
 
 

 

  
Abstract—A co-rotational finite element formulation for the 

geometrically nonlinear dynamic analysis of thin-walled beam 
with large rotations but small strain is presented. The element 
developed here has two nodes with seven degrees of freedom per 
node.  The element nodes are chosen to be located at the 
centroid of the end cross sections of the beam element and the 
centroid axis is chosen to be the reference axis. The kinematics 
of the beam element is described in the current element 
coordinate system constructed at the current configuration of 
the beam element.  The element nodal forces are conventional 
forces, moments and bimoments. Both the element deformation 
nodal forces and inertia nodal forces are systematically derived 
by consistent linearization of the fully geometrically non-linear 
beam theory, the d'Alembert principle and the virtual work 
principle in the current element coordinates. An 
incremental-iterative method based on the Newmark direct 
integration method and the Newton-Raphson method is 
employed here for the solution of the nonlinear equations of 
motion. Numerical examples are presented to demonstrate the 
accuracy and efficiency of the proposed method. 
 

Index Terms—Co-rotational formulation, Dynamics, 
Geometrical nonlinearity, Thin-walled beam.  
 

I. INTRODUCTION 
The nonlinear dynamic behavior of beam structures, e.g., 

framed structures, flexible mechanisms, and robot arms, has 
been the subject of considerable research. However, the 
application of co-rotational formulation in the nonlinear 
dynamic analysis of three-dimensional beams has been rather 
limited (e.g. [1-3]). In [3] a consistent co-rotational finite 
element formulation for the nonlinear dynamic analysis of 
three-dimensional elastic Euler beam using consistent 
linearization of the fully geometrically non-linear beam 
theory was presented. The formulation was proven to be very 
effective by numerical examples studied in [3]. However, the 
effect of warping restraint was neglected in [3]. To the 
authors’ knowledge, the application of co-rotational 
formulation in the geometric nonlinear dynamic analysis for 
thin-walled beams with the consideration of the warping 
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rigidity has not been reported in the literature. The object of 
this paper is to present a co-rotational finite element 
formulation for the geometric nonlinear dynamic analysis of 
thin-walled beams with open section.  

In order to capture correctly all coupling among bending, 
twisting, and stretching deformations of the beam elements, 
the formulation of beam elements might be derived by the 
fully geometrically non-linear beam theory. The exact 
expressions for the element nodal forces, which are required 
in a total Lagrangian formulation for large 
displacement/small strain problems, are highly nonlinear 
functions of element nodal parameters. However, the 
dominant factors in the geometrical nonlinearities of beam 
structures are attributable to finite rotations, the strains 
remaining small. For a beam structure discretized by finite 
elements, this implies that the motion of the individual 
elements to a large extent will consist of rigid body motion. If 
the rigid body motion part is eliminated from the total 
displacements and the element size is properly chosen, the 
deformational part of the motion is always small relative to 
the local element axes. Thus in conjunction with the 
co-rotational formulation, the higher order terms of nodal 
parameters in the element nodal forces may be neglected by 
consistent linearization. The element deformation and inertia 
nodal forces are systematically derived by using the 
d'Alembert principle and the virtual work principle. An 
incremental-iterative method based on the Newmark direct 
integration method and the Newton-Raphson method is 
employed here for the solution of the nonlinear equations of 
motion. Numerical examples are presented and compared 
with the results reported in the literature to demonstrate the 
accuracy and efficiency of the proposed method. 

 

II. FINITE ELEMENT FORMULATION 
The kinematics of the beam element presented in [4] and 

the co-rotational finite element formulation proposed in [3] 
are employed here. In the following only a brief description 
of the beam element is given.  

A. Basic Assumptions 
The following assumptions are made in derivation of the 
beam element behavior: (1) The beam is prismatic and 
slender, and the Euler-Bernoulli hypothesis is valid. (2) The 
cross section of the beam is doubly symmetric. (3) The unit 
extension of the centroid axis of the beam element is uniform. 
(4) The cross section of the beam element does not deform in 
its own plane and strains within this cross section can be 
neglected.  

Geometrically Non-Linear Dynamic Analysis of 
Thin-Walled Beams 

Kuo Mo Hsiao, Wen Yi Lin, and Ren Haw Chen 

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



 
 

 

X

X

X

G
1

G
2

G
3

x
u1

P wv

s
xx

x3

2 12

(  ,0,0)P

xp

l

P

Q z
y

xS
2

xS
3

B. Coordinate Systems 
In this paper, a co-rotational formulation is adopted. In 

order to describe the system, we define three sets of right 
handed rectangular Cartesian coordinate systems: 

1. A fixed global set of coordinates, G
iX  (i = 1, 2, 3) (see 

Fig. 1); the nodal coordinates, displacements, rotations, 
velocities, and accelerations, and the equations of motions of 
the system are defined in this coordinates. 

