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 
Abstract—The present work is concerned with the 

characterization of hardening parameters  for an elasto-plastic 
continuum model, taking into account the memory effect of 
plastic strain amplitude, in order to predict the hysteretic 
responses of 429EM steel. This elasto-plastic three-dimensional 
model is based on the internal thermodynamic variables which 
composed of the nonlinear kinematic hardening and isotropic 
hardening with the plastic strain memorization. The emphasis is 
put on the determination of strain memory parameters along 
with other material parameters of the proposed model in order 
to better simulate the behavior of the material at different 
strain range. The material parameters are calibrated with the 
experimental stabilized loops of stress-strain curves available in 
the literature. The predicted stabilized loops from the 
simulation with the determined parameters show good 
agreement with the experimental results signifying the validity 
of the considered model. 
 

Index Terms— Elasto-plastic continuum model, Material 
parameters, Nonlinear hardening law, Plastic strain memory, 
Stabilized hysteresis loops. 
 

I. INTRODUCTION 

  Under cyclic loading, the structural materials show 
complicated mechanical responses involved with the plastic 
deformation at isothermal and anisothermal conditions. In the 
framework of elasto-plasticity, many constitutive models 
were established to describe these cyclic inelastic responses 
of the materials. The concepts, based on the internal 
thermodynamic variables for time-independent plasticity, 
have been studied under many different ways in order to 
generalize the classical isotropic and kinematic theories [1]. 
Based on the yield surface, Mroz [2] proposed the multiyield 
surface model and Dafalias & Popov [3] proposed a model 
with two surfaces only. Armstrong and Frederick [4] 
proposed the nonlinear kinematic rule in terms of differential 
equation which was developed further by Chaboche [1] and 
Ohno and Wang [5].Various hardening rules including 
multi-surfaces, two surfaces with the stationary limit surface 
and non-linear surface were  reviewed by Chaboche [1]. 
Some significant modifications on kinematic hardening  were 
done by Chaboche [6] and Dafalias et al.[7] concerned with 
the time independent plasticity theories in the range of cyclic 
loading. Furthermore, Valanis [8] proposed the plasticity 

theory without the concept of yield surface based on 
endochronic theory. Iwan [9] and Besseling [10] proposed 
the overlay model based on an approach which views the 
system as consisting of a series of ideal elasto-plastic 
element. From the subject point of view i.e., at describing the 
cyclic elasto-plastic behavior of materials, all these models 
are said to be meaningful and representative examples. 
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Various alloy steels are facilitated in a variety of 
engineering structural applications such as automotive 
structure, pressure vessels, and so on. It is possible that the 
structural components made from these alloy steels are 
subjected to cyclic loading. The 429EM ferritic stainless steel 
is generally a good selection in the exhaust systems of the 
automobile engines as well as many high 
temperature-structures due to its excellent corrosion 
resistance and enhanced thermal fatigue resistance. So the 
material parameters and mechanical properties of 429EM 
steel in elasto-plastic cyclic behavior have been the object of 
many studies during recent years on life prediction of 
high-temperature structures. 

Many real materials usually exhibit cyclic hardening or 
softening which depends, in general, not only on the number 
of cycles but also on strain amplitude. It has been observed 
that some alloy steels present a significant strain 
range-dependent cyclic hardening under strain-controlled 
cyclic loading in different experimental studies [1], [11]-[13]. 
Chaboche et al. [14] proposed first the strain amplitude 
dependence of cyclic hardening in the constitutive model to 
describe the cyclic hardening behavior of SS316 stainless 
steel under varied strain amplitude. Then, Ohno [15] 
extended this concept by introducing a cyclic non-hardening 
region, inside which the cyclic hardening does not takes 
place, to describe the dependence of cyclic hardening on the 
strain amplitude. It consists of an index  surface in the space 
of plastic strain with a hardening variable that  memorize the 
maximum plastic strain amplitude experienced by the 
material. Therefore, this strain amplitude dependency of 
cyclic hardening should be considered by the constitutive 
model used for analyzing structural components subjected to 
cyclic loading. 

Experimental studies of the 429EM steel in [12] and [13] 
revealed a complex behavior under elasto-plastic cyclic 
loading. In addition to the classical Bauschinger effect and 
cyclic hardening, a memory effect of the plastic strain 
amplitude was observed. Yoon et al. [12] and Yoon [13] have 
studied the low cycle fatigue tests of 429EM steel at different 
temperatures and proposed a model, based on the overlay 
model, that has the ability of describing the change of the 
stress amplitude and the strain range dependence in 
hysteresis loops. And they determined the set of parameters 
for their proposed constitutive model. 

