
 

 

 

  

Abstract—The paper presents an original 

homogenization method to predict the elastic properties 

of multiphase pre-impregnated composite materials like 

Sheet- and Bulk Molding Compounds. The upper and 

lower limits of the homogenized coefficients for a 27% 

fibres volume fraction SMC are computed. It is presented 

a comparison between the upper and lower limits of the 

homogenized elastic coefficients of a SMC material and 

the experimental data. The estimation model used as a 

homogenization method of these heterogeneous composite 

materials, gave emphasis to a good agreement between 

this theoretical approach and experimental data. 

 
Index Terms—Prepregs, homogenization, elliptic equations, 

elastic coefficients.  

 

I. INTRODUCTION 

  The most obvious mechanical model which features a 

multiphase composite material is a pre-impregnated material, 

known as prepreg. In the wide range of prepregs the most 

common used are Sheet- and Bulk Molding Compounds. A 

Sheet Molding Compound (SMC) is a pre-impregnated 

material, chemically thickened, manufactured as a continuous 

mat of chopped glass fibres, resin (known as matrix), filler 

and additives, from which blanks can be cut and placed into a 

press for hot press moulding. The result of this combination of 

chemical compounds is a heterogeneous, anisotropic 

composite material, reinforced with discontinuous 

reinforcement [1]–[3]. 

A typical SMC material is composed of the following 

chemical compounds: calcium carbonate (36.8% weight 

fraction); chopped glass fibres rovings (30% weight fraction); 

unsaturated polyester resin (18.4% weight fraction); 

low-shrink additive (7.9% weight fraction); styrene (1.5% 

weight fraction); different additives (1.3% weight fraction); 
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pigmented paste (1.3% weight fraction); release agent (1.2% 

weight fraction); magnesium oxide paste (1.1% weight 

fraction); organic peroxide (0.4% weight fraction); inhibitors 

(0.1% weight fraction).  

The matrix (resin) system play a significant role within a 

SMC, acting as compounds binder and being “embedded 

material” for the reinforcement. To decrease the shrinkage 

during the cure of a SMC prepreg, filler (calcium carbonate) 

have to be added in order to improve the flow capabilities and 

the uniform fibres transport in the mold. For the materials that 

contain many compounds, an authentic, general method of 

dimensioning is hard to find. In a succession of hypotheses, 

some authors tried to describe the elastic properties of SMCs 

based on ply models and on material compounds [4]–[6]. 

The glass fibres represent the basic element of SMC 

prepreg reinforcement. The quantity and roving orientation 

determine, in a decisive manner, the subsequent profile of the 

SMC structure’s properties. There are different grades of 

SMC prepregs: R-SMC (with randomly oriented 

reinforcement), D-SMC (with unidirectional orientation of 

the chopped fibres), C-SMC (with unidirectional oriented 

continuous fibres) and a combination between R-SMC and 

C-SMC, known as C/R-SMC. 

The following information is essential for the development 

of any model to describe the composite materials behaviour 

[7]: the thermo-elastic properties of every single compound 

and the volume fraction concentration of each compound. 

Theoretical researches regarding the behaviour of 

heterogeneous materials lead to the elaboration of some 

homogenization methods that try to replace a heterogeneous 

material with a homogeneous one [8]–[10]. The aim is to 

obtain a computing model which takes into account the 

microstructure or the local heterogeneity of a material. The 

homogenization theory is a computing method to study the 

differential operators’ convergence with periodic coefficients 

[11]–[13]. This method is indicated in the study of media with 

periodic structure like SMCs and BMCs. The matrix- and 

fillers elastic coefficients are very different but periodical in 

spatial variables. This periodicity or frequency is suitable to 

apply the homogenization theory to the study of 

heterogeneous materials. 

A SMC material can be regarded as a system of three basic 

compounds: resin, filler and reinforcement (fibres). We can 

consider the resin–filler system as a distinct phase compound 

called substitute matrix, so a SMC can be regarded as a two 

phase compound material. This substitute matrix presents the 

virtual volume fractions 
'
rV  for resin and 

'
fV  for filler.  

These virtual volume fractions are connected to the real 
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volume fractions rV  and fV , through the relations: 
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II. A HOMOGENIZATION METHOD 

We consider Ω a domain from R3 space, in xi coordinates, 

domain considered a SMC composite material, in which a so 

called substitute matrix (resin and filler) is represented by the 

field Y1 and the reinforcement occupies the field Y2 seen as a 

bundle of glass fibres, (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Periodicity definition of SMCs 

 

Let us consider the following equation [14]: 
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In the case of SMC materials that present a periodic 

structure containing inclusions, aij(x) is a function of x. If the 

period’s dimensions are small in comparison with the 

dimensions of the whole domain then the solution u of the 

equation (2) can be considered equal with the solution 

suitable for a homogenized material, where the coefficients aij 

are constants. 

