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Abstract—This work presents a bi-dimensional
mapped infinite boundary element (IBE), based on a
triangular boundary element (BE) with linear shape
functions. Kelvin fundamental solutions are em-
ployed, considering the static analysis of infinite,
three-dimensional, linear-elastic and isotropic solids.
One advantage of the proposed formulation is that no
additional degrees of freedom are added to the ori-
ginal BE mesh by the presence of the IBEs. Thus,
the IBEs allow reducing the mesh without compro-
mising the result accuracy. An example is presented,
in which the numerical results show good agreement
with an analytical solution.
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1 Introduction

Practical engineering problems that involve truly infinite
domains are unusual. In some cases, however, it is fea-
sible to consider one or more domains infinite in order
to simplify their numerical simulation. As an example,
one may consider soil-structure interaction problems. In
this case detailing the soil limits have little impact on the
results, becoming more practical so simulate it as an in-
finite domain. In these situations, some numerical tools
become more advantageous than others.

One option is to employ the finite element method
(FEM), as performed in [1] and [2]. This numerical tool,
however, requires the domain discretization into FEs,
which may become impractible due to the data storage
and time processing. One way to reduce this computa-
tional cost is to model the far field behavior using infinite
elements (IEs) together with the original mesh of FEs, as
performed in [3] and [4].

Another option is to employ the Boundary Element
Method (BEM), which requires only boundary discretiza-
tion and therefore reduces the problem dimension. This
characteristic implies in a significant computational cost
reduction, therefore the BEM becomes more advanta-
geous than the FEM for infinite domain simulation. In

∗University of São Paulo, São Carlos Engineering School, Struc-
tural Engineering Department, Av. Trabalhador Sãocarlense, 400,
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such a way, many authors use the BEM to model infi-
nite solids, as performed in [5] and [6]. It is possible to
obtain an even more advantageous formulation if infinite
boundary elements (IBE) are used together with BEs,
applying the same concept of the IEs. In such a way, it
is possible to analyze even three-dimensional infinite do-
main problems with relatively low computational cost, as
performed in [7] and [8].

In this work, an IBE is proposed for the static analysis
of infinite domains. The Kelvin fundamental solutions
are employed, considering the static analysis of three-
dimensional, homogeneous, isotropic and linear-elastic
solids. The strategy is to use the same formulation of
a triangular finite BE with linear shape functions, only
changing the Jacobian that relates the local system of
equations with the global one. This new Jacobian is ob-
tained using special mapping functions, which are diffe-
rent from the ones usually found in the literature. Al-
though only homogeneous domains are considered in this
work, in the future the authors intent to use this same
formulation in non-homogeneous problems.

2 Boundary Element Formulation

The equilibrium of a solid body can be represented by
a boundary integral equation called Somigliana Identity,
which for homogeneous, isotropic and linear-elastic do-
mains is:

cij (y) uj (y) +
∫
S

Tij (x, y) uj (x) dS (x) =∫
S

Uij (x, y) tj (x) dS (x) (1)

This equation is written for a source point y at the boun-
dary, where the displacement is uj (y). The constant
cij (y) depends on the Poisson ratio and the boundary
geometry at y. The field point x goes through all boun-
dary S, where displacements are uj (x) and tractions are
tj (x). The integrals kernels Uij (x, y) and Tij (x, y) are
Kelvin three-dimensional fundamental solutions for dis-
placements and tractions, respectively. Kernel Uij (x, y)
has order 1/r and kernel Tij (x, y) order 1/

r2 with r =
|x− y|, therefore the integrals have singularity problems
when x approaches y. Therefore the stronger singular in-
tegral, over the traction kernel, has to be defined in the
sense of a Cauchy Principal Value (CPV).
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Figure 1: Triangular boundary element.