The objective of this work is to propose a 
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three-dimensional elasto-plastic model that can describe the 
plastic response of 429EM steel under cyclic loading 
conditions. The emphasis is put on identifying the complete 
material parameters including the parameters of the plastic 
strain memorization in order to better simulate the stabilized 
elasto-plastic cyclic behavior of the 429EM steel at different 
strain range. This elasto-plastic law is based on the internal 
thermodynamic variables and takes into account the 
combined nonlinear kinematic hardening and isotropic 
hardening with plastic strain memory effect of Chaboche 
[1].The material parameters in terms of this Chaboche  model 
are calibrated utilizing the available experimental 
stress-strain curves obtained from [12] and [13]. On the basis 
of the experimental results, a cyclic hardening is observed. 
The calibration of material parameters in this paper has been 
carried out under strain-controlled cyclic loading.  

The paper is organized as follows. Section II concisely 
describes the adopted constitutive equations including 
memory effect of plastic strain amplitude. Section III 
contains a presentation of integration procedure in brief. 
Section IV is devoted to the strategy of material parameters 
determination concerning the elasto-plastic cyclic behavior 
of 429EM steel. Section V describes the simulation of the 
adopted constitutive model utilizing the determined 
parameters and comparison of analysis results with those of 
the experiment. Finally the closing remarks are presented in 
Section VI. 

II. CONSTITUTIVE EQUATIONS 

The constitutive equations dealt with the time-independent 
elasto-plastic behavior of structures subjected to cyclic 
loading must take into account the complex phenomena of 
Bauschinger effect, cyclic hardening and strain memory 
effect. The constitutive equations adopted here is commonly 
called Chaboche model which combines the nonlinear 
kinematic and isotropic hardenings with memory effect [1] 

.The general expression of this model is the following: (every 
italicized bold variable indicates a tensor, for example, σ  
represents stress tensor. This is the convention to be adopted 
throughout the paper.) 

A.  Decomposition of Strain 

 
e ε ε ε p  (1) 

 

where, is the total strain tensor,  is the elastic strain 

tensor and 

ε eε
pε  is the plastic strain tensor. 

B.  Associated Flow Rule With Yield Criterion 

 

( / )d d f  pε σ

0

 (2) 

 
with Von Mises yield criteria, 

 
*( )f J R k  σ - x  (3) 

 
where, f  is the yield function, d  is the plastic 

multiplier which is derived from the hardening rule through 

the consistency condition  when the plastic flow 

occurs, 

0f df 

( / )f σ

*k

J σ

 gives the direction of the increment of 

plastic strain tensor, x  is the kinematic hardening tensor 
called back stress tensor,  is the isotropic internal stress or 

drag stress,  is a temperature dependent material 
parameter which represents the initial size of the elastic 
domain, and   is defined by Von Mises criterion as 

follows, 

R

( - x)

 

( ) (3 / 2)( ) : ( )J    σ - xσ - x σ - x  (4) 

 
where, σ  and x  are the deviatoric part of the stress 

tensor and back stress tensor respectively. The tensorial 
operation ‘:’ on two second order tensors A  and  implies 
the following, 

B

 
: ij ijA BA B  (5) 

C. The Non-linear Kinematic Hardening  

The evolution of the back stress ( ) in kinematic 
hardening is based on Prager’s linear hardening law and a 
recall term which can be written in its simplest form as, 

x

 

(3x  / 2) pd C ε

p

d  xdp  (6) 

 
where,  is the accumulated plastic strain. C and   are 

material parameters describing the kinematic hardening. This 
modification of Prager’s rule initially proposed by 
Armstrong and Frederick [4] to take into account the 
non-linear evolution of the back stress. 

D.  Plastic Strain Memory and Isotropic Hardening 

To express the dependence between the saturated value of 
the isotropic internal stress and the maximum plastic strain 
amplitude, a model has been proposed first in [14]. The 
general formulation consists of having an non-hardening 
index surface in the space of plastic strain. The evolution of 
this enveloping surface is described by, 

 

(2 / 3) ( pF J ) 0q  

0

ε ξ

F

 (7) 

 
where,  and  are the radius and the center of this 

non-hardening surface. The change in the memory state takes 

place only if 

q ξ

  and ( / ) :pF 0pd ε ε  . The evolution 

rule for q  and  can be defined by the following two 

equations, 

ξ

 
*( )F :n ndq H dp  (8) 

* *(1 ) ) 3 / 2d H dp ξ n(

)

:F n n  (9) 

 
where, (H F  is a Heaviside function and   is a material 

parameter regarding the plastic strain memory, introduced by 
Ohno [15] in order to allow gradual effect into memorization. 