2. Element cross section coordinates, S
ix  (i = 1, 2, 3) (see 

Fig. 1); a set of element cross section coordinates is 
associated with each cross section of the beam element. The 
origin of this coordinate system is rigidly tied to the centroid 
of the cross section. The Sx1  axes are chosen to coincide with 

the normal of the unwrapped cross section and the Sx2  and 
Sx3  axes are chosen to be the principal directions of the cross 

section. 
3. Element coordinates, ix  (i = 1, 2, 3) (see Fig. 1); a set of 

element coordinates is associated with each element, which is 
constructed at the current configuration of the beam element.  
The origin of this coordinate system is located at node 1, and 
the 1x  axis is chosen to pass through two end nodes of the 
element; the 2x  and 3x  axes are determined by the method 
proposed in [5]. Note that this coordinate system is just a 
local coordinate system not a moving coordinate system. The 
deformations, deformation nodal forces, inertia nodal forces, 
stiffness matrix, and mass matrix of the elements are defined 
in terms of these coordinates. In this paper the element 
deformations are determined by the rotation of element cross 
section coordinate systems relative to this coordinate system.  

C. Kinematics of Beam Element 
In this study only the doubly symmetric cross section is 

considered. Let Q (Fig. 1) be an arbitrary point in the beam 
element, and P be the point corresponding to Q on the 
centroid axis. The position vector of point Q in the 
undeformed and deformed configurations may be expressed 
as [4]: 

 

 
Fig. 1. Coordinate systems 
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where ),( txxp , ),( txv and ),( txw  are the 1x , 2x and 3x  
coordinates of point P, respectively, in the deformed 
configuration, ),(,1,1 txxx θθ =  is the twist rate of the 

deformed centroid axis, ),( zyω  is the Saint Venant warping 
function for a prismatic beam of the same cross section, and 

ie  and S
ie  (i = 1, 2, 3) denote the unit vectors associated with 

the ix  and S
ix  axes, respectively. Note that ie  and S

ie  are 
coincident in the undeformed state. The relationship 
between ie  and S

ie  is given in [4] and not repeated here. Here, 
the lateral deflections of the centroid axis, ),( txv and ),( txw , 
and the rotation about the centroid axis, x,1θ , are assumed to 
be the Hermitian polynomials of x. 

The relationship among ),( txxp , ),( txv , and ),( txw , and 

x may be given as [4] 
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where 1u  is the displacement of node 1 in the 1x  direction. 
Note that due to the definition of the element coordinate 
system, the value of 1u  is equal to zero. However, the 
variation and time derivatives of 1u  are not zero. 

Making use of the assumption of uniform unit extension, 
cε  and the axial displacements of the centroid axis may be 

calculated using (3) and the current chord length of the beam 
element. 

D. Element Nodal Force Vector, Stiffness Matrix and 
Mass Matrix 
The element proposed here has two nodes with seven 

degrees of freedom per node. The nodal parameters are 
chosen to be iju  ( jj uu =1 , jj vu =2 , jj wu =3 ), the ix  (i = 

1, 2, 3) components of the translation vectors ju  at node j (j 

= 1, 2), ijφ , the ix  (i = 1, 2, 3) components of the rotation 

vectors jφ  at node j (j = 1, 2), and jβ , the twist rate of the 

centroid axis at node j. Here, the values of jφ  are reset to 

zero at current configuration. Thus, ijδφ , the variation of ijφ , 

represents infinitesimal rotations about the ix  axes [5], and 
the generalized nodal forces corresponding to ijδφ  are ijm , 

the conventional moments about the ix  axes. The 
generalized nodal forces corresponding to ijuδ , the 

variations of iju , are ijf , the forces in the ix  directions. The 

generalized nodal forces corresponding to jδβ , the 

variations of jβ , are bimoment jB . 

The element nodal force vector is obtained from the virtual 
work principle and the d’Alembert principle in the current 
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element coordinates. The virtual work principle requires that  
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where },,{ jjjj wvu δδδδ =u , },,{ 321 jjjj δφδφδφδ =φ , 

},,{ 1
*

jjjj vw ′′−= δδδθδθ , },,{ 321 jjjj fff=f , 

},,{ 321 jjjj mmm=m , },,{ 321
θθθθ
jjjj fff=f , 

},,{ 321
θθθθ

jjjj mmm=m  (j = 1, 2), { }21  ,δβδβδ =β and 

},{ 21 BB=B . Df and If are element deformation nodal 
force vector and inertia nodal force vector, respectively. V is 
the volume of the undeformed beam element, i1δε  (i = 1, 2, 3) 
are the variation of i1ε  in (7) corresponding to θδq . Note 
that because i1δε  are function of θδq , intWδ  may be 

expressed by θθδ fqt . D
θf  and I

θf  are generalized 
deformation nodal force vector and inertia nodal force vector 
corresponding to θδq . i1σ  (i = 1, 2, 3) are the second 
Piola-Kirchhoff stress. For linear elastic material, 1111 εσ E= , 

1212 2 εσ G= , and 1313 2 εσ G= , where E is Young’s 
modulus and G is the shear modulus. ρ  is the density, rδ  
and r&&  are the variation and the second time derivative of r  
in (2), respectively. Note that because the element coordinate 
system is just a local coordinate system not a moving 
coordinate system, r&&  is the absolute acceleration. The higher 
order terms of nodal parameters in the element nodal forces 
are neglected by consistent second order linearization in this 
study. 

