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Abstract-In this paper, elasto-plastic analysis of an edge crack 
has been performed using element free Galerkin method. A 
model problem has been solved in plane stress condition under 
mode-I loading. A system of nonlinear equations has been 
obtained by using incremental theory of plasticity, and the 
equations are solved by assuming piecewise linear 
approximation. A code has been written in Matlab for elasto-
plastic analysis of cracked components. The size of plastic zone 
is calculated around the tip of the crack by EFGM code. 
 
Keywords- Elasto-plastic, Edge crack, Element free Galerkin 
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I. INTRODUCTION 

 
Now a day, Finite Element Method (FEM) is a well 
established simulation approach, and is widely used in many 
branches of engineering and sciences. However, it still has 
some shortcomings. The reliance of the method on a mesh 
leads to complications for certain classes of problems. 
Consider the modeling of large deformation processes; 
considerable loss in accuracy arises due to element 
distortion. Examining the growth of cracks with arbitrary 
and complex paths, and the simulations of phase 
transformations is also difficult. 

To overcome some of FEM shortcomings, a number of 
meshless methods were proposed such as EFGM, MLPG, 
and PIM as discussed by Liu [1]. In a meshless method, 
unlike FEM, a predefined mesh is not necessary, at least for 
field variables interpolation. 

Two main characteristics of the EFGM seem to be a 
unique approximate function for the whole field and rather 
an easier kind of crack modeling. In this paper, the EFGM 
has been applied to solve a single edge crack problem 
having elasto-plastic material behavior. The nonlinear 
equations are solved by assuming each load step as a 
piecewise linear. 

 
II. REVIEW OF EFGM 

 
In EFGM, a field variable u  is approximated by moving 
least square approximation (MLS) function ( )hu x  [2], 
which is given by 
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where, p(x)  is a vector of basis functions, a(x)  are unknown 
coefficients, and m  is the number of terms in the basis. 
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The unknown coefficients )(xa are obtained by minimizing 
a weighted least square sum of the difference between local 
approximation, )(xhu  and field function nodal 
parameters Iu . The weighted least square sum )(xL  can be 
written in the following quadratic form: 
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where, Iu  is the nodal parameter associated with node I  

at Ix . Iu  are not the nodal values of  )( I
hu xx −  because 

)(xhu  is used as an approximant and not an interpolant. 

)( Iw xx −  is the weight function having compact support 
associated with node I , and n  is the number of nodes with 
domain of influence containing the point x , 0)( ≠− Iw xx . 

By setting a∂∂ /L =0, following set of linear equation is 
obtained: 

uxBxaA(x) )()( =                                                             (3)  

By substituting Eq. (3) in Eq. (1), the approximation 
function is obtained as: 
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III. DISCRETIZED VARIATIONAL FORMULATION 
 

Consider two-dimensional (2D) problem with small 
displacements on the domain Ω  bounded byΓ .  The 
governing equilibrium equation is given as:  
 

0. =+∇ bσ  inΩ                                                               (5) 
 
with the following essential and natural boundary 
conditions: 
 

uu =    on    uΓ                                      (6) 
 

tnσ =.  on   tΓ                                     (7) 
 
where, σ  is the stress tensor which is defined as 

)( TεεDσ −= , D is the linear elastic material property 
matrix, ε  is the strain vector, b is the body force vector, 
u is the displacement vector, t  is the traction force and n is 
the unit normal, Enforcing essential boundary conditions [3] 
using Lagrange multiplier approach [4], and applying 
variational  principle, the following discrete equations are 
obtained from Eq. (4): 
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where,  
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where, E is the modulus of elasticity and ν is the Poisson’s 
ratio. 

 
IV. ELASTO-PLASTIC CONSTITUTIVE EQUATION 

 
The elasto-plastic constitutive relation for a material can be 
modeled using incremental theory of plasticity. The material 
behavior [5] is modeled in the form of an incremental stress 
vector σd  and incremental strain vector εd such 
that εDσ dd ep= . In this relation, epD  is called elasto-plastic 

stiffness matrix. To find epD  matrix, the following relations 
are assumed to be known 
a) Total strain increment is the sum of elastic and plastic 

parts i.e., 
pe dεdεdε +=                                                              (9) 

b) Elastic stress–strain relation in the incremental form is 
similar to the relation in its total form, e.g., 

      eedd εDσ =                                                                 (10)  
c) Failure criteria is given as 
      )()( σfF =σ                                                              (11) 
     in which F and f are two different forms of failure 

functions, σ  is the stress tensor and σ  is the equivalent 
stress. 

d) Flow rule that relates strain increment to other 
quantities, is the gradient of a function called plastic 
potential. If one assumes that the plastic potential 
function is the same as the failure function, then one can 
get the following relation known as normality rule as the 
flow rule, 

.dλd p F∇=ε                                                              (12) 
e) Plastic modulus Η' is given as 

pεd
σdΗ'=                                                                     (13) 

f) For a given strain energy wδ , and according to the 
definition of pdε we must have, 

pdε.σδw =                                                                  (14)  

g) According to the von Mises criteria [6], 2JF = , where 

2J  is the second invariant of deviatoric stress tensor. 