In the R
3
 space of yi coordinates, a parallelepiped with 0

iy  

sides (Fig. 1) is considered, as well as parallelepipeds 

obtained by translation 0
ii yn  (ni integer) in axes directions. 

The functions: 
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can be defined, where η is a real, positive parameter. Notice 

that the functions aij(x) are ηY-periodical in variable x (ηY 

being the parallelepiped with 0
iyη  sides). If the function f(x) is 

in Ω defined, the problem at limit can be considered: 
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Similar with equation (3), the vector ηp
r

 can be defined 

with the elements: 
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For the function )(xuη  an asymptotic development will be 

looking for, under the form: 
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where u
i
(x,y) are Y-periodical in y variable. The functions 

ui(x,y) are defined on Ω x R3 so that the derivatives behave in 

the following manner: 
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If the values of 



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



η
x

xu i ,  are compared in two homologous 

points P1 and P2, homologous through periodicity in 

neighbour periods, it can be notice that the dependence in 
η
x

 

is the same and the dependence in x is almost the same since 

the distance P1P2 is small (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Physical meaning of SMCs inclusions’ periodicity 
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Let us consider P3 a point homologous to P1 through 

periodicity, situated far from P1. The dependence of u
i
 in y is 

the same but the dependence in x is very different since P1 and 

P3 are far away. For instance, in the case of two points P1 and 

P4 situated in the same period, the dependence in x is almost 

the same since P1 and P4 are very close, but the dependence in 

y is very different since P1 and P4 are not homologous through 

periodicity. The function u
η
 depends on the periodic 

coefficients aij, on the function f(x) and on the boundary Ω∂ . 

The development (24) is valid at the inner of the boundary 

Ω∂ , where the periodic phenomena are prevalent but near 

and on the boundary, the non-periodic phenomena prevail 

[15]. 

Using the development (7), the expressions 
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u
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 and ηp  

can be computed as following [14]: 
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The function f(x) presented in equation (5) can be written in 

the following manner: 
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The terms η
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Equation (14) leads to the homogenized- or macroscopic 

equation. For this, the medium operator is introduced, defined 

for any function Ψ(y), Y-periodical: 

∫Ψ=Ψ
Y

dyy
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where Y  represents the periodicity cell volume. To obtain 

the homogenized equation, the operator (15) is applied to 

equation (14): 
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According to the operator (15), the second term of the left side 

of the equation (16) becomes: 
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Due to Y-periodicity of 1
ip  and the fact that n  is the normal 

vector at the boundary of Y, the relation (17) is equal with 

zero. So, the equation (16) becomes: 
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With help of relation (11), the equation (13) can be written as 

follows: 
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The solution u
1
(y) of equation (20) is Y-periodical and to 

determine it is necessary to introduce the space 

{ }periodicaluYYHuYU y −∈= ),()( 1
. The equation (20) is 

equivalent with the problem to find a solution yUu ∈1  that 

verifies: 
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for yUv∈∀ . If y
k

U∈χ  is introduced, with 0=kχ , that 

satisfy: 
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for yUv∈∀ , then from the problem’s linearity (21), its 

solution can be written under the form: 
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where c(x) is a constant as a function of x. 

Knowing the expression of u
1
 as a function of u

0
, from the 

expressions (11) with (23), the homogenized coefficients can 

be computed: 
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Applying the medium operator (15), the relation (24) can be 

written: 
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Therefore, the relation (16) becomes an equation in u
0
 with 

constant coefficients: 
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III. APPLICATION FOR A SMC MATERIAL 

For a composite material in which the matrix occupies the 

domain Y1 and presents the coefficient 1
ija  and the inclusion 

occupies the domain Y2 with the coefficient 2
ija  separated by a 

surface Γ, the equation (4) must be seen as a distribution. 

In the case of a SMC composite material which behaves 

macroscopically as a homogeneous elastic environment, is 

important the knowledge of the elastic coefficients. 

Unfortunately, a precise calculus of the homogenized 

coefficients can be achieved only in two cases: the 

one-dimensional case and the case in which the matrix- and 

inclusion coefficients are functions of only one variable. For a 

SMC material is preferable to estimate these homogenized 

coefficients between an upper and a lower limit. 