The relation between qδ and θδq , and the relation 
between f and θf  may be expressed as [4] 

 
qTq δδ θφθ = ,    θθφfTf t=  (8) 

 
where θf may be calculated using (2-7).  

The element stiffness matrix and mass matrix may be 
expressed as 
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E. Equations of Motion  
The nonlinear equations of motion may be expressed by  
 

0PFFF =−+= DIR  (10) 

where RF  is the unbalanced force among the inertia nodal 
force IF , deformation nodal force DF , and the external 
nodal force P. IF  and DF  are assembled from the element 
nodal force vectors, which are calculated using (4) and (8) 
first in the current element coordinates and then transformed 
from element coordinate system to global coordinate system 
before assemblage using standard procedure. 

 

III. NUMERICAL STUDIES  
An incremental iterative method based on the Newmark 

direct integration method and the Newton-Raphson method 
[3] is employed here. 

The first example considered is a simply supported beam 
subjected to uniform load as shown in Fig. 2. This example 
was analyzed by [6]. Twenty elements are used for 
discretization. A time step size of sec001.0=Δt  is used. The 
time histories of displacements at point C are shown in Fig. 3 
together with the solution given in [6]. As can be seen, the 
discrepancy between these two solutions is distinct. The 
discrepancy may be attributed at least in part to that the 
moment of inertia of the beam cross section is not considered 
in [6]. 
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Fig. 2. Simply supported beam subjected to uniform load. 
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Fig. 3. Time histories of displacements at point C. 
 

 
Fig. 4. Simply supported beam subjected to eccentric axial 

force. 
 
The second example considered is a simply supported 

W14× 43 beam subjected to an eccentric axial step loading 
with magnitude kipP 500 = as shown in Fig. 4. The ends of 

the beam are free to warp and free to rotate about GX 2  and 
GX3  axes, but restrained from rotation about GX1  axis. The 

translation is restrained at end point A, and is free only in the 
direction of GX1  axis at points B. The geometrical and 
material properties are 6.264=L  in, 995.7=b in, 53.0=ft  

in, 66.13=d  in, 305.0=wt  in, Young's modulus 
ksiE 29000= , and the shear modulus 11200=G  ksi, 

42 /283.0 inslb ⋅=ρ .  
The first axial natural frequency corresponding to the 

undeformed state may be given by =ρπ E
L2

 

sec/095.60 rad .The static buckling load for this example 
given in [4] is kipPcr 1.139= . Twenty elements are used for 
discretization. The first five natural frequencies and vibration 

Figure 5. Vibration modes for simply supported beam 
subjected to eccentric axial force. 

 

 
Fig. 6. Time history for simply supported beam subjected to 

eccentric axial force. 
 

modes corresponding to the static equilibrium configuration 
at kipP 500 =  are calculated and given in Fig. 5. It can be 
seen that the first and fourth vibration modes are dominated 
by the lateral vibration in the GX 2 direction, the second and 
fifth vibration mode is a coupled lateral-torsional vibration, 
and the third vibration mode is dominated by the lateral 
vibration in the GX3 direction. A time step size of 

sec001.0=Δt  is used. The time histories of lateral 
displacements at point C and axial displacement at point B 
are shown in Fig. 6. It can be seen from Figs. 5 and 6 that the 
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time histories given in Fig. 6 are dominated by the first axial 
vibration mode, and the first and the third vibration modes. 

 

IV. CONCLUSIONS 
A consistent co-rotational total Lagrangian finite element 

formulation for the geometrically nonlinear vibration 
analysis of doubly symmetric thin-walled beams with open 
section is presented. 

The nodal coordinates, displacements, rotations, velocities, 
accelerations, and the equations of motion of the structure are 
defined in a fixed global set of coordinates. The beam 
element has two nodes with seven degrees of freedom per 
node.  The element nodal forces are conventional forces and 
moments.  The kinematics of beam element is defined in 
terms of element coordinates which are constructed at the 
current configuration of the beam element. Both the element 
inertia and deformation nodal forces are systematically 
derived by using consistent second order linearization of the 
fully geometrically nonlinear beam theory, the d'Alembert 
principle and the virtual work principle. In conjunction with 
the co-rotational formulation, the higher order terms of nodal 
parameters in element nodal forces are consistently neglected.  
However, in order to include the nonlinear coupling among 
the bending, twisting, and stretching deformations, terms up 
to the second order of nodal parameters are retained in 
element deformation nodal forces.  It should be noted that the 
element coordinate system is just a local coordinate system, 
which is updated at each iteration, not a moving coordinate 
system. Thus, the velocity and acceleration described in the 
element coordinates are the absolute velocity and 
acceleration. The element equations are constructed first in 
the element coordinate system and then transformed to the 
global coordinate system by using standard procedure. 

From the numerical examples studied, the accuracy and 
efficiency of the proposed method are well demonstrated. 

It is believed that the consistent co-rotational formulation 
for beam element and numerical procedure presented here 
may represent a valuable engineering tool for the dynamic 
analysis of three dimensional thin-walled beam structures. 
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