

Abstract— This paper describes specification and execution

of behavioral concepts for Open Distributed Processing (ODP)
Computational Language. Open Distributed Processing - ODP
is introduced as a general framework upon which open
distributed system can be modeled through the viewpoint
concept and the use of an object oriented language (Unified
Modeling Language UML). The behavior of an ODP system is
determined by collecting all possible actions in which the
system (acting as an object), or any of its constituent objects,
might take part, together with a set of constraints on when these
actions can occur. In order to specify the executable behavior of
a system and to make the processes of the Computational
executable and controllable, the Reference Model for ODP
RM-ODP can be used as a meta-model for behavioral
specifications. In the Computational language, the behavior is a
collection of actions with a set of constraints on when they may
occur. Firstly, we give the description and specification of the
behavior by the activity diagrams. Secondly, we define the
mapping from the concepts of behavior Computational
language to BPEL concepts and we present the syntax and the
structure of a BPEL Behavior process. Then we generate the
corresponding BPEL and computational files to implement the
specified process.

Keywords:
RM-ODP, Computational Language, Behavior Business Process
Model, BPEL

I. INTRODUCTION
The rapid growth of distributed processing has led to a

need for coordinating framework for the standardization of
Open Distributed Processing (ODP). The Reference Model
for Open Distributed Processing (RM-ODP) [1]-[4] provides
a framework within which support of distribution,
networking and portability can be integrated. The
foundations part [2] contains the definition of the concepts
and analytical framework for normalized description of
(arbitrary) distributed processing systems. These concepts
are grouped in several categories. The architecture part [3]
contains the specifications of the required characteristics that
qualify distributed processing to be open. It defines a
framework comprising five viewpoints, viewpoint language,
ODP functions and ODP transparencies. The five viewpoints,
called enterprise, information, computational, engineering
and technology provide a basis for the specification of ODP
systems.

Each viewpoint language defines concepts and rules for
specifying ODP systems from the corresponding viewpoint.

The ODP functions are required to support ODP systems.
The transparency prescriptions show how to use the ODP
functions to achieve distribution transparency. The first three
viewpoints do not take into account the distribution and
heterogeneity inherent problems. This corresponds closely to
the concepts of PIM (Platform Independent Model) and PSM
(Platform Specific Model) models in the OMG MDA
architecture. However, RM-ODP can not be directly
applicable [5]. In fact, RM-ODP only provides a framework
for the definition of new ODP standards. Which include
standards for ODP functions [6-7]; standards for modeling
and specifying ODP systems; standards for programming,
implementing, and testing ODP systems.

We treated the need of formal notation for behavioral
concepts in the Computational language [8]. Indeed, the
viewpoint languages are abstract in the sense that they define
what concepts should be supported, not how these concepts
should be represented. It is important to note that, RM-ODP
uses the term language in its broadest sense: “a set of terms
and rules for the construction of statements from the terms”.
It does not propose any notation to support the viewpoint
languages. Using the Unified Modeling Language
(UML)/OCL (Object Constraints Language) [9, 10] we
defined a formal semantic for a fragment of ODP behavior
concepts defined in the RM-ODP foundations part and in the
enterprise language [11]. These concepts (time, action,
behavior constraints and policies) are suitable for describing
and constraining the behavior of ODP enterprise viewpoint
specifications.

A part of UML meta-model itself has a precise semantic
[12], [13] defined using denotational meta-modeling
approach. A denotational approach [14] is realized by a
definition of the form of an instance of every language
element and a set of rules which determine which instances
are denoted or not by a particular language element. For
testing ODP systems [2], [3], the current testing techniques
[15], [16] are not widely accepted. A new approach for
testing, named agile programming [17] or test first approach
[19], is being increasingly adopted. The principle is the
integration of the system model and the testing model using
UML meta-modeling approach [20], [21]. This approach is
based on the executable UML [22]. Executable UML is a
major innovation in the field of software development. Use it
to produce a comprehensive and understandable model of a
solution independent of the organization of the software
implementation. It is a highly abstract thinking tool that aids
in the formalization of knowledge, and is also a way of
describing the concepts that make up abstract solutions to
software development problems.