In (8) and (9),  and  are the unit outward normals to the n *n
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load surface ( ) and to the memory surface (0f  0F  ) 

respectively which are defined as follows, 
 

*3 ( )
and

)

 


 
- x

- x

)dp

)Q dq

3 ( )

2 ( 2 ( )

p

pJ J


σ ε - ξ
n n

σ ε - ξ
 (10) 

 
The isotropic hardening law is then modified to take into 

account the evolution of . The evolution of the drag stress 

 in (3) can be written as,  

q

R
 

(dR b Q R   (11) 

 
where,  is the asymptotic value of the isotropic 

hardening variable  R  and  is the material parameter 
which describes the rapidity of the isotropic hardening. The 
following relation reveals the dependence between the 
asymptotic value Q  of the isotropic hardening variable and 

the size  of the non-hardening memory surface, 

Q

b

q

 
2 ( sdQ Q 

max / 2)p

max
p

 (12)  

 
In the case of uniaxial (tension-compression) loading with 

the constant plastic strain amplitude, q  leads to the 

amplitude of the plastic strain, i.e., 
 

max / 2pq    (13) 

 
Then integrating (12), the saturation value of the isotropic 

hardening becomes, 
  

max(
0( ) ( ( )

p

s sQ q Q Q Q Q e         )  (14) 

 

where,  represents the maximum plastic strain 

range and 



sQ , , 0Q   and    are the four material 

parameters regarding memorization of the plastic strain. 

There are nine material parameters , , , E *k C  , , b  , 

sQ , , and 0Q   which need to be determined using the 

proposed model for 429EM steel. We determine these 
parameters in section IV in such a way so that they minimize 
the error between the experimental curves and numerical 
curves deduced from the model, which is the prime objective 
of this paper. 

III. INTEGRATION OF THE CONSTITUTIVE EQUATIONS  

In this section, numerical integration procedure for the 
Chaboche model is presented. In contrast to linear elastic 
problems in which there exists a unique relationship between 
stress and elastic strain, no such uniqueness holds for 
plasticity problems due to non-linear nature. An incremental 
approach is therefore almost always necessary to solve the 
cyclic plasticity equations numerically for capturing the 
history dependence inelastic behavior of material. 

The implicit Backward Euler algorithm is favored by many 
researchers, such as Ortiz and Popov [16], Chaboche and 
Cailletaud [17], for large increments because of its stability 

and accuracy characteristics. An implicit algorithm for the 
combined non-linear kinematic/isotropic hardening has also 
been proposed by Doghri [18] and modified by Mahnken 
[19], whereby discretized rate equation reduced to 
one-dimensional problem. In this implicit scheme only a 
plastic multiplier (equivalently, accumulated plastic strain for 
von-Mises material)  appears to be unknown. We apply the 
implicit integration scheme in a strain-driven approach to the 
proposed model in a similar fashion described in [19]. We 
employ this integration scheme due to two reasons, a). the 
resulting relations for linearization of the constitutive 
equations are obtained in a straightforward manner which 
avoids the inversion of second order tensors, and b). the 
resulting problem is reduced to one-dimensional problem 
which gives the opportunity to combine the Newton-Rhapson 
method with different one dimensional solution scheme , 
such as the Bisection method or the Pegasus method, for 
rapid convergence. We decompose the external loading in 
iterative procedure in order to check the yield criteria at each 
step and to follow correctly  the hardening rule. The resulting 
discretized equations for the constitutive equations 
mentioned in section II are summarized as follows, 

 
1 1 1

1 1

( )

(3 ) 0

n n n n
tr

n n

f J

G C p R k





  

 

   
*    

σ x
 (15) 

 

with  
 
1 2 ( ) ( ) ( ) :n n e n e

tr bG K K        σ ε ε I ε ε I   (16) 
1 1/(1 )n p      (17) 

 

where, the index 1n   represents the current time step and  
the symbol ‘  ’ stands for the increment, for example, 

p defines the increment of the accumulated plastic strain. 

 and G K are the lame constants. bK  is the elastic bulk 

modulus and p is the unknown variable at the current time 

step which is solved in the iterative procedure. We combine 
the Bisection method with the Newton-Rhapson iteration for 
better convergence in the iterative procedure. 