Since the fibres volume fraction of common SMCs is 27%, 

to lighten the calculus, an ellipsoidal inclusion of area 0.27 

situated in a square of side 1 is considered. The plane problem 

will be considered and the homogenized coefficients will be 1 

in matrix and 10 in the ellipsoidal inclusion. In Fig. 3, the 

structure’s periodicity cell of a SMC composite material is 

presented, where the fibres bundle is seen as an ellipsoidal 

inclusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Periodicity cell of a 27% fibres volume fraction SMC  

 

Let us consider the function f(x1, x2) = 10 in inclusion and 1 in 

matrix. To determine the upper and the lower limit of the 

homogenized coefficients, first the arithmetic mean as a 

function of x2-axis followed by the harmonic mean as a 

function of x1-axis must be computed. 

The lower limit is obtained computing first the harmonic 

mean as a function of x1-axis and then the arithmetic mean as a 

function of x2-axis. If we denote with φ(x1) the arithmetic 

mean against x2-axis of the function f(x1, x2), it follows: 
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The upper limit is obtained computing the harmonic mean of 

the function φ(x1): 
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To compute the lower limit, we consider ψ(x2) the harmonic 

mean of the function f(x1, x2) against x1: 
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The lower limit will be given by the arithmetic mean of the 

function ψ(x2): 
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Since the ellipsoidal inclusion of the SMC structure may vary 

angular against the axes’ centre, the upper and lower limits of 

the homogenized coefficients will vary as a function of the 

intersection points coordinates of the ellipses, with the axes x1 

and x2 of the periodicity cell (Fig. 4). 

The micrographs presented in Fig. 5 make obvious this 

angular variation of the fibres’ bundles, the extreme 
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heterogeneity and the layered structure of these materials as 

well as the glass fibres and fillers distribution. The 

micrographs show that there are areas between 100 – 200 µm 

in which the glass fibres are missing and areas where the 

fibres distribution is very high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. ± 30° angular variation of the ellipsoidal inclusion 

 

 
 

 
 

 
Fig. 5. Micrographs of various SMCs [1] 

IV. RESULTS 

Typical elasticity properties of the SMC isotropic 

compounds and the composite structural features are 

presented in table 1. 

 

Table 1. Elasticity properties of SMC isotropic compounds 

Property 
UP 

resin 

Fibre  

(E-glass) 

Filler  

(CaCO3) 

Young modulus E 

(GPa) 
3.52 73 47.8 

Shear modulus G 

(GPa) 
1.38 27.8 18.1 

Volume fraction 

(%) 
30 27 43 

 

According to the following equations, the longitudinal 

elasticity moduli ESM (for the substitute matrix) and EC (for 

the entire composite) can be computed: 
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A comparison between these moduli and experimental data is 

presented in Fig. 6. 
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Fig. 6. Computed and experimental Young moduli 

 

According to equations (30) and (33), the upper and lower 

limits of the homogenized coefficients for a 27% fibres 

volume fraction SMC material are computed and shown in 

table 2. 

 

Table 2. Homogenized coefficients 

Angular 

variation of the 

ellipsoidal 

inclusion 

Upper limit a+ Lower limit a_ 

0° 2.52 0.83 

± 15° 2.37 0.851 

± 30° 2.17 0.886 

x1 

x2 
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The results presented in table 2, show that the upper limit of 

the homogenized coefficients decreases with the increase of 

angular variation of the ellipsoidal inclusion unlike the lower 

limit which increases with the increase of this angular 

variation. 

The material’s coefficients estimation depends both on the 

basic elasticity properties of the isotropic compounds and the 

volume fraction of each compound. If we write PM, the basic 

elasticity property of the matrix, PF and Pf the basic elasticity 

property of the fibres respective of the filler, φM the matrix 

volume fraction, φF and φf the fibres- respective the filler 

volume fraction, then the upper limit of the homogenized 

coefficients can be estimated computing the arithmetic mean 

of these basic elasticity properties taking into account the 

volume fractions of the compounds: 
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The lower limit of the homogenized elastic coefficients can be 

estimated computing the harmonic mean of the basic elasticity 

properties of the isotropic compounds: 
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where P and A can be the Young modulus respective the shear 

modulus. Fig. 7 shows the Young moduli and Fig. 8 presents 

the shear moduli of the isotropic SMC compounds as well as 

the upper and lower limits of the homogenized elastic 

coefficients. 
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Fig. 7. Young moduli of the homogenized elastic coefficients 

 

The presented results suggest that the environmental 

geometry given through the angular variation of the 

ellipsoidal domains can leads to different results for same 

fibres volume fraction. This fact is due to the extreme 

heterogeneity and anisotropy of these materials. The upper 

limits of the homogenized elastic coefficients are very close to 

experimental data, showing that the proposed 

homogenization method give better results than the computed 

composite’s Young modulus determined by help of the rule of 

mixture. 
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Fig. 8. Shear moduli of the homogenized elastic coefficients 
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