Using BPEL for Behavioral Concepts in ODP
Computational Language

Belhaj Hafid, Youssef Balouki, Jalal Laassiri, Redouane Benaini, Mohamed Bouhadadi, Saïd El Hajji

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

In this context, OCL is used to specify the properties to be
tested. The UML meta-models provide a precise core of any
ODP tester. We use in this paper the BPEL (Business Process
Execution Language for Web Services) (BPEL4WS or BPEL
for short) to specify process behavior based on interaction
and the binding object in the ODP systems. The BPEL is an
XML-based standard for defining how you can combine Web
services to implement business processes. It builds upon the
Web Services Definition Language (WSDL) and XML
Schema Definition (XSD). This article specifies the behavior
processes by the activity diagrams, and generates the
corresponding BPEL and computational files to implement
that process. This capability is used to highlight some
benefits of the Object Management Groups (OMG) Model
Driven Architecture (MDA) initiative: raising the level of
abstraction at which development occurs; which, in turn, will
deliver greater productivity, better quality, and insulation
from underlying changes in technology.

The paper is organized as follows. Section 2 introduces,
both BPEL and the core behavior concepts (time, action,
state, behavior, interaction and the binding object). Section 3
describes and specifies the behavior by the activity diagrams.
In Section 4, we define the mapping from the concepts of
behavior computational language to BPEL concepts and we
present the syntax and the structure of a BPEL Behavior
process. We focus on behavioral interaction. A conclusion
ends the paper.

II. PRELIMINARIES

A. According to Wikipedia “Enterprise Architecture is
the practice of applying a comprehensive and rigorous
method for describing a current and/or future structure and
behavior for an organization's processes, information
systems, personnel and organizational sub-units, so that
they align with the organization's core goals and strategic
direction. Although often associated strictly with
information technology, it relates more broadly to the
practice of business optimization in that it addresses
business architecture, performance management,
organizational structure and process architecture as well.”
A widely known example of Enterprise Architecture (EA)
is Federal Enterprise Architecture (FEA) [3], which is the
US Government’s EA initiative to improve its business
operations with a set of its EA Reference Models. Those
Reference Models include Performance Reference Model,
Business Reference Model, Service Component Reference
Model, Data Reference Model, and Technical Reference
Model. Each Reference Model provides architecture of the
government’s IT systems from the perspective it focuses
on. Those FEA reference models provide general structure
and fairly detailed categories or ontology of government’s
businesses. A number of nations have been working to take
advantage of EA, and one example is an EA initiative by
Japanese government (JEA for short). JEA can be
considered as customized subset of FEA with extensions.
Although FEA does not provide guideline for defining FEA
models, it provides suggested notations for defining
models.

Business Process Execution Language (BPEL) is a
XML-based language used to define enterprise business

processes within Web services. Every company has its
unique way of defining its business process flow. The key
objective of BPEL is to standardize the format of business
process flow definition so companies can work together
seamlessly using Web services. BPEL extends the Web
services interaction model and enables it to support business
transactions. BPEL is based on Web services in the sense that
each of the business process involved is assumed to be
implemented as a Web service. Processes written in BPEL
can orchestrate interactions between Web services using
XML documents in a standardized manner. These processes
can be executed on any platform or product that complies
with the BPEL specification.

RM-ODP and EA are different architectures covering similar
problem domain. There is an issue of interoperability or reuse
of models/specifications between the two. For instance, a
Business Reference Model based business models will not be
easily incorporated into ODP enterprise specifications, since
their concerns and concepts are similar but not exactly the
same.

