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Abstract—Vibration detection and control strategies strive to 

reduce the effect of harmful vibrations on machinery and 
people. In general, vibration control strategies are classified as 
passive or active. While passive vibration control techniques are 
generally less complex, there are more limits to their 
effectiveness. Active vibration control strategies, on the other 
hand, can be very effective but require more complex 
algorithms and are especially susceptible to time delays. This 
paper introduces an active and adaptive vibration control 
system which, based on using neural network and newest digital 
signal processing techniques, automatically detects noisy 
sinusoidal vibration parameters of a cantilever beam and 
generates control signals to an actuator to cancel the vibration. 
The control signal is generated based on calculations of a neural 
network and real-time digital processing. The system can repeat 
the vibration detection and control loop in every 25 ms, and the 
newest control signal is added to the original one to minimize 
the beam vibration. The system has been evaluated 
experimentally and the results showed its validity. 
 

Index Terms—Active vibration control, adaptive, artificial 
neural networks, real-time digital signal processing 
 

I. INTRODUCTION 

Vibration control is the effort to reduce the negative 
consequences of vibration effectively. Two main groups of 
vibration control methods are passive and active methods. 
Passive vibration control methods include elimination of 
additional energy sources, eliminating or decreasing input 
forces and isolation from external disturbances [1]. The 
passive vibration control methods have limitations including 
ineffectiveness in low frequency range, lack of robustness, 
and increased size and weight of the system. Active vibration 
control (AVC) methods, on the other hand, work by 
providing an additional energy supply to the vibration 
systems, and alleviate the problems of contradictory 
requirements imposed on passive vibration control 
techniques. 

The research in AVC has been expanding since 1930s, and 
especially rapidly in the past three decades. AVC is achieved 
by using a control source to introduce a secondary 
disturbance into a system to cancel the existing disturbance, 
thus resulting in an attenuation of the original vibration. 
These secondary sources are interconnected through an 
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electronic system using a specific signal processing 
algorithm for a particular cancellation scheme. Even though 
the concept is simple, it is only with the development of 
low-cost fast digital signal processing (DSP) systems during 
the last 20 years that the implementation of practical active 
vibration control systems has become feasible. The 
continuous progress of AVC includes the development of 
improved adaptive signal processing algorithms, transducers, 
and DSP hardware. 

The objective of the current work is to develop an effective 
adaptable AVC system to suppress the noisy sinusoidal 
vibration of a cantilever beam, which is familiar in machining 
chatter. The system should be a simple to implement, noise 
tolerant, and robust real-time online AVC system.  

II. METHODOLOGY 

A. Vibration Detection 

The cantilever beam vibration here includes noisy 
sinusoidal signals. 

Different methods for detecting sinusoid parameters can 
be found in [2]. Classical methods include the maximization 
of periodogram (MP) and the minimization of the sum of 
squared error by non-linear least squares (NLS) regression. 
In [3], an algebraic approach is proposed for the fast and 
reliable, on line, identification of the amplitude, frequency 
and phase parameters in unknown noisy sinusoidal signals. 

Generally, the algebraic method uses the algebraic 
derivative method in the frequency domain yielding exact 
formulae, when placed in the time domain, for the unknown 
parameters. Considering an uncertain sinusoidal signal of the 
form: 

KtAtx  )sin()(                   (1) 

where A is the unknown amplitude,  is the unknown 

frequency,  is the unknown phase, and K is an unknown 

constant bias perturbation term, the Laplace transform of this 
signal is given by [3]: 
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where s is the complex frequency. After many 
differentiations, integrations, and integral convolutions, the 

unknown A, , and  can be obtained. Together with using 

filters, the algebraic method can deal with noise very well. 
Since the algebraic approach is fast (can be performed in a 

quite small time interval which is only a small fraction of the 
first full cycle of the measured sinusoid signal), robust with 
respect to signal measurement noises and able to do the 
computation of amplitudes, frequencies and phases of a 
linear combination of sinusoids [3], it is utilized in the current 
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work. To get more accurate parameters, especially for 
frequency, the outcomes of the algebraic approach are 
applied to classic methods, which require extremely precise 
initial values to ensure convergence.   

