
 
 

 

  
Abstract—  In this paper we present some results obtained 

from a dynamic response analysis of a mobile mechanical 
system, in two cases, when the elements are considered as a 
rigid ones, and when these elements are considered deformable. 
For both situations we propose for analysis the Newton-Euler 
formalism completed with Lagrange’s multipliers method. 

 The obtained mathematical models were tested on a wiper 
windshield mechanism which has a spatial motion. Combining 
the experimental analysis with the dynamic inverse analysis we 
obtain the connecting forces variation laws from the 
mechanism’s joints. These forces will constitute the loading 
base for finite element modeling of the all mechanical system. 

 Through finite element modeling we were obtained the 
variation laws depending on time, for cinematic parameters in 
dynamic regime. 
 

Index Terms— Dynamic modeling, finite element modeling, 
Newton-Euler formalism, wiper windshield mechanism.  
 

I. INTRODUCTION 

Finite element formulation has demonstrated the fact that 
is an efficient method not only for structures with deformable 
bodies, but also for linear and nonlinear cinematic problems 
for rigid bodies (positions, speeds, accelerations and shocks). 
These problems can be found in Aviles [5], [3], Aggirebeitia 
[1], [2], Fernandez-Bustos [8] and Hernandez [14] papers, 
where is performed a bar modelling for mechanisms with 
prismatic and revolute joints, in order to solve these 
cinematic problems. 

The high speed mechanism’s functioning introduces 
vibrations, acoustical radiations, and joints detritions, 
incorrect positioning due to elastic connections 
deformations. For this is necessary to perform an 
elasto-dynamic analysis of this type of problems more than 
rigid bodies dynamic analysis. The flexible mechanisms are 
flexible dynamic systems with infinite degrees of freedom 
and the motion equations are modelled as differential 
equations partially nonlinear ones. But their analytical 
solutions are impossibly to achieve. Cleghorn and the other 
researchers [6], [7] have included the axial loading effect on 
transversal vibrations for a four bars flexible mechanism. 
Also they created a translation and rotation beam element 
with a polynomial equation, which can describe effectively 
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the transversal vibrations and the bending stress.  In [15] the 
researchers describe a 3D alternative solution scheme for 
mechanisms inverse dynamics, which was proposed for 2D 
case and applied for planar motions. Base on this theory, the 
whole system was divided in finite elements and evaluated as 
a continuous medium. A structure with a single element, 
formed from a bolt joint and a rigid bar, was modelled with SI 
techniques (displaced integration). This technique is used on 
a conventionally way in a finite element analyses for the 
structures with a fixed element. 

In [4] a method based on beam elements is adopted, for a 
2D mechanical system modelling. This model was adopted in 
order to work easily with rotation or prismatic joints. The 
main advantage for this method is that it can be generated 
almost any time in a 3D case. 

A. Connection forces calculus in dynamic regime – 
mathematical modelling  
We consider the reference systems: Ri' and  Rj' which are 

connected together with  i and  j elements; Ri" and Rj" 
centred in k joint which are connected together with  i and  j 
(fig. 1). Connection forces torsor has two  components:   F"k 
and  T"k which are expressive to Ri" and Rj"  tried. 
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Fig.1. Connection forces torsor on k joint 

The generalized coordinate’s vector, corresponding to i 
element, was given by the relation: 
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The generalized coordinate’s vector, corresponding to i 
element, depending on  Ri" tried: 
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The M point position in global x-y axes system is: 
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Bi differentiating the (4) relation we obtain: 
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where: 
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The connection forces torsor on k joint are: 
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[ ]iiR ′′ - coordinates transformation matrix for passing at Ri' 

system from Ri" system, 
iqj - Jacoby evaluated for qi 

coordinates, Aoi - coordinates transformation matrix for 
passing from  R0  tried from R′

i. 

B. Rotation joint class V 
In  M point are overlapped the Ri" and Rj" reference systems 

(fig. 2). The existence condition of this joint is ijρ  (distance 

between Mi and Mj  must be equal to zero): 
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Fig.2. Rotation joint 

 
The connection forces torsor’s components for rotation 

joint are:  
 

[ ] [ ] [ ] ( )

{ } [ ] [ ]
{ } [ ] ( )[ ]⎪

⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⋅⋅′−

−⋅⋅′
=′′

⋅⋅−=′′

jirT
oi

TM
i

T
oi

TM
iijr

i

jirT
oi

T
ii

ijr
i

PS

IPS
T

ARF

,

)(

,
''

)(

λ

λ

         (11) 

From (11) relation we can obtain the connection forces by 
depending with the global reference system: 
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II. THE MOTION EQUATIONS IN NEWTON-EULER FORMALISM, 
BY CONSIDERING A DEFORMABLE CINEMATIC ELEMENTS 
 
We propose a dynamic analysis of a mobile mechanical 

system by overlapping the solid rigid motion with the one of 
a deformable solid. 