2.1 BPEL

B. BPEL, also known as BPEL4WS, build on IBM's WSFL
(Web Services Flow Language) and Microsoft's XLANG
(Web Services for Business Process Design). It combines
the features of a block structured process language
(XLANG) with those of a graph-based process language
(WSFL). BPEL is intended to describe a business process in
two different ways: executable and abstract processes. An
abstract process is a business protocol specifying the
message exchange behavior between different parties
without revealing the internal behavior of any of them. An
executable process specifies the execution order between a
number of constituent activities, the partners involved, the
message exchanged between these partners and the fault
and exception handling mechanisms.
A composite service in BPEL is described in terms of a

process. Each element in the process is called an activity.
BPEL provides two kinds of activities: primitive activities
and structured activities. Primitive activities perform simple
operations such as receive (waiting for a message from an
external partner), reply (reply a message to a partner), invoke
(invoke a partner), assign (copying a value from one place to
another), throw (generating a fault), terminate (stopping the
entire process instance), wait (wait for a certain time) and
empty (do nothing).

To enable the representation of complex structures, a
structured activity is used to define the order on the primitive
activities. It can be nested with other structured activities.
The set of structured activities includes: sequence (collection
of activities to be performed sequentially), flow (specifying
one or more activities to be performed concurrently), while
(while loop), switch (selects one control path from a set of
choices), pick (blocking and waiting for a suitable message).
The most important structured activity is a scope. A scope is a
means of explicitly activities packaged together such that
they can share common fault handling and compensation
routines. It is composed of a set of optional fault handlers
(exceptions can be handled during the execution of its
enclosing scope), a single optional compensation handler

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

(inverse some effects which happened during the execution
of activities), and the primary activity of the scope which
defines its behavior.

The sequence, flow, switch, pick and whi1e constructs
provide a means of expressing structured flow dependencies.
In addition to these constructs, BPEL provides another
construct known as control links which, together with the
associated notions of join condition and transition condition,
support the definition of precedence, synchronization and
conditional dependencies on top of those captured by the
structured activity constructs. A control link between
activities A and B indicates that B cannot start before A has
either completed or has been skipped. Moreover, B can only
be executed if its associated join condition evaluates to true,
otherwise B is skipped. An activity X propagates a positive
value along an outgoing link L if and only if X was executed
(as opposed to being skipped) and the transition condition
associated to L evaluates to true. Transition conditions are
Boolean expressions over the process variables. The process
by which positive and negative values are propagated along
control links, causing activities to be executed or skipped, is
called dead path elimination [23]. Figure 1 defines the BPEL
core concepts [24]

2.2 The Core behavioral Concepts in RM-ODP
Foundations Part
We consider the minimum set of modeling concepts
necessary for behavior specification. There are a number of
approaches to specify the behavior of distributed systems
proposed by searchers with different background and

considering different aspects of behavior. We use the
formalism of the RM-ODP model, written in UML/OCL, and
mainly the concepts taken from the clause [Part 2 – 8.6] of the
RM-ODP:

Behavior of an object. Behavior is a collection of actions
that the object may take part in, together with the set of
constraints on when those actions can occur. The object
model does not constrain the form or nature of object
behavior. The actions can be interactions of the object with
its environment or internal actions of the object.
State. State and behavior are interrelated concepts. The state
of an object is the condition of the object at a given instant
that determines the potential future sequences of actions that
object may be involved in. At the same time, actions bring
about state changes and, hence, the current state of an object
is partly determined by its past behavior.
Interactions. RM-ODP prescribes three particular types of
interactions: signals, operations, and flows. A signal may be
regarded as a single, atomic action between computational
objects. Signals constitute the most basic unit of interaction
in the computational viewpoint. Operations are used to model
object interactions as represented by most message passing
object models, and come in two flavors: interrogations and
announcements. An interrogation is a two-way interaction
between two objects: the client object invokes the operation
(invocation) on one of the server object interfaces; after
processing the request, the server object returns some result
to the client object, in the form of a termination. An
announcement is a one-way interaction between a client
object and a server object. In contrast to an interrogation,
after invocation of an announcement operation on one of its
interfaces, the server object does not return a termination.
Terminations model every possible outcome of an operation.
Flows model streams of information, i.e., a flow represents
an abstraction of a sequence of interactions from a producer
to a consumer, whose exact semantics depends on the
specific application domain. In the ODP computational
viewpoint, operations and flows can be expressed in terms of
signals [1]-[4].