To solve equation 1 numerically, the boundary S is di-
vided into sub-regions where displacements and tractions
are approximated by known shape functions. In this work
these sub-regions are of two types, finite boundary ele-
ments (BEs) and infinite boundary elements (IBEs). The
BEs employed are triangular, as shown in figure 1 with
the local system of coordinates, ξ1ξ2, and the local node
numeration. The subsequent approximations are used for
this BE:

uj =
3∑

k=1

Nkuk
j , tj =

3∑
k=1

Nktkj (2)

In expressions 2, the boundary values uj and tj are re-
lated to the nodal values of the BE. The BEs have 3 nodes
and for each node there are three components of displace-
ment uk

j and traction tkj . The shape functions Nk used
for these approximations are:

N1 = ξ1 , N2 = ξ2 , N3 = 1− ξ1 − ξ2 (3)

The same shape functions are used to approximate the
boundary geometry:

xj =
3∑

k=1

Nkxk
j (4)

where xk
j are the node coordinates. For IBEs, displace-

ments and tractions are interpolated with the same func-
tions:

uj =
Np∑
k=1

Nkuk
j , tj =

Np∑
k=1

Nktkj (5)

Each IBE has Np nodes and not Nod as the BEs. The
IBEs geometry, on the other hand, is approximated using
special mapping functions, as discussed with more details
in Section 3.

By substituting expressions 2 and 5 at equation 1, the

subsequent equation is obtained:

cij (y) uj (y) +
NBE∑
e=1

{
3∑

k=1

[
ΔT ek

ij uk
j

]}
+

+
NIBE∑
e=1

{
Np∑
k

[
Δ∞T ek

ij uk
j

]}
=

NBE∑
e=1

{
3∑

k=1

[
ΔUek

ij tkj
]}

+

+
NIBE∑
e=1

{
Np∑
k=1

[
Δ∞Uek

ij tkj
]}

(6)
NBE is the number of BEs and NIBE is the number of
IBEs. For BEs:

ΔT ek
ij =

∫
γe

|J |NkTijdγe, ΔUek
ij =

∫
γe

|J |NkUijdγe

(7)

In equation 7 the global system of coordinates is trans-
formed to the local one using the Jacobian |J | = 2A,
where A is the element area in the global system. On the
other hand, for IBEs:

Δ∞T ek
ij =

∫
γe

|∞J |NkTijdγe,

Δ∞Uek
ij =

∫
γe

|∞J |NkUijdγe
(8)

Special mapping functions are used to calculate |∞J |, as
detailed in Section 3.

The integrals of equations 7 and 8 are calculated employ-
ing standard BEM techniques. Non-singular integrals are
numerically evaluated using integration points. The sin-
gular ones, on the other hand, are evaluated using the
technique presented in reference [9]. In the end, the free
term cij may be obtained by rigid body motions.

Writing equation 6 for all boundary nodes, as described
in [10], one obtains the following system of equations:

ΔT · u = ΔU · t (9)

The ΔT ek
ij element contributions, including the free term

cij , are assembled to matrix ΔT and ΔUek
ij contributions

are assembled to ΔU . Vectors u and t contain all boun-
dary displacements and tractions, respectively. Reorgani-
zing this system separating the known boundary values
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from the unknown, one obtains a system of equations
which solution is all the unknown boundary values.

3 Infinite Boundary Elements

In this work, the field variables are considered to vanish
at infinity. Hence, nodes placed at infinity have no con-
tribution in the integrals defined in expressions 8. It is
also more practical not to write mapping functions for
these nodes, replacing them by auxiliary ones that are
placed at a finite distance. Three types of mapping are
considered, as illustrated in figure 2.

In the first type of mapping, as represented in Figure 2a,
only direction ξ1 is mapped and node 1 is placed at infini-
ty. The IBE is represented in the local coordinate system
on the left side, and in the global coordinate system on
the right side. The global coordinates xi are related to
the local ones using special mapping functions, Mk, and
the nodal global coordinates, xk

i . Node 4 is created only
to replace node 1 for the mapping and do not contribute
with the integrals.

Figure 2b is analogous to Figure 2a, but in this case only
direction ξ2 is mapped and node 2 is placed at infinity.
Therefore, node 5 is created to auxiliate the mapping.
Finally, in Figure 2c both local directions are mapped
and nodes 1 and 2 are placed at infinity. As a result, the
auxiliary nodes 4 and 5 must be created to replace them
in the mapping.