The mobile system’s configurations (multibody) lead us to 
an equation system like the one from (1) relation: 
 

( ) 0, =tqφ                    (13) 
 
where:  

{ }T
ncφφφφ ,..., 21= - is a vectorial constrain equation, 

t - time, q - the generalized coordinates vector, which in this 
case has the following structure: 
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[ ]TT

r rq ϕ,= - the cinematic position vector, fq - the flexible or 

elastic vector’s coordinates. 
The  (14) equation, can be written, by taking account the 

(20), in the following form: 
 

( ) 0,, =tqq frφ                  (15) 
 

The generalized elastic coordinates vector can be 
introduced with the finite element method’s aid. 

The motion equation in Newton – Euler formalism, 
completed with the Lagrange’s multipliers method, can be 
written: 
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where: M - mass matrix, K  - stiffness matrix, Jq  - Jacoby’s 
matrix, λ  - Lagrange’s multipliers vector, aQ  - the 
generalized forces vector externally applied, nQ  - the speeds 
square’s vector which consists the gyroscopic and Coriolis 
components. This was obtained by differentiating of the 
kinetic energy depending on time and the mechanism’s 
generalized coordinates. 

By taking in account the   vector’s generalized coordinates 
from (13) relation, the (16) motion equation can be written 
as: 
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By differentiating the (13) equation in rapport with time 
we obtain: 
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By taking in account the  vector’s generalized coordinates 

expression, the (18) equation can be written: 
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By differentiating the (18) equation in rapport with time 

we obtain: 
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Is a vector which depends of the elastic coordinates, speed 

and time. 
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If we combine the (22) and (16) equations we obtain: 
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If we combine the (25) and (17) equations we obtain: 
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The (16) or (27) relations can be considered as a linear 

equation system, which we can obtain the ,rq  ,fq
••

 and λ . 

 

III. DYNAMIC  ANALYSIS  OF THE WIPER WINDSHIELD 
MECHANISM BY CONSIDERING THE CINEMATIC ELEMENTS AS A 

RIGID ONES  
We know the following parameters: 

- Mechanism geometrical elements: L1:=40; L2:=319.4; 
L3_1:=5.94; L3_2:=55.20; L4:=381.9; L5:=58.7; 
-  Elements mass and mechanical inertia momentums: 
m1:=0.0465; m2:=0.0465; m3_1:=0.4285; m3_2:=0.4285; 
m4:=0.017; m5:=0.320; 
-  Variation laws for the generalized coordinate which define 
each cinematic element.  

The position vectors of the mass centres are in fig. 5. 
 

 
Fig.4. The wiper windshield mechanism 

 

 
Fig.5. The wiper windshield mechanism cinematic model 

 
If we rewrite these vectors in the T0 reference system, the 

anterior relations can be written as:  
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The speeds of mass centres: 
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The mass centres accelerations obtained through 

differentiating the speeds relations are: 
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The procedure is similary to the other mass centres.  

 The mechanism cinematic configuration leads us to an 
equation system in the following form: 
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{ }[ ]TT

Cr rq 1
1 ,0

1
ϕ= - the position vector of  the  no.1 element; 

{ }[ ]TT
Cr rq 2

3
1
32

2 ,,,0

2
ϕϕϕ= - the position vector of the no. 2 

element;  

{ } T
T
Cr rq ⎥⎦

⎤
⎢⎣
⎡= 4

3 ,0
1
3

1
ϕ - the position vector of the no. 31 element; 

 { } T
T
Cr rq ⎥⎦

⎤
⎢⎣
⎡= 4

3 ,0
2
3

2
ϕ - the position vector of the no. 32 element; 

{ }[ ]TT
Cr rq 5

4 ,0

4
ϕ= - the position vector of the no. 4 element; 

{ }[ ]TT
Cr rq 6

5 ,0

5
ϕ= - the position vector of the no. 5 element; 

 We introduce the notations: 
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The Jacobi corresponding to this system is:   
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The (33) equations system has 18 equations. The Jacobi 

rqJ  has a 18x26 dimension (18 lines and 26 columns). 
 We build the M masses matrix (with 26x26 dimensions): 
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 For dynamic inverse analysis we follow to build the 
equation system: 
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 We obtain the Lagrange’s multipliers: 
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⋅−=

