
 
 

 

  
Abstract—  A practical approach for determining the static 

eccentricity at each floor level in a doubly asymmetric, 
multi-storey building is presented.  The method uses a new and 
simple flexibility approach to relate the loading sustained by the 
resisting elements of the structure to the total lateral load on the 
building.  The method is easy to apply and offers considerable 
advantage over the Plane Frame Method that is commonly used 
in practice. An example is included to illustrate the method. 
 
Index Terms—centre of rigidity; centre of shear; static 
eccentricity; asymmetric buildings; irregular buildings; 
equivalent static analysis. 

 

I. INTRODUCTION 
Establishing the centres of rigidity (CR) and shear (CS) at 
each floor level in a multi-storey building is fundamental to 
many problems encountered when dealing with the statics, 
buckling and dynamics of such structures [1-5] and is an 
essential pre-requisite in the application of most seismic 
codes of practice e.g. [6-8]. Naturally, many methods of 
determining this important parameter have been proposed 
using a variety of techniques that offer solutions of varying 
accuracy depending on the assumptions employed.  The most 
popular technique is probably the Plane Frame Method 
(PFM) that was first presented by Cheung and Tso [9]. 
     PFM is based on the interpretation of the CRs as “load 
centres” at each floor level. Therefore, if the loading on each 
resisting structural element at each floor is known under the 
assumption of no rotational deformation, the load centre at 
each floor can be obtained by dividing the first moment of the 
element loads by the total loading at that floor level. 
Assuming the building is restrained from rotation, the lateral 
floor displacement in one direction, e.g. the x direction, and 
the inter-storey shear of all elements under loading in the 
same direction, can readily be obtained by means of a 
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standard plane frame program. i.e. the global stiffness of the 
structure in this direction is simulated by joining 
side-by-side, through pin-ended, rigid bars at each floor 
level, all the resisting elements in the x-direction. This 
enables the inter-storey shear force of each resisting element 
to be calculated by subjecting the model to the total lateral 
loading on the original structure. The floor loads for the 
individual elements then follow directly. The y co-ordinate of 
the load centres, i.e. CRs, is then given by the ratio of the first 
moment of these floor loads about reference axis z to the total 
floor load at that level. It should be noted that this procedure 
does not require explicit knowledge of the global structure 
stiffness matrix. An identical procedure can then be followed 
to calculate the x co-ordinate of the CRs.  
     Hejal and Chopra [10] extended Cheung and Tso’s work 
[9] to multi-storey buildings with a generalised floor plan 
comprising plane frames, columns, shear walls and cores.  A 
number of studies [9-13] also identify a class of building in 
which the lateral stiffness matrices of all resisting frames are 
proportional and show that the location of the CRs are 
independent of the lateral forces, which then lie on a vertical 
line throughout the height of the structure. This class of 
buildings will be referred to as “proportional buildings”. 
     In the work that follows, CRs are defined as that set of 
points, one on each floor of a building, through which 
application of lateral forces would cause no rotation of any of 
the floors.  In addition, the Centre of Shear (CS) of a floor is 
defined as the location of the resultant of the shear forces due 
to the various resisting elements at that floor level when the 
resultant of the applied lateral forces passes through CR. A 
practical method for locating the CRs, CSs and hence the 
static eccentricities of doubly-asymmetric, multi-storey 
buildings is now developed.  

 

II. PROPOSED METHOD  
The method is based on the use of a plane frame computer 
program and, like PFM, it does not require explicit 
knowledge of the global structure stiffness matrix. However, 
the way in which the program is used is completely different 
from PFM, since its sole function is to generate the flexibility 
matrix of each resisting element in the plane under 
consideration. These are subsequently used to form a matrix 
relationship between the loading on the resisting elements 
and the total lateral loading on the building. The CRs of the 
building are then obtained from the fact that they can be 
interpreted as the load centres at each floor level under the 
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assumption of no rotational deformation.  
Consider a typical floor plan of a multi-storey building 

comprising plane resisting elements (frames, columns, shear 
walls, bracing etc.) that run in two orthogonal directions and 
which are joined to each other by rigid diaphragms at each 
floor level.  See Fig. 1. The coordinate system Oxy is fixed at 
an arbitrary point on the plan, with the x and y axes running 
parallel to the orthogonal planes of resisting elements. It is 
assumed that the building is subjected to a known set of 
lateral loads at each floor level, defined by the vectors  

[ ]xnxxx
T
x VVVV ..321=V                          

 and 

[ ]ynyyy
T
y VVVV ..321=V                        (2a,b) 

where Vxj and Vyj  (j=1,n)) are the resultant lateral loads 
applied at the jth storey level in the x and y directions, 
respectively, n is the number of storeys and T represents 
transpose. 