There are many specification styles for expressing when
actions may occur (e.g. sequencing, pre-conditions, partial
ordering, etc.). The actions and their ordering can be defined
in terms of processes. A process identifies an abstraction of
the object behavior that includes only those actions that are
related to achieving some particular role. Each abstraction is
labeled with a process name. The emphasis is on what the
behavior achieves. Processes decompose the behavior of the
object into steps. Its specification shall include specification
of how it is initiated and how it terminates.

We represent a concurrent system as a triple consisting of a
set of behavior, a set of process and a set of action. Each
behavior is modeled as a finite or infinite sequence of
interchangeable behavior and actions. To describe this
sequence, there are mainly two approaches [25].

 1. “Modeling systems by describing their set of actions
and their behaviors”.

 2. “Modeling systems by describing their action spaces
and their possible sequences of action changes”.

These views are dual in the sense that a behavior can be
understood to define action changes, and action occurring in

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

action sequences can be understood as abstract
representations of process. We consider both of these
approaches as abstraction of the most general approach based
on RM-ODP. We provide the formal definition of this
approach that expresses the business process models.

ComputationalObject Behaviour

Action State

Interaction

InternalAction

Flow Signal Operation Invocation Termination

Annoucement Interrogation

Owner
 1 1

1..* 1

Changedstate 0..*
0..* changer

startstate
 endstate

1 0.1
Refinement
0.1 1.*

0.1
 1.*

EnvironmentContract

Constrainer 0..*

Fig. 2 Core Behavior Concepts

III. 3. UML PROFILE FOR AUTOMATED BEHAVIOR
PROCESSES

The ability to extend or customize UML is essential to
MDA; UML can be customized to support the modeling of
systems behavior. The scope of this article is mainly centered
on stereotypes. Stereotypes are a way of categorizing
elements of a model. We can combine a set of these
stereotypes in a Profile. A UML Profile is used to define a
specific set of extensions to the base UML in order to
represent a particular domain of interest. For instance there
are Profiles defined for CORBA and Data Modeling. A
profile defines what elements of UML are to be used, how
they may be extended, and any well-formedness rules to
constrain the assembly of the elements.

This section introduces a UML Profile which supports
modeling with a set of semantic constructs that correspond to
those in the Business Process Execution Language for
behavior in enterprise language (see table 1).

Table 1 – Sample table

We represent a subset of the UML profile through ODP

Trader from the Computational Viewpoint [7] that defines a
simple behavior process. It may be summarized as follows:

"ODP aims to provide distribution-transparent utilisation

of services over heterogeneous environments. In order to use
services, users need to be aware of potential service providers
and to be capable of accessing them. Since sites and
applications in distributed systems are likely to change
frequently, it is advantageous to allow late binding between
service users and providers. If this is to be supported, a
component must be able to find appropriate service providers
dynamically. The ODP trading function provides this
dynamic selection of service providers at run time."

BPEL processes are stateful and have instances, so in

BPEL this scenario is implemented as a behavior process
which would have an instance for each actual behavior
application being processed. Each instance has its own state
which is captured in BPEL variables. In the UML profile, a
process is represented as a class with the stereotype
<<Process>>. The attributes of the class correspond to the
state of the process (variables in BPEL 1.1). The UML class
representing the behavioral process is shown in Figure 3.

<<Process>>
BehaviorProcess :: Behavior

+ request : ActionInformation
+rolesinfo :BehavioRrole
+constraint :RulesBehavior
+error :RequestError

Fig. 3 A UML class used to model a Behavior BPEL

Process

Behavior Concepts Profile Construct
Process_CV << process>> class
Action Activity graph on a

<<process>> class
ObjectRole <<partner>> class
Constraint <<process>> class

attributes
Message Hierarchical

structure and control
flow

<<receive>>,
<<invocation>>,

<<termination>>,
<<announcement>> actions

<<receive>>,
<<reply>>,

<<invoke>>
activities

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

The behavior of the class is described using an activity
graph. The activity graph for the behavior process is shown
in figure 4. The activities, such as invoke, are shown as the
rectangles with rounded corners. The actions to be performed
are shown as Entry conditions to the activity. For example,
action constraint (a variable) is set to the result of the check
service. The partners with which the process communicates
are represented by the UML partitions (also known as
swimlanes): Trader, Client and Server. The activities that
involve a message send or receive operation to an partner
appear in the corresponding partition. The arrows indicate the
order in which the process performs the activities. Note that
the assignment activity is not in a swimlane; it depicts an
action that takes place within the process itself.