In this work, an auxiliary coordinate ξ̄i (ξi) is created in
order to obtain the mapping functions. After analyzing
some options and considering reference [11], the following
function was chosen:

ξ̄i =
ξi

1− ξi
(10)

Using expression 10 and considering direction ξ1 mapped,
the following relation is obtained:

ξ̄1 (ξ1) =
ξ1

1− ξ1
(11)

and to map direction ξ2:

ξ̄2 (ξ2) =
ξ2

1− ξ2
(12)

In the end, the mapping functions are obtained by sub-
stituting the relations 11 and 12 in the shape functions
3 of the original BE. In such a way, to map only direc-
tion ξ1 as illustrated in figure 2a, equation 11 must be
substituted in the shape functions 3. As a result, one
obtains:

M4
1∞ = ξ̄1 (ξ1) =

ξ1

1− ξ1
(13)

M2
1∞ = ξ2 (14)

M3
1∞ = 1− ξ̄1 (ξ1)− ξ2 = 1− ξ1

1− ξ1
− ξ2 (15)

The symbol “1∞” was used to indicate that these ex-
pressions are valid case only direction ξ1 is mapped. It is
important to notice that mapping function M2

1∞ is equal
to the original shape function, meaning that direction ξ2

is not influenced by this mapping.

In reference [12] it is recommended to verify the mapping
functions as follows:

• Their sum must be equal to 1;

• The sum of their derivatives must be equal to zero;

• Any mapping function is equal to 1 on the corres-
ponding node, and to zero on the other nodes;

• For nodes at infinity, mapping functions tent to −∞
or +∞;

The last item do not apply to function M2
1∞ because it

refers to a direction that is not mapped. For all other
cases, it is demonstrable that the items are verified by
the defined mapping functions. These functions are then
employed to relate the local system of coordinates to the
global one. In other words:

xi = M4
1∞x4

i + M2
1∞x2

i + M3
1∞x3

i (16)

After obtaining expression 16, the Jacobian used when
only direction ξ1 is mapped may be calculated as follows:

|∞J1| = ∂x1

∂ξ1

∂x2

∂ξ2
− ∂x2

∂ξ1

∂x1

∂ξ2
=

2A1

(1− ξ1)
2 (17)

where A1 is the area of triangle defined by nodes 2, 3 and
4 in the global system of coordinates.

The same steps are repeated to obtain the Jacobian for
mapping only in the ξ2 direction. That is, by substituting
12 in the shape functions, one obtains:

M1
2∞ = ξ1 (18)

M5
2∞ = ξ̄2 (ξ2) =

ξ2

1− ξ2
(19)

M3
2∞ = 1− ξ1 − ξ̄2 (ξ2) = 1− ξ1 − ξ2

1− ξ2
(20)

The symbol “2∞” is used to indicate that only direction
ξ2 is mapped. As a result, mapping function M1

2∞ is
equal to the original mapping function. These functions
also satisfy the verifications suggested in reference [12], as
presented before. Therefore, the global system is related
to the local one as follows:

xi = M1
2∞x1

i + M5
2∞x5

i + M3
2∞x3

i (21)
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Figure 2: Types of mapping.

and the Jacobian is:

|∞J2| = 2A2

(1− ξ2)
2 (22)

where A2 refers to the area of the triangle defined by
nodes 1, 3 and 5 in the global system of coordinates.

Finally, to map directions ξ1 and ξ2 both expressions 11
and 12 must be substituted at the shape functions. The
result is:

M4
∞ =

ξ1

1− ξ1
(23)

M5
∞ =

ξ2

1− ξ2
(24)

M3
∞ = 1− ξ1

1− ξ1
− ξ2

1− ξ2
(25)

The symbol “∞” is used to indicate that both directions
are mapped. Once more the functions satisfy the verifi-
cations and may be used to relate the local and global
systems of equations, as follows:

xi = M4
∞x4

i + M5
∞x5

i + M3
∞x3

i (26)

and the Jacobian becomes:

|∞J3| = 2A3

(1− ξ1)
2 (1− ξ2)

2 (27)

where A3 is the area of the triangle defined by nodes 3,
4 and 5 in the global system.