 

CM

The floor diaphragm
extends over the whole plan

CR

 
Fig. 1.  Floor plan of an asymmetric multi-storey building  
 
comprising resisting elements running in two orthogonal 

directions Ox and Oy. CM is the Centre of Mass and CR is 
the Centre of Rigidity of the resisting elements. 

In similar fashion, the vectors 
[ ]RnRR

T
R XXX ...21=X   

and 
[ ]RnRR

T
R YYY ...21=Y                             (3a,b) 
are assumed to contain, respectively, the unknown x and y 

coordinates, XRj and YRj (j=1,n), that define the location of 
the CR at floor level  j. Assuming that the resultant lateral 
loads at each floor level are now applied through their 
respective CRs, the building will undergo pure translation in 
both directions. Since the plane resisting elements have no 
out of plane stiffnesses, the structure can be analysed in the x 
and y directions independently. 
     From the definition of CR, the coordinates XR and YR can 
be interpreted as defining the load centres at each floor level. 
Therefore, if the loading on each element of resisting 
structure at each floor level is known under the assumption of 
no rotational deformation, the location of the load centre at 
each floor can be determined by summing the first moment of 

the element loads at that floor and dividing by the total 
loading imposed at that level. 

    The loading on each resisting element can be calculated 
using equilibrium equations and the knowledge that all 
elements deflect equally in the x direction, and likewise in the 
y direction, when the building is subjected to lateral loads 
applied through the CRs, since the floor diaphragm is rigid in 
its plane.  

    Consider the y direction first. The loading on the ith 
resisting element and the corresponding equation of 
equilibrium are  
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)(pV                                                                     (4,5) 

where )(i
yjp  is the loading of the ith element at the jth floor and 

m is the number of resisting elements.  See Fig. 2. 

Applying lateral loads at the CRs of the building requires that 
the displacement vector of all resisting elements be equal. 
This gives 

y
m
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where )(i

yd  denotes the displacement vector of resisting 

element i and )(i
yjd  gives the deflection of element i at the jth 

floor. See Fig. 2. 

    Displacement vector )(i
yd  can now be written in terms of 

the stiffness matrix and lateral loading of the ith resisting 
element as 

  )(1)()( i
y

i
y

i
y pkd −

=                                                                   (8) 

in which 
1)( −i

yk  is the inverse of the stiffness matrix of the ith 

element. 

     The stiffness matrix of a resisting element, however, is 
not always readily available. An alternative approach is 
therefore suggested that does not require its explicit use and 
as a result is more suitable for use in the design context. 
    Consider the ith resisting element subjected to lateral 

load 
)(i

yp
 as shown in Fig. 2. The relationship between 

)(i
yd

 

and 
)(i

yp can be established by using flexibility coefficients, 
)(i

yjkδ, which relate the deflection of the jth floor of element i 

to a lateral unit force applied at level k. 
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  Fig. 2.  Resisting element i subjected to lateral loading 
vector )(i

yp and the resulting displacement vector )(i
yd . 

Since the behaviour of the building is assumed to be linear 
and elastic, the deflection of the jth floor of element i 
subjected to )(i

yp  can be written as 

∑
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where )(i
yδ  is the flexibility matrix of element i in which 

)(i
yjkδ  is the coefficient of the matrix located at the  interse- 

ction of row j and column k. Therefore Eq. (6) enables Eq. 
(9b) to be written as 

0dpδ =− y
i

y
i

y
)()(                                                              (10)  

Eqs. (5) and (10) can be combined to give an )1( +mn  

system of algebraic equations for calculating )(i
yp  and yd  

as 
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Once the )(i
yp  are determined, the location of each of the 

centres of rigidity and the corresponding vector RX  
containing all j such locations can be determined as 
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where ix  is the distance of element i from the y axis and  
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It can be seen that the location of the centres of rigidity are, in 
general, load dependent and do not lie on a vertical line 
through the building.  An identical procedure can then be 
used to determine the y components of the CRs by 
considering the motion of the structure in the x direction. 

                                                           

III. PROPORTIONAL BUILDINGS  
A special case arises when the stiffness matrix of each 
resisting element is proportional to a datum stiffness matrix.  
In this case it is straightforward to show that Eq. (13) can be 
re-written as  

eR XuαX  =                                                                       (15)  

where u is the )( mn ×  unitary matrix whose elements are 
all equal to 1 and α  is the diagonal )( mm ×  matrix of 
proportionality constants.  Eq. (15) clearly shows that in this 
particular case, the location of the CRs are not load 
dependent and therefore lie on a vertical line through the 
height of the structure. 

