x2(ξ + σ(x2

1 + x2
2))

]
e2

+
[
v3 + γ(x2

1 + x2
2)

]
e3, (10)

where ξ, ω, γ, σ, η are scalar functions of the spatial vari-
able z and time t. The scalar functions in (10) have
the following physical meaning: γ is related to transverse
shearing motion, ω and η are related to rotational mo-
tion (also called swirling motion) about e3, while ξ and
σ are related to transverse elongation. Also, from [5], the
expression for the stress vector (see (4)3) on the lateral
surface Γw can be rewritten in terms of the tangential
components of the surface traction vector and outward
unit normal vector by2

T w =
[ 1

φ(1 + φ2
z)1/2

(
τ1x1φz − pex1 − τ2x2(1 + φ2

z)1/2
)]

e1

+
[ 1

φ(1 + φ2
z)1/2

(
τ1x2φz − pex2 + τ2x1(1 + φ2

z)1/2
)]

e2

+
[ 1

(1 + φ2
z)1/2

(
τ1 + peφz

)]
e3 , (11)

2Here a subscripted variable denotes partial differentiation.
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where the tangential componente τ1 is the wall shear
stress.

Averaged quantities such as flow rate and average pres-
sure are needed to study 1D models. Consider S(z, t) as
a generic axial section of the tube at time t defined by
the spatial variable z and bounded by the circle defined
in (3) and let A(z, t) be the area of this section S(z, t).
Then, the volume flow rate Q is defined by

Q(z, t) =
∫

S(z,t)

ϑ3(x1, x2, z, t)da, (12)

and the average pressure p̄, by

p̄(z, t) =
1

A(z, t)

∫
S(z,t)

p(x1, x2, z, t)da. (13)

Now, with the boundary condition (6) and the velocity
field (10) on the surface (3), we obtain

ξ + φ2σ = 0, ω + φ2ψ = 0, v3 + φ2γ = 0. (14)

The incompressibility condition (4)2 applied to the veloc-
ity field (10), can be written as

(v3)z + 2ξ +
(
x2

1 + x2
2

)(
γz + 4σ

)
= 0. (15)

For equation (15) to hold at every point in the fluid, the
velocity coefficients must satisfy the conditions

(v3)z + 2ξ = 0, γz + 4σ = 0. (16)

Taking into account (14)1,3 these separate conditions (16)
reduce to

(v3)z + 2ξ = 0,
(
φ2v3

)
z
= 0. (17)

Now, let us consider a flow in a rigid tube, i.e.

φ = φ(z). (18)

Conditions (12), (10), (14)3 and (17)2 imply that the vol-
ume flow rate Q is just a function of time t, given by

Q(t) =
π

2
φ2(z)v3(z, t). (19)

Instead of satisfying the momentum equation (4)1 point-
wise in the fluid, we impose the following integral condi-
tions

∫
S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
da = 0, (20)

∫
S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
xα1 . . .xαNda = 0,

(21)
where N = 1, 2, 3.

Using the divergence theorem and integration by parts,
equations (20) − (21) for nine directors, can be reduced
to the four vector equations:

∂n

∂z
+ f = a, (22)

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (23)

where n, kα1...αN , mα1...αN are resultant forces defined
by

n =
∫

S

T 3da, kα =
∫

S

T αda, (24)

kαβ =
∫

S

(
T αxβ + T βxα

)
da, (25)

kαβγ =
∫

S

(
T αxβxγ + T βxαxγ + T γxαxβ

)
da, (26)

mα1...αN =
∫

S

T 3xα1 . . . xαNda. (27)

The quantities a and bα1...αN are inertia terms defined
by

a =
∫

S

ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
da, (28)

bα1...αN =
∫

S

ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
xα1 . . . xαNda, (29)

and f , lα1...αN , which arise due to surface traction on the
lateral boundary, are defined by

f =
∫

∂S

√
1 + φ2

z T wds, (30)

lα1...αN =
∫

∂S

√
1 + φ2

z T w xα1 . . . xαNds. (31)

3 1D Results

Let us consider a flow in a rigid tube with constant ra-
dius, i.e. φ = cts. Now, taking into account the velocity
(10), the stress vector (11), the volume flow rate (19),
the average pressure (13), the incompressiblity condition
(4)2, the boundary condition (6) and the results quanti-
ties (24)− (31) on equations (22)− (23), we obtain

p̄z = −
( 8μ
πφ4

)
Q(t)−

(4ρφ2 + 24α1

3πφ4

)
Qt(t)