4 Results

An example is now analyzed, as illustrated in Figure 3a,
in order to test the presented formulation. A circular
uniform load of 2 kN

/
m2 and with a radius of 2.5 m is

applied at the surface of an homogeneous half-space. The
domain has an elasticity module of 9000 kN

/
m2 and a

Poisson ratio of 0.0.

In reference [13] an analytical expression is presented for
the vertical displacement at the central node of the loaded
area, which is identified in figure 3a as C. This expression
is:

d = 2rp

(
1− ν2

)
E

(28)

where d is the vertical displacement at point C, r is the
radius of the circular load, p is the load value, ν is the
Poisson ratio of the half space and E is its elasticity mo-
dule. Substituting the values of figure 3a in expression
28, a displacement of 1.1111× 10−3 m is obtained.

To simulate this problem a mesh with 57 nodes was ge-
nerated, totalizing 96 BEs and 32 IBEs, as illustrated in
figure 3b. The circle detached in the center corresponds
to the loaded area, the dashed lines represent the IBEs
and the rest of the mesh is composed by BEs. The points
marked at the limits of the BE mesh are the ones that
receive the influence of the IBEs. It is important to notice
that no additional degrees of freedom are included by
the presence of the IBEs, which is an advantage of this
formulation.

Simulating this problem with the mesh of Figure 3b, a
vertical displacement of 1.0850 × 10−3 m was obtained.
This value agrees with the analytical solution, with an
error of 2.4 %. In order to evaluate the influence of the
IBEs, the example was simulated with the same BE mesh
but no IBEs. A displacement of 1.0107×10−3 m was than
obtained, with the higher error of 9.0 % comparing to the
analytical value.

The error increases when no IBEs are used because the
domain is not well simulated as an infinite media. In
order to improve this precision, more BEs and degrees of
freedom need to be added at the mesh limits. In such a
way, different meshes were tested and the results obtained
are presented in Table 4.

With the increasing number of BEs the domain becomes
closer to an infinite half-space and consequently better
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Figure 3: a) Infinite domain problem; b) Mesh generated.

Nodes Displacement (m) Error (%)
57 1.0107× 10−3 9.0
73 1.0391× 10−3 6.5
89 1.0580× 10−3 4.8
105 1.0699× 10−3 3.7
121 1.0774× 10−3 3.0
137 1.0820× 10−3 2.6
153 1.0849× 10−3 2.4

Table 1: Displacement calculation with BEs only.

results are achieved, however more degrees of freedom
are needed. As may be observed, 153 nodes were needed
for the BE mesh to equalize the precision of the first 57
node mesh, that was with IBEs. Comparing these two
values it may be concluded that, in this example and
maintaining the error of 2.4 %, the use of IBEs allows a
mesh reduction of 63 %.

In tests with finer meshes at the central area, errors below
1 % were obtained. In such cases, comparing the number
of nodes with and without IBEs, the mesh reduction is
also very significant.

5 Conclusions and Future Work

This article presents a new mapped infinite boundary ele-
ment (IBE) formulation, based on a triangular boundary
element (BE) with linear shape functions. To obtain the
mapping functions the local coordinate to be mapped is
replaced by an auxiliary function, which was defined us-
ing reference [11]. The resulting functions are then used
to relate the global system of equations with the local
one, obtaining a Jacobian for each case.

The resulting IBE, when associated with a BE mesh, has
the advantage of not increasing the original number of de-
grees of freedom, as demonstrated in the example. The
results obtained with the IBEs showed good agreement
with an analytical solution, and the use of this formula-

tion promoted a mesh reduction of 63 %. The reduction
calculated for other levels of precision was also very sig-
nificant.

In future works, the authors intent to use IBEs together
with BEs in problems involving infinite non-homogeneous
half-spaces. The results here presented show that this
formulation is adequate to this type of analysis.
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