So, we must have 3/)( 2σσ =f . The Eqs. (9) and (10) 
results in 

{ }pe ddd εεDσ −=                                                      (15) 
After taking the derivatives from both sides of Eq. (11), one 
obtains     
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For simplicity we take aσ =∂∂ /F , and of af =∂∂ σ/ also 
by means of Eqs. (13)  and (14), Eq (16) can be written in 
the following form 

pda ε
σ
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dλ  is calculated by omitting σd  between Eq. (15) and (16) 
and substituting pdε  from Eq. (12). By substituting dλ  in 
Eq. (12), the final form of material matrix is obtained as,   

peep DDD −=                                                             (18) 

where 
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V. ELASTO-PLASTIC EFGM ALGORITHM 

 
As indicated earlier, the elasto-plastic constitutive relations 
are required to get the incremental solution. If in Eqs. (8) 
and (8a), u  is replaced by incremental auxiliary nodal 
displacement uΔ  and D  is replaced by epD , then a new set 

of equations will be obtained which describes incremental 
elastoplastic behavior. Hence, the incremental form of Eq. 
(8) is written as 
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this can be shown in more compact form as, 
 

fep =uS                                                                            (21)  
 

for the sake of brevity, epS  will be called as the stiffness 
matrix,  u  as the auxiliary nodal displacement vector and f 
as the force vector. In this manner, to obtain the total 
displacement, the boundary conditions should be changed 
gradually and related incremental equations need to be 
solved and finally field quantities are obtained by 
summation of incremental values.  

Apart from incremental behavior, there is another 
difference between the forms of Eqs. (8) and (20) i.e. in this 
model (Eq.20), the behavior of elasto-plastic EFGM 
incremental stiffness matrix is nonlinear. The stiffness 
matrix, epS  (which depends on material properties) is used 
to obtain the displacement field. In other words, it can be 
easily verified that the elasto-plastic material property 
matrix epD indirectly depends on displacement field. So, in 
order to obtain the unknown displacement vector uΔ in Eq. 
(20), the nonlinear equations are solved by assuming the 
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piecewise linear behavior with in the load step. In this 
method, the total stress is applied in small increments 
through various load steps in such a way that the behavior of 
the material in plastic region is assumed to be linear in each 
load step.  

V. RESULTS AND DISCUSSIONS 

A. Numerical example  

A rectangular plate with an edge crack of dimensions L x D 
is considered, subjected to a traction at the free end as 
shown in Fig. 1. The problem has been solved for the plane 
stress case with the following material properties: modulus 
of elasticity E = 20x105 unit, Poisson’s ratio ν =0.3, tangent 
modulus tE =2x104, yield stress = 200 units, and the plate 
dimensions are L  = 1 unit D  = 2 units, length of the crack 
( a ) = 0.4 unit. In each integration cell 66×  Gauss 
quadrature is used over the domain and 88×  is used near 
the crack tip region to evaluate EFGM stiffness matrix. The 
solutions were obtained using a linear basis function with 
the cubicspline weight function and a maxd  value of 1.5 is 
used for domain nodes and 3.0 is used for the nodes along 
the crack. The total stress 0σ = 2400 units has been applied 
to the plate in small increments in each load step. 
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Fig.  1: Problem geometries and their dimensions along with 
boundary conditions 

Fig. 2 shows the stress vs strain plot for an evaluation point 
near the crack tip as well as for a point which is near to the 
lower left corner. From Fig. 2, it is clearly seen that the 
point at the crack tip reached the plastic region where as the 
base point is still in the elastic region up to the final load 
step, and the increments in stress and strain are a very small 
in each load step of the plastic region leading to piecewise 
linear approximation.  

Fig. 3a-3j show the Gaussian points and their stress 
distribution over the domain which are in plastic region 
from initial load step to the final load step. 
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Fig. 2: Stress vs. Strain plot for the Gaussian point situated 
near the crack tip and the lower left corner Gaussian 

point  

 

 

 

 

 

Fig.  3a: Distribution of Gaussian points and stress around 
the tip of the crack at the end of First, Second & Third load 

steps. 

 

 

 

 

 

 

 

 

 

Fig.  3b: Distribution of Gaussian points and stress around 
the tip of the crack at the end of Fourth load step. 
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Fig.  3c: Distribution of Gaussian points and stress  
around the tip of the crack at the end of Fifth load  

step 
 

 

 

 

 

 

 

 

 

Fig.  3d: Distribution of Gaussian points and stress  
around the tip of the crack at the end of Sixth load  

step 
 

 

 

 

 

 

 

 

 

 

Fig.  3e: Distribution of Gaussian points and stress  
around the tip of the crack at the end of Seventh load  

step 
 

 

 

 

 

 

 

 

 

 

 

Fig.  3f: Distribution of Gaussian points and stress  
around the tip of the crack at the end of Eighth load  

step 
 

 

 

 

 

 

 

 

 

Fig.  3g: Distribution of Gaussian points and stress 
 around the tip of the crack at the end of Ninth load  

step 
 

 

 

 

 

 

 

 

 
 
 
 

Fig.  3h: Distribution of Gaussian points and stress  
around the tip of the crack at the end of Tenth load  

step 
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Fig.  3i: Distribution of Gaussian points and stress  

around the tip of the crack at the end of Eleventh load  
step 

 

 

 

 

 

 

 

 

 

Fig.  3j: Distribution of Gaussian points and stress around 
the tip of the crack at the final load step 

 

Fig.  4: Stress contours of the total plastic region around the 
crack tip at the end of the final load step 

 

VI. CONCLUSIONS 

In this paper, the EFGM has been used to simulate 
elastoplastic solid mechanics problems with geometrical 
discontinuity such as crack. The elasto-plastic formulation 
has been derived and implemented for an edge crack 
problem. The nonlinear equations are solved assuming 
piecewise linear approximation with in the each load step. 
Distribution of Gaussian points and stress around the tip of 
the crack are obtained for different load steps. From this 
analysis, it is observed that elasto-plastic analysis of cracked 
components can be done by taking small load steps in 
plastic region, and with in each load step, system of 
equations can be solved by linear solvers.  
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