B. General Vibration Control Strategy 

The general proposed AVC strategy utilized in the current 
work is shown in Fig. 1. In this strategy, a vibration 
suppression module relies on the availability of detected 
vibration parameters from the vibration detection module to 
generate control signals, i.e., x(u), which are applied to the 
plant by secondary sources, i.e., actuators, to suppress the 
vibration. In Fig. 1, x(p) represents the primary disturbance. 
The plant output, i.e., Y in Fig. 1, is the vibration response of 
the plant measured at the location of interest. 

           
                   Fig. 1: The general AVC strategy 
In this strategy, the following relation exists: 

)),(),(( tuxpxFY                          (3) 

The vibration suppression module’s task is to synthesize 
x(u) such that it minimizes Y. If a comprehensive physical 
model of plant is available, the control signal to the actuator, 
i.e., x(u), could be determined through an optimization 
method in order to minimize Y. One such optimization 
method is steepest decent, where: 
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plant Y; x(u)k  and x(u)k+1  are the values of the control signal 
in the k and k+1 iterations respectively; and α is the size of 
the steps in the direction of minimization.  

 The calculation of the gradient requires the availability of 
a differentiable physical model. However, comprehensive, 
differentiable physical models of complex systems usually do 
not exist. In this paper, a vibration suppression module is 
used to generate a control signal to suppress the original 
vibration at the location of interest. The ideal generated 
control vibration should have the same amplitude and 
frequency of the original one at that location but with a 
180-degree phase difference.  

C. Vibration Suppression Subsystem Design 

The vibration suppression module is the most critical part 
of this control system. Fig. 2 shows some details of the 
proposed vibration suppression subsystem design. 

  
    Fig. 2: Some details of the vibration suppression module 
To generate an “opposite” vibration at the location of 

interest to suppress the original one, an ANN is utilized as an 
identification model of the plant based on the function 
approximation capability of ANNs.  To make the proposed 
AVC system robust, the ANN model should be used for a 
relatively stable part of the plant. To generate control signals, 
the ANN model should work as an inverse model, which 
means the inputs of the ANN model are actually the outputs 
of the plant, i.e., the parameters of the vibration signal, which 
include amplitude (AI), frequency (FI) and phase (PI), while 
the outputs of the ANN are the parameters of the control 
signal, which include amplitude (AO), frequency (FO) and 
phase (PO).  

Time delay in AVC is very critical. To satisfy causality of 
different iterations, the time delay between the iteration to 
collect vibration signal parameters and the iteration to send 
out control signal should be considered to get the actual 
phase input (PI ) to the ANN. 

Thanks to the newest real-time digital signal processing 
techniques, signals can be collect or sent out really 
continuously. Real-time digital signal processing provides 
precise and predictable timing characteristics. Because of the 
deterministic property of a real-time system, the accuracy of 
running time of a control iteration, or a while loop, can be 
expected. In the current work, if the running time for each 
iteration is t, considering the time delay of one control 
iteration and the 180-degree phase difference, the actual 
phase input ( IP   in Fig. 2) of the ANN model should be, 

360))int((180  tFItFIPIIP        (5) 

D. Design of the Inverse ANN Model 

As mentioned before, in the proposed AVC system, the 
ANN is used for function approximation and works as an 
inverse identification model of a part of the plant. The design 
of the ANN model is based on the applied AVC strategy and 
the actual experimental setup. Generally, design steps are as 
follows [4]: First, training data for the ANN models are 
collected via experiments according to the AVC strategy 
presented in the last sections; Then, the training data are 
analyzed in order to choose a proper normalization method; 
The general network architectures of the ANN models are 
then designed and the suitable learning algorithm is chosen; 
Finally, the ANN models are trained to avoid overfitting. The 
network architectures may be modified for better function 
approximation based on experimental results.  

An ANN model example based on the proposed vibration 
suppression subsystem design is shown in Fig. 3. In this 
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example, a multilayer feedforward ANN is utilized. The 
ANN architecture used here has three inputs, one hidden 
layer of log-sigmoid neurons and one output layer of three 
log-sigmoid neurons.  