III.I. EXAMPLE 
 
The building analysed by Cheung and Tso [9] is now 
considered. It is located in seismic Zone 2 in Canada and is 
subjected to seismic lateral loading that has a triangular 
distribution along the height of the building in the y direction. 
It is a nine storey, singly asymmetric, wall-frame building 
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having uniform rectangular floors of dimension 20m by 10m 
and a uniform storey height of 3m. It is symmetric about the x 
axis and comprises two identical uniform walls, W, and two 
identical uniform frames, F, running in the y direction as 
shown in Fig. 3. The beams forming the frames are 
considered to be very stiff and the second moment of area of 
all columns is assumed to be 3107375.2 −×=cI  m4. The 
walls have a uniform cross-section with second moment of 
area, 445.0=wI m4. Young’s modulus for all members is 
taken as E=2×1010 N/m2. It should be noted that although 
the frame and wall systems are independently proportional, 
the building is non-proportional since the stiffness matrix of a 
wall differs from that of a frame. 

3m7m 3m 7m

x

10
m

y

CM

W W
F F

 
Fig. 3.  Floor plan of the building, comprising wall (W) and 

frame (F) resisting elements. 

The second column of Table 1 shows the location of the CRs 
at each floor calculated by (Cheung and Tso 1986) using 
PFM and the x-y co-ordinate system shown in Fig. 3, whose 
origin is at CM of each floor. Columns 3 and 4 show, 
respectively, the location of the CRs and CSs determined by 
the proposed method. This again shows that there is very 
good agreement between the results of the two approaches 
and indicates that the proposed method may be used with 
confidence.  

Table 1. Location of the CRs and CSs of the building 
measured from CM in Fig. 3. XR(S) is the vector of x 
co-ordinates of the CRs(CSs). 

Floor  
j 

XR 

(PFM) 

(m) 

XR 

(Proposed 
method) 

(m) 

XS 

(Proposed 
method) 

(m) 

9 20.6 20.45 20.42 

8 -3.30 -3.42 9.22 

7 -1.30 -1.31 6.14 

6 -0.70 -0.70 4.77 

5 -1.80 -1.82 3.83 

4 -5.80 -5.85 2.83 

3 -16.50 -16.39 1.46 

2 -45.30 -45.42 -0.66 

1 -154.9 -155.94 -4.12 

 

                            
 
The virtual work method (Thomson and Haywood 1986) of 
computing translations and rotations is used here  

IV. CONCLUSIONS  
A simple and practical method for locating the centres of 
rigidity of multi-storey buildings has been presented. It 
enables the static eccentricity to be determined easily, which 
is particularly important in the application of codified rules 
and special provisions when implementing the static force 
procedures of most seismic building codes. The method is 
based on the use of a plane frame computer program but does 
not require explicit expressions for the stiffness matrix. The 
method has the following advantages in comparison with the 
Plane Frame Method  

1. Resisting elements are analyzed separately, so the 
input file is much smaller and there is no necessity to 
model pin ended, rigid bars at each floor level. 

2. Identical plane elements are analyzed only once, 
since they all have a unique flexibility matrix )(iδ . 

3. The method lends itself to simple data generation and 
automated solutions. 

4. The method developed herein is easily extendable to 
enable a general static analysis of doubly symmetric 
structures with rigid diaphragms to be undertaken 
using the two-dimensional approach. 

5. Simple additional modifications to the method can 
also be made in order to account for the analysis of 
structures with flexible diaphragms. 

 

     It has been shown that the centres of rigidity and centres 
of shear of multi-storey buildings do not generally coincide. 
Moreover the locations of each do not generally lie on a 
vertical line through the height of the structure, but are 
dependent on the geometric and stiffness characteristics of 
the building as well as the lateral forces. A particular class of 
buildings was distinguished, the so called ‘proportional 
buildings’, in which the centres of rigidity and centres of 
shear of the floors are coincident, load independent and lie on 
a vertical line throughout their height. Buildings belonging to 
this special class comprise resisting elements that have 
proportional stiffness matrices along both their principal 
planes. The proportionality in the x and y directions are 
independent and it is not necessary that the resisting elements 
running in the x direction be proportional to those running in 
the y direction. 

     Torsional provision in most building codes is based on the 
evaluation of static eccentricity at each floor level, usually 
given as the distance between the centres of mass and the 
centres of rigidity of a building. Since the variation in the 
location of the centres of shear along the height of the 
structure is usually less than that of the centres of rigidity, it 
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would seem more practical in such cases for code provisions 
to give their rules based on eccentricity defined as the 
distance between the centres of mass and centres of shear. 
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