IV. ON THE PARAMETERS IDENTIFICATION  

The present section is concerned with the determination of 
parameters in terms of the Chaboche model with the plastic 
strain memorization for modeling the cyclic behavior of 
429EM steel described in [12]. The strengths of an advanced 
plasticity model might be undermined if the model 
parameters are not calibrated well for the experimental 
responses of the material. Therefore, in this paper we 
emphasize on the calibration of the parameters that  can 
simulate the actual (experimental) hysteresis curve firmly 
well at different strain amplitude. On the calibration of 
material parameters, the cyclic test data are obtained from 
[12] and [13]  where a series of the strain-controlled low cycle 
fatigue tests had been performed on 429EM steel for several 
strain amplitude 0.3% ( / 2) 0.7%   . In this paper, the 

calibration of the parameters is undertaken at elevated 
temperature of 2000C. In order to identify the material 
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parameters in terms of the proposed model, we adopt the 
following procedure. 

Considering the fact that low cycle fatigue failure occurs 
usually after several hundreds of load cycles, the parameters 
are calibrated using the stabilized loops. Fig.1 shows the 
experimental stabilized hysteresis loop ( 

Q

) for different 

strain amplitude obtained from [12]. The Young’s modulus 
 is derived directly from the linear part of the stabilized 

hysteresis loop. Fig.2 shows the experimental stabilized 
hysteresis loops in transposed stress versus transposed strain 
plot obtained from Fig.1 where each of the hysteresis loops 
translated to the lower peak. From Fig.2 we can  stated that 
the superposition of  the stabilized stress-strain loops (tensile 
branch) is impossible and the cyclic curve is different from 
that predicted by the Masing’s rule. Fig.3 describes the  
translation of hysteresis loops for superposing the upper 
branches of the all stabilized hysteresis loops. Isotropic 
hardening is a phenomenon in the progressive behavior of 
cycle by cycle, but for a single cycle it can be considered 
constant. Therefore, for the stabilized loop isotropic 
hardening will be taken constant. Taking this fact into 
account, the differences in the translational values in Fig.3 
provide us the differences in the asymptotic values of twice 
the isotropic hardening variable R . After measuring the 
differences in the saturated values ( ), we  define the 

function  of (14) and its coefficients 

E

max( pQ  ) sQ , , and 0Q

  . In Fig.4, the experimental data are compared to the 

computed ones after identifying the parameters of the plastic 
strain memorization. 

After estimating the saturated values Q  of the isotropic 

hardening variable  for the strain amplitude pointed out in 
Fig.3, we deduct these values from the stress range which 
leads to the pure kinematic effect. Choosing the initial size of 

the elastic domain,  is evaluated [20], and then  the 
experimental kinematic hardening (

R

k*

x ) is easily extracted 
from the plastic response of the stabilized loop. Utilizing this 
stabilized hysteresis data with the built-in calibration 
procedure of the ABAQUS code [21], C and   are 

determined primarily. And the values of and C   are further 

calibrated to fit well with the hysteresis loops for the uniaxial 
cyclic loading. 
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Fig. 1. Experimental stabilized hysteresis loops obtained from [12]. 
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Fig. 2. Hysteresis loops adjusted to the lower peak. 
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Fig. 3. Translation of  hysteresis loops defining the asymptotic value of 
isotropic hardening variable. 
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Fig. 4. Identification of parameters for plastic strain memorization. 

 
Then the coefficient b of (11), the pace of the isotropic 

hardening, is calculated from the evolution of isotropic 
hardening variable . Fig.5 illustrates the relationship 
between the experimental stress amplitude and accumulated 
plastic strain (

R

( / 2 ) - p  ) for different strain amplitude 

obtained from [13]. The evolution of  in (11) is related to 
the stress amplitude during cyclic test as follows [1], 

R
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0 0( ) /( ) / 1 exp( )s R Q bp             (18) 

 
where, s  and 0  are the stress ranges for the 

stabilize cycle and the first cycle respectively and   is the 

stress range in between. Utilizing Fig.5, we plot the total 
history data of (18) which is shown in Fig.6. From the history 
plot in  Fig.6, it reveals that the pace of isotropic hardening 
( ) depends only on the accumulated plastic strain, 
independent of specific strain  amplitude. In Fig.5 and Fig.6, 
we show only the strain amplitude of 

b

/ 2 0.3%   and 
/ 2 0.7%   but the above observation is also true for other 

strain amplitudes in between. 
Table. I gives the different material parameters which are 

determined. The unit of material parameters , C , *k sQ ,  

is MPa, the unit of E  is GPa, and all others are 
dimensionless. 