••
−

raq qMQJ
r

1λ               (38) 

 
where:  
 

T
T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

T
C

not

r

ZYXZYXZYX

ZYXZYXZYXqq

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==

••••••••••••••••••••••••

••••••••••••••••••••••••••••••

654

4
2
3

1
321

0
5

0
5

0
5

0
4

0
4

0
4

0
2
3

0
2
3

0
2
3

0
1
3

0
1
3

0
1
3

0
2

0
2

0
2

0
1

0
1

0
1

,,,,,,,,,

,,,,,,,,,,,,

ϕϕϕ

ϕϕϕϕϕδ   (39) 

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



 
 

 

  
The achieved   dynamic analysis program has a flexible 

character, and so we can process the results for any matrices 
structure from (36) system. For dynamic inverse analysis we 
determine, on experimental way, the variation law of the 1ϕ  
generalized coordinate in rapport with time, for different 
function conditions. 
 

IV. RESULTS NUMERICAL PROCESS FOR DYNAMIC INVERSE 
ANALYSIS 

We are interested the connection forces from cinematic 
joints. The Lagrange’s multipliers expressions, which we use 
in connection forces calculus, are much complex to present in 
this paper, and so we present a few connection forces laws. 

 

 
Fig.6. Variation law of  1ϕ  angle and the 1M  torque.  
 

 
Fig.7. Variation law in time of the 21

xR  [N] reaction force 

 
Fig.8. Variation law in time of the 21

yR  [N] reaction force 

 
Fig.10. Variation law in time of the 32

yR  [N] reaction force  
 

V. NUMERICAL PROCESSING FOR 
ELASTO-DYNAMIC ANALYSIS 

A.  Planar connecting rod  (4) 
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Fig.11.  Variation law in time of the resulted elastic 

displacement for the connecting rod in planar motion (4) 
 

B. Spatial connecting rod  (2) 
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Fig. 12. Variation law in time of the resulted elastic 

displacement for the connecting rod in spatial  motion  (2) 
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Fig. 13. Variation law in time of the resulted elastic 

displacement, by  von Mises method 
 

VI. CONCLUSION 
We built mathematical models for dynamic analysis of 

mobile mechanical systems. These models were created by 
considering the elements as rigid ones in Newton-Euler 
formalism. This formalism was completed with Lagrange’s 
multipliers.  In order to develop these mathematical models 
we go through the following steps: 
- we develop the cinematic mechanism by identifying the 
analytical expressions for positions, speeds and accelerations 
of the mass centres; 
- we identify the cinematic  constrain equations (31); 
- we determine the (18x26) proper Jacobi  for the equation 
system which governs the mechanism cinematic; 
- we build the mass matrices (34) with 26x26 dimension; 
- we identify the generalized force vector (35); 
- we define the generalized coordinate’s vector and we build 
the equation system which administrates the mechanism 
movement in dynamic regime. 

The (36) equation system serves at dynamic inverse 
analysis, in order to determine the Lagrange’s multipliers 
vector with (38) relation. We elaborated a flexible program 
which follows the steps mentioned above, with a flexible 
structure. This structure permits to pass easily from the direct 
dynamic analysis to the inverse one. The dynamic inverse 
analysis’s aim was to determine the (11) correlations between 
connection forces components from the cinematic joints in 
dynamic regime.  

At paragraph 2 we present a method for dynamic analysis 
of a multibody system in Newton – Euler formalism. In this 
case, the generalized coordinate’s vector has two important 
components. One of them define the position and orientation 
of the cinematic rigid element and the other define the elastic 
or flexible coordinates, respectively nodal coordinates. In 
motion equations interfere the following matrices: 
M - mass matrix, K  - stiffness matrix, Jq  - Jacobi matrix,  

λ  - Lagrange’s multipliers vector, aQ  -  the vector of 

external generalized forces nQ  -   speeds quadratic vector  
which consists the gyroscopic components and Coriolis, 
obtained by differentiating the kinetic energy in rapport with 
time and the mechanism generalized coordinates. With this 
matrices we build the equations system no (17), which 
governed the movement of a mobile mechanical system with 
deformable elements. 

 The procedure presented in this paper is based on flexible 
matrix formalism, easily to implement on a computer, 
especially for the fact that the motion equation matrices are 
partitioned in rapport with a generalized coordinate’s 
character.  

By computing the mathematical models, we obtain the 
variation laws in time for the cinematic joint’s connection 
forces. These are useless in finite element modeling of the 
wiper windshield mechanism’s dynamic response. The 
cinematic scheme was presented in fig. 5. 
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