 <<receive>>
 receive

||Entry/role(request)

<<invoke>>
invoke

||Entry/serviceinvocation :=check(request)

<<replay>>
replay

||Entry/servicereplies :=roleinfo

Trader

 <<replay>>
 replay

||Entry/objective():=roleinfo

Client

Server

ImportRequest/condition=
True/False

ImportReplies/condition=
True/False

ExportRequest/condition=
True/False

ServiceInvoke

ServiceReplay

Fig. 4 – An Activity Diagram for the Behavior Process

The reply activity returns a response back to the client,
completing the execution of the process. Each activity has a
descriptive name and an entry action detailing the work
performed by the activity.

IV. MAPPING TO BPEL
As service-oriented technology gains in popularity, it will
be increasingly necessary to be able to design large-scale
solutions that incorporate web services. The Unified
Modeling Language. (UML.) is widely used in the
development of object-oriented software and has also been
used, with customizations, for component-based software,
business process modeling and systems design. UML
provides a visual modeling notation which is valuable for
solution design and comprehension. UML can be
customized to support the modeling of systems that will be
completely or partially deployed to a web services
infrastructure. This enables the considerable body of UML
experience to be applied to the maturing web services
technologies. This paper introduces a UML profile (a

customization of UML) which supports modeling with a set
of semantic constructs that correspond to those in the
Business Process Execution Language for Web Services1
(BPEL4WS).

Using UML primarily as a documentation tool has a real
but limited benefit, and it is recognized that UML models
developed for this purpose may not be maintained when a
project is under severe time pressure. The value of UML
modeling of systems has the potential to increase
significantly through the emergence of initiatives such as
model-driven development and architected RAD [3] which
enable executable systems to be generated automatically
from detailed models. This approach is employed here to
provide a mapping from models conforming to the UML
profile for automated business processes to executable BPEL
processes.

4.1 From UML to BPEL

The UML profile for automated behavior processes
expresses that complete executable BPEL artifacts can be
generated from UML models. Table 2 shows an overview of
mapping from the profile to BPEL covering the subset of the
profile introduced in this article.

Table 2 – UML to BPEL mapping overview

4.2 Execution of the Behavior processes

BPEL is an XML representation of an executable process
which can be deployed on any process motor. The atomic
element of a process BPEL is an “activity”, which can be the
send of a message, the reception of a message, the call of an
operation (sending of a message, makes an attempt of an
answer), or a transformation of data.

Profile Construct BPEL Concept

<< process>> class BPEL process definition
Activity graph on a
<<process>> class

BPEL activity hierarchy

<<process>> class attributes BPEL variables
Hierarchical structure and

control flow
BPEL sequence and flow

activities
<<receive>>, <<reply>>,

<<invoke>>activities
BPEL activities

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

< cv_behavior >
< ObjectRole /> definition of the object role

<containers/> definition of the containers of the
data

<transitioncondition>
<constraints /> A set of rules related to a behaviour.

</transitioncondition>
<sequence/>

<receive /> reception of a request of process
<assign /> transformation of the data

<invocation /> call of an process
<termination /> termination of process

<announcement /> interaction initiated by a client
object

<reply /> sending of an answer to the process
</sequence>

</cv_behavior >
<process >

< roles /> definition of the roles
<containers/> definition of the containers of the

data
<sequence />

<receive /> reception of a request
<assign /> transformation of the data

<invoke /> call of an action
<reply /> sending of an answer

</sequence>
</process>

<messages> name = "namemessage"
<process name ="process"/>

< causality name = "causality"/>
<choice >

<message type ="invocations"/>
< message type ="terminations"/>

< message type ="annoucements"/>
< message type ="signal"/>

</choice >
</messages>

A cut down version of the BPEL document that would be

generated from the behavior process example is shown in
Listing 1 (much of the detail is omitted here due to space
constraints).