      
 Fig. 3: ANN model example 

The ideal control signal frequency (FO) should be the 
same as vibration frequency (FI) [5]. Moreover, the input PI 
can be cancelled if the phase difference (PD) between the 
control signal and the vibration signal is utilized (PD = PO – 
PI). In this case, the ANN can be simplified as shown in Fig. 
4. In the detailed design, the number of hidden layers and the 
number of neurons in each hidden layers are decided by 
finding out what the best numbers are to obtain the smallest 
Mean Square Error (MSE) for validation data sets. 

              
                Fig. 4: Simplified ANN model 
In experiments to collect training data for the ANN models, 

only the control actuator work to generate the plant vibration, 
i.e., the primary disturbance x(p) =0. Therefore, the inputs of 
the ANN are AI and FO (FI should be the same as FO). To 
get a robust training, which means a training affected 
minimally by external sources of variability, the experiments 
to collect training data need to be designed first. In this 
project, the fractional factorial design is used for the design 
of experiments to obtain the training data for the ANN 
models.  

Considering the time delay between the iteration to collect 
vibration signal parameters and the iteration to send out 
control signal, the actually control signal phase should be: 

PDIPPO                   (6) 
where IP   can be calculated from (5) and PI is known in 
experiments. 

III. EXPERIMENTAL VERIFICATION 

Fig. 5 shows a schematic of the hardware setup developed 
for verification of the proposed methodology. The plant is a 
cantilever beam of plain carbon steel (dimensions: 550 mm x 
25 mm x 4.5 mm). Two electromagnetic shakers are used to 
provide primary disturbance force (shaker 1) and control 
force (shaker 2) to the beam. These shakers are located at 150 
mm and 380 mm from the clamped end, at each side of the 
beam respectively. To minimize the effect of the shakers on 
the structure, they are attached to the beam through stingers. 
These serve to isolate the shakers from the structure, reduce 
the added mass, and cause the force to be transmitted axially 
along the stingers. The control shaker is attached to the beam 
firmly; but the primary shaker simply pushes up against the 
beam. The resulting preload is used to maintain contact 
between the control shaker and the beam. The objective of 
the active vibration control system is to minimize the 

vibration of the beam at the sensor location, which is 518 mm 
from the clamped end of the beam. 

The first natural frequency of the system was found to be 
around 37.7 Hz and the second natural frequency was around 
135.8 Hz. Fig. 6 shows a photograph of the experimental 
setup as described. 

  
   Fig. 5: Experimental setup 

To evaluate the performance of the system for nonlinear 
vibration control problems, nonlinearity was introduced into 
the experimental arrangement. This could be done in two 
different ways. The first is by not attaching the primary 
shaker to the beam, but simply pushing it up against the 
beam. The resulting preload is used to maintain contact 
between the shaker and the beam. By increasing the driving 
force of the primary disturbance, the primary shaker rattle as 
it loses the contact with the beam, and therefore will make the 
resultant error signal spectrum noisier. The second way for 
introducing nonlinearity is by bandpass filtering the analog 
input signal from the sensor to provide a slight bias to the 
higher frequency harmonics, thus exaggerating the relative 
importance of the harmonics in the spectrum. 

      
     Fig. 6: Experimental setup photograph 

A. AVC System Design 

Based on the methodology and the experimental setup, the 
designed AVC system to generate a control signal is shown in 
Fig. 6. This control system may repeat all calculations after 
several control iterations and generates a new control signal 
for the current iteration. The new control signal obtained in 
the current iteration can be added to the original control 
signal from the beginning of the next iteration. Therefore, the 
actual control signal sent to the actuator is an accumulation of 
all generated control signals. The reason of waiting for some 
control iterations to generate a new control signal is to get 
more accurate measurements of vibration signals. A new 
control signal could be generated in 25 ms in experiments. 
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       Fig. 7: The AVC system in current work 

The parameters of the control signal, i.e., AO, FO, and 
(PO), can be obtained from ANN outputs and the equations 
in the last section. Technically, the phase difference of the 
control signal in programming and the actually control signal 
at the connector block is considered because the difference 
may not be the same when the system restarts. 