0Q

V. SIMULATION OF THE CONSTITUTIVE EQUATIONS AND 

COMPARISON OF RESULTS  

The model figured out from the uniaxial simulation is 
adequate for a reproduction of the real three dimensional 
behavior of the material. In addition to the simplicity of 
analysis, uniaxial simulation allows determining and 
calibrating the model parameters straightforwardly 
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Fig. 5. Variation of stress amplitude with accumulated plastic strain obtained 
from [13]. 
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Fig. 6. Variation of hardening  with accumulated plastic strain. 
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Fig.7. Experimental and uniaxial simulation responses (stabilized 
loop).
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Fig 8. Stabilized loops - a comparison between experimental results and FE 

simulation at / 2 0.7%  . 
 

with minimum memory required for analysis. Fig.7 shows, to 
comparison purpose, the experimental and computed 
stabilized responses when the whole loading history is 
considered in the uniaxial simulation. This comparison 
evidences that the simulation results with the identified 
material parameters predict well the experimental stabilized 
loops for all the strain amplitudes except at the strain 
amplitude of 0.4% but the shape of the loop remains 
unchanged. This happens because the identified asymptotic 
value Q  for the strain amplitude of 0.4%  overestimate the 

experimental ones as shown in Fig.4. However, the analysis 
result for the strain amplitude of 0.4% at isothermal 
conditions would be acceptable from the viewpoint of safety 
in design. In the uniaxial simulation, we assign the value 

0.01   to take into account the gradual effect into the 

memorization. The higher the value of  , the higher the rate 

of rapidity in stabilization of stress. 
 

Table I. Material parameters for 429EM steel at 2000C. 

 

E  *k  C    b  sQ  0Q      

169.2 179.4 55982.2 605.6 15.69 125.0 4.0 0.01 155 
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This three-dimensional model is introduced into a finite 
element (FE) program ABAQUS through user-defined 
material subroutine called UMAT [21] with the determined 
parameters. For numerical simulation, an axisymmetric 
version of the cylindrical sample (the cylindrical sample that 
described in [12]) is employed. In FE simulation, only one 
finite element, in the middle of the sample, is submitted to an 
imposed strain / 2 0.7%    and subsequently analysis is 

carried out. The stabilized cyclic response of the material is 
calculated by employing  a 3-D 8-noded isoparametric brick 
element with full-integrated formulation (C3D8 element in 
ABAQUS). Fig.8 gives a comparison of stabilized loops 
( )  between experimental data and FE simulation for the 

strain range / 2 0.7%  . 
For all the discussed simulation, very good correlation is 

obtained between the responses simulated using the 
determined parameters and the experimental observations. 
Comparisons reveal that the obtained parameters of the 
proposed model for describing the inelastic behavior of 
429EM steel approach as well as can be expected, those in 
the experimental curves. These parameters are said to be 
stationary because a small variation of parameters does not 
have significant  influence on the stabilized response of the 
material. 

VI. CONCLUSION 

The proposed model with plastic strain memorization for 
describing the stabilized cyclic response of 429EM steel is 
verified by using the available test results. The model is 
tested through the uniaxial simulation and FE simulation 
utilizing the determined material parameters. The computed 
responses agree reasonably well with the experimental 
results. The aim of the study is the characterization of 
hardening parameters for an elasto-plastic continuum model, 
taking into account the memorization effect of plastic strain 
amplitude. The use of continuum mechanics constitutive 
models into engineering application encounter the difficulties 
to find references about the material parameters obtained by 
experimental data. Therefore, unveiling the material 
parameters to find the stabilized hysteresis response of the 
steel in the case of elasto-plastic cyclic loading, is an 
imperative step regarding fatigue life studies. 

The determined material parameters are the elemental to 
extend the results into the continuum damage model. 
Therefore, coupling the adopted model with a damage law to 
predict the life of the selected material is what we shall do in 
our future work. 
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