Listing 1 Excerpt of the BPEL listing

<process name="behaviorProcess" ...>
<variables>

<variable name="request"
messageType="roledef:actionInformationMessage"/>

<variable name="action_constraint"
messageType="asns: action_constraintMessage"/>

...
</variables>

...
<flow>

<receive name="receive" partner="trader"
portType="apns:behaviorprocessPT"
operation="role" variable="request"

createInstance="yes">
<source linkName="receive-to-client"

transitionCondition=
"bpws:getVariableData('request', 'condition') = true"/>

<source linkName="receive-to-server"
transitionCondition=

"bpws:getVariableData('request', 'condition)=false"/>
</receive>

<invoke name="invokeservice" partner="client"
portType="asns:actionconstraint"

operation="check"
inputVariable="request"

outputVariable="action_constraint">
<target linkName="receive-to-server"/>

<source linkName="server-to-setMessage"
transitionCondition=

"bpws:getVariableData('action_constraint ',
'check')='true'"/>

<source linkName="reply-to-invoke"
transitionCondition=

"bpws:getVariableData('action_constraint ',
'check')!='true'"/>

</invoke>

<assign name="assign">
<target linkName="invoke-to-setMessage"/>
<source linkName="setMessage-to-reply"/>

<copy>
<from expression="'yes'"/>

<to variable="roleInfo" part="accept"/>
</copy>

</assign>
...

<reply name="reply" partner="actor1"
portType="apns:behaviorprocessPT"

operation="approve" variable="roleInfo">
<target linkName="setMessage-to-reply"/>

<target linkName="role-to-reply"/>
</reply>
</flow>

</process>

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

4.2 The UML to BPEL Mapping Transformation
The approach comes with a set of sample files for different

scenarios [26]. The sample files are of two main types: UML
model files which can be opened and modified with tools,
and XML files containing the XMI version of the UML
models and which are exported by theme. In figure 5, we can
see that this corresponds to the UML models, or the XMI
output of these tools. Figure 5 uses a UML Activity Diagram
to show the overall process of transforming the files; isn't
UML useful? The boxes represent artifacts (usually files)
while the ellipses represent an action or activity. The main
stages are:

• Building and exporting the UML model to XMI (tools)
• Generating the BPEL, Actions, and behavior files
• Deploying these on the BPEL motor.

UML model
Requirements

Analysis

Functional
specification

Design

Implementation

XML files
Containing the XMI version of the

UML models

Constraints

XSD Schema Interface Definition BPEL Process

BPEL runtime

Application Developer

Fig. 5 a process of Developing

V. CONCLUSION AND FUTURE WORKS
This article has introduced a UML profile for automated

behavior processes with a UML to BPEL translator. The
profile allows developers to use normal UML skills and tools
to develop behavior processes using BPEL. This approach
enables service-oriented BPEL components to be
incorporated into an overall system design utilizing existing
software engineering practices. Additionally, the mapping
from UML to BPEL a model-driven development approach
in which BPEL executable processes can be automatically
generated from UML models. Although we have only shown
our method for the Trader behavior from the Enterprise
Viewpoint, the method is generic enough to be applied in
other viewpoints, such as trader from the Information
Viewpoint. Future work includes the implementation of a
reverse mapping to support the import of existing BPEL4WS
artifacts and the synchronization of UML models and
BPEL4WS artifacts with changes in either being reflected in
the other.