As introduced in the last section, training data for the ANN 
model are collected in experiments. The data ranges are 
decided by the regions of interest for each variable and 
hardware performance limitations. Since the frequency 
response ranges for the two amplifiers are 20 Hz to 30 KHz, 
and the vibration frequency range of interest is 25 Hz to 55 
Hz in the current work, the frequency range 25 Hz to 55 Hz is 
used for the control signal. To find out the proper amplitude 
ranges for the signals sent to the shakers, many experiments 
were undertaken. Considering the measurement range of the 
sensor and the hardware setup, according to the results of 
these experiments, the peak-to-peak amplitude range for the 
control signal sent to the actuator is set from 0.002 V to 0.038 
V. The phase difference range can be set from 0 degree to 360 
degrees. 

To reduce harmful effects, e.g., the squashing effect, of 
using sigmoid transfer functions in the hidden layer and the 
output layer of the ANN model, and normalization, the above 
data ranges can be divided into several sub-ranges, e.g., the 
original frequency range can be divided into three smaller 
sub-ranges: 25 Hz to 35 Hz, 35 Hz to 45 Hz and 45 Hz to 55 
Hz. ANN models are trained separately for different 
sub-ranges. Moreover, Resilient Backpropagation (RPROP) 
algorithm is utilized to train ANN models because, although 
it is not the fastest one, theoretically, it can also help to reduce 
squashing effect of the magnitudes of partial derivatives. 

The values of all training data were normalized for 
efficient processing by the ANN. The data are normalized to 
a range of 0.1 to 0.9 by using the following equation: 
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            (7) 

where x is the real value,  scaledx  is the normalized value,  

minx  is the minimum value and maxx   is the maximum value 

of one input or output. 
The best ANN architecture found via experiments for the 

AVC system is like the example shown in Fig. 3. It is a 
multilayer feedforward ANN, which has two inputs, one 
hidden layer of 12 log-sigmoid neurons and one output layer 
of two log-sigmoid neurons. The output layer uses a 
log-sigmoid transfer function because the outputs of the 

ANNs are supposed to be constrained to a range of 0 to 1 and 
it is a good choice in the architecture for the current 
experiment setup [5]. This ANN architecture provides the 
smallest Mean Square Error (MSE) and has very good 
performance for generalization in experiments. For the same 
experimental setup, the ANN architecture did not change, but 
the weights between neurons changed for different data 
sub-ranges after training. 

B. Experimental Results 

In order to evaluate the performance of the AVC system 
experimentally, a noisy sinusoidal signal was sent to the 
primary shaker to generate beam vibration. The controller 
was turned on several seconds after the start of the vibration 
to allow steady state to prevail. 

All the analog input and analog output signals, and FFT 
(magnitude and phase) are displayed on user interfaces 
graphically only on a host computer and let the target 
computer work as a dedicated real-time system. The 
sampling rate for data analysis was 20000 Hz.  

Fig. 8 shows five examples of the beam vibration at the 
sensor location in the first 7.5 seconds. The figures are 
grabbed from a user interface directly. In all the experiments, 
the primary shaker was driven with a primary noisy 
sinusoidal signal from the beginning. After about 2.75 
seconds, a control signal was generated and sent to the 
control shaker, but with only about a fraction, e.g., around 
70%, of the calculated amplitude to get some vibration 
remained for a second control signal to check out the 
adaptability of the AVC. Then, after about 1.5 seconds a new 
control signal was generated based on the current vibration 
status and added to the original control signal sent to the 
control shaker.   

In Fig. 8(a), for the primary signal, the frequency is about 
32.33Hz, the amplitude is about 0.038V, and the 
signal-to-noise ratio (SNR) is about 40; In Fig. 8(b), for the 
primary signal, the frequency is about 38.38Hz, which is 
close to the first natural frequency, the amplitude is about 
0.028V, and the SNR is about 40; In Fig. 8(c), for the primary 
signal, the frequency is about 43.58Hz, the amplitude is 
about 0.070V, and the SNR is about 35; In Fig. 8(d), for the 
primary signal, the frequency is about 33.07Hz, the 
amplitude is about 0.099V, and the SNR is about 38; In Fig. 
8(e), for the primary signal, the frequency is about 28.88Hz, 
the amplitude is about 0.059V, and the SNR is about 35.  