+ ωωz

(
2α1 +

2
3
α2 +

1
20
φ2ρ

)
− ωωzzz

φ2

30

(
α2 + 2α1

)

+ ωzωzz
φ2

20

(
α2 + 4α1

)
(32)

and the wall shear stress

τ1 =
4μ
πφ3

Q(t) +
ρ

6πφ

(
1 + 24

α1

ρφ2

)
Qt(t) +

ωωzφ
3ρ

40

+
(
2α1 + α2

)[ωωzzzφ
3

60
− ωωzφ

6
+
ωzωzzφ

3

30
]
(33)
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where the scalar function ω(z, t) satisfies the following
partial differential equation

0 = 16ω + ωzQ(t)
( 16α1

πμφ2
+
6ρ
5πμ

)
− ωzzφ

2 (34)

− ωzzzQ(t)
6α1

5πμ
+ ωt

(16α1

μ
+
φ2ρ

μ

)
− ωtzz

α1φ
2

μ
.

Considering the material coefficients α1 = α2 = 0 on
equation (32) − (34), we recover the swirling Navier-
Stokes solution obtained and validated by Caulk and
Naghdi [5].

Now, let us consider just the steady case. Using the fol-
lowing dimensionaless variables3

ẑ =
z

φ
, Q̂ =

2ρ
πφμ

Q, ŵ = fw, α̂1 =
α1

φ2ρ
, α̂2 =

α2

φ2ρ
(35)

on equation (32)−(34), where f is the Coriolis frequency,
we obtain

ˆ̄pẑ = −4Q̂+R0

[
ŵŵẑ

(
2α̂1 +

2
3
α̂2 +

1
20

)

− ŵŵẑẑẑ

( α̂2

30
+
α̂1

15
)
+ ŵẑŵẑẑ

( α̂2

20
+
α̂1

5
)]
(36)

and the wall shear stress

τ̂1 = 2Q̂+R0

[ ŵŵẑ

40
+

(
2α̂1 + α̂2

)( ω̂ω̂ẑẑẑ

60

− ω̂ω̂ẑ

6
+
ω̂ẑω̂ẑẑ

30

)]
(37)

where

R0 =
ρ2φ4

f2μ2

is the Rossby number: a small Rossby number signifies a
system which is strongly affected by Coriolis forces, and
a large Rossby number signifies a system in which inertial
and centrifugal forces dominate. Also, the scalar function
ω̂(ẑ) satisfies the following ODE

0 = 16ω̂ + ω̂ẑQ̂
(
8α̂1 +

3
5

)
− ω̂ẑẑ − ω̂ẑẑẑQ̂

3α̂1

5
. (38)

Now, integranting condition (36) over a finite section of
the tube [ẑ1, ẑ], with ẑ1 fixed, we obtain the nondimen-
sional average pressure gradient

ˆ̄pp(ẑ) = ˆ̄p(ẑ1)− ˆ̄p(ẑ)

= 4Q̂
(
ẑ − ẑ1

)
+R0

[( α̂2

30
+
α̂1

15
) ∫ ẑ

ẑ1

ŵŵẑẑẑdẑ

− (
2α̂1 +

2
3
α̂2 +

1
20

) ∫ ẑ

ẑ1

ŵŵẑdẑ

− ( α̂2

20
+
α̂1

5
) ∫ ẑ

ẑ1

ŵẑŵẑẑdẑ
]
. (39)

3In cases where the steady flow rate is specified, the nondimen-
sional flow rate Q̂ is identical to the classical Reynolds number used
for flow in tubes, see [11].

Finally, we observe that the behavior of the average pres-
sure gradient, wall shear stress and swirling effects given
by equations (39), (37) and (38) can be numerically illus-
trated for different values of R0, Q̂, α̂1 and α̂2.

4 Conclusions and Future Work

A nine director theory has been used to derive a 1D
model in a circular straight rigid and impermeable tube
with constant radius to predict some of the main proper-
ties of the 3D Rivlin-Ericksen fluid model with swirling
motion. Unsteady relationship between average pressure
gradient (wall shear stress, respectively), volume flow rate
and the swirling function over a finite section of the tube
has been obtained. Also, we obtain a PDE relate with
the scalar swirling function. One of the possible exten-
sions of this work is the numerically simulation of the
steady/unsteady equations (32) − (34) and also, the ap-
plication of this hierarchical theory for specific tube ge-
ometries and/or other fluid models.
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