REFERENCES
[1] ISO/IEC, ‘’Basic RM-ODP-Part1: Overview and Guide to Use,

‘’ISO/IEC CD 10746-1, 1994
[2] ISO/IEC, ‘’RM-ODP-Part2: Descriptive Model, ‘’ ISO/IEC DIS

10746-2, 1994.
[3] ISO/IEC, ‘’RM-ODP-Part3: Prescriptive Model, ‘’ ISO/IEC DIS

10746-3, 1994.
[4] ISO/IEC, ‘’RM-ODP-Part4: Architectural Semantics, ‘’ ISO/IEC DIS

10746-4, July 1994.
[5] M. Bouhdadi, et al. ‘’ An UML-based Meta-language for the

QoS-aware Enterprise Specification of Open Distributed Systems, ‘’
Collaborative Business Ecosystems & Virtual Enterprises, IFIP Series,
Vol. 85, Springer Boston, pp.255-264, 2002.

[6] ISO/IEC, ‘’ODP Type Repository Function, ‘’ ISO/IEC JTC1/SC7
N2057, 1999.

[7] ISO/IEC, The ODP Trading Function, ISO/IEC JTC1/SC21 1995.
[8] ISO/IEC, ‘’ Use of UML for ODP system specifications’’ ISO/IEC

19793, May 2006.
[9] J. Rumbaugh, G. Booch, J. E. Jacobson, the Unified Modeling

Language, Addison Wesley, 1999.
[10] J. Warner and A. Kleppe, The Object Constraint Language: Precise

Modeling with UML, Addison Wesley, 1998.
[11] M. Bouhdadi, Y. Balouki, ‘’Meta-modelling Semantics of Behavioral

Concepts for Open Virtual Enterprises,’’ ECC 2007, Athens 25-27 Sep,
Springer Verlag (to appear)

[12] S. Kent, S. Gaito, N. Ross, ‘’A meta-model semantics for structural
constraints in UML, ‘, In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral specifications for businesses and systems, Kluwer
Academic Publishers, Norwell, MA, September 1999. Chapter 9.

[13] E. Evans, R. France, K. lano, B. Rumpe, ‘’Meta-Modeling Semantics
of UML, ‘’ In H. Kilov, B. Rumpe, and I. Simmonds, editors,
Behavioral specifications for businesses and systems, Kluwer
Academic Publishers, Norwell, MA, September 1999. chapter 4

[14] D.A. Schmidt, ‘’Denotational semantics: A Methodology for
Language Development, ‘’ Allyn and Bacon, Massachusetts, 1986.

[15] G. Myers, ‘’The art of Software Testing, ‘’, John Wiley &Sons, 1979
[16] R. Binder, ‘’ Testing Object Oriented Systems. Models. Patterns, and

Tools, ‘’ Addison-Wesley, 1999
[17] A. Cockburn, ‘’Agile Software Development. ‘’Addison-Wesley,

2002.
[18] B. Rumpe, ‘’ Agile Modeling with UML, ‘’ LNCS vol. 2941, Springer,

2004, pp. 297-309.
[19] K. Beck. Column on Test-First Approach. IEEE Software, vol. 18, no.

5, pp.87-89, 2001
[20] L. Briand , ‘’A UML-based Approach to System testing, ‘’ LNCS vol.

2185. Springer, 2001, pp. 194-208,
[21] B. Rumpe, ‘’ Model-Based Testing of Object-Oriented Systems; ‘’

LNCS vol.. 2852, Springer; 2003; pp. 380-402.
[22] B. Rumpe, Executable Modeling UML. A Vision or a Nightmare?, In:

Issues and Trends of Information technology management in
Contemporary Associations, Seattle, Idea Group, London, pp.
697-701.

[23] .Duhang Zhong et al.”Reliability Prediction for BPEL-Based
Composite Web Service” ,Proceedings of the first international
conference On Research challenges in Information science, pages
265,270. Ouarzazate,Morocco,2007

[24] . Dimitris Karagiannis et al. Business-oriented IT management
developing e-business applications with E-BPMS,’’ ICEC 2007,
97-100

[25] . M. Broy, ‘’Formal treatment of concurrency and time,’’ Software
Engineers’s Reference Book, Oxford Butterworth-Henenmann (1991).

[26] . keith Mantell,” From UML to BPEL Model Driven Architecture in a
Web services world” ,Report IT Architect, IBM 2003

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