Fig. 8(a) shows that the amplitude of the vibration was 
reduced from about 0.58V (peak to peak) to about 0.1V, 
which represents about 82.7% reduction of the beam 
vibration at the sensor location; Fig. 8(b) shows that the 
amplitude of the vibration was reduced from about 2.88V to 
about 0.5V, which represents about 82.6% reduction of the 
beam vibration at the sensor location; Fig. 8(c) shows that the 
amplitude of the vibration was reduced from about 2V to 
about 0.45V, which represents about 77.5% reduction of the 
beam vibration at the sensor location; Fig. 8(d) shows that the 
amplitude of the vibration was reduced from about 1.8V 
(peak to peak) to about 0.32V, which represents about 82.2% 
reduction of the beam vibration at the sensor location; Fig. 
8(e) shows that the amplitude of the vibration was reduced 
from about 0.65V (peak to peak) to about 0.13V, which 
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represents about 80% reduction of the beam vibration at the 
sensor location. 

 
          (a) 

 
          (b) 

 
           (c) 
 

 
           (d) 

 
           (e) 

     Fig. 8: Beam vibration reduction examples  
For the same primary noisy sinusoidal signal as in the 

above five examples, without reducing the first calculated 
control signal amplitude, the system can get almost the same 
vibration amplitude reduction right after the first control 
signal. These examples show the online adaptive ability of 
the system. In some other experiments, the system was tried 
to repeat the vibration detection and control loop in 25 ms 
and worked very well.  

Experimental results have also showed that the designed 
AVC system eliminates the sensitivity to time delays. Some 
experiments have been executed by changing the position of 
the control shaker or the point of interest, i.e., the sensor 
location, and therefore changing the time delays. After each 
modification, an initialization program can be run to collect 
training data and train the ANN model automatically based 
on the new experimental setup, and therefore absorbs the 
information of new time delays. After retraining, the AVC 
can work as well as before. For example, Fig. 8(a) shows a 
reduction of 82.7% in vibration amplitude when the primary 
vibration of the beam was at 32.33 Hz. After moving the 
sensor to another location (478 mm from the clamped end of 
the beam) and retraining the ANN, the AVC system can still 

get a reduction around 82%. The experimental outcomes did 
not show reduction of the AVC system ability caused by time 
delay changes. 

Many Many papers, e.g., [6], have already demonstrated 
the ability of ANN control systems to deal with nonlinearity 
because of the nature of ANNs. Although the ANN used in 
the current work is not design for dealing with nonlinearity, 
the AVC system has proved to be able to deal with 
nonlinearity as long as the vibration frequency can be 
measured accurately. In the above experiments, as mentioned 
before, the primary shaker was simply pushed up against the 
beam to introduce nonlinearity into the experimental setup. 
By increasing the driving force of the primary disturbance, 
the primary shaker rattle as it loses the contact with the beam, 
and therefore will make the resultant error signal spectrum 
noisier. To check the ability of the AVC system in dealing 
with nonlinearity, some other experiments were completed 
with the primary shaker attaching to the beam. The results of 
these experiments are almost the same as the results shown 
above. In most cases, for the same inputs, the outcome 
differences of the two different setups are within 8%. For 
example, when the frequency of the primary signal is about 
45.88Hz and the amplitude is about 0.27V, a reduction of 
57.9% of the beam vibration at the sensor location was 
obtained when the primary shaker was simply pushed up 
against the beam; when the primary shaker was attached to 
the beam, for the same primary signal, the reduction was 
around 59%. 

IV. DISCUSSION 

The experimental results show that the proposed AVC 
system works effectively. The ANN controller of the 
modified AVC system can reduce the root mean square 
(RMS) vibrations by up to 90%. The reductions in the RMS 
vibrations have a very significant effect on the fatigue life of 
a structure in practical application. Generally, reducing the 
RMS vibrations by just 10% doubles the fatigue life [7]. 

By using a real-time developing environment, in some 
experiments, the designed AVC system was tried to repeat 
the vibration detection and control loop in 25 ms and worked 
very well. It is online adaptable. The repetition of adding new 
control signals can be set up at any specific time during 
online control with finite number times. To repeat the 
vibration detection and control loop in infinite times is a part 
of future work. 

The AVC system is also robust when the experimental 
setup changes. When the setup changes, the AVC system can 
collect training data and train the ANN model automatically 
via running a calibration program and then the system is 
prepared for AVC of the new setup.  

At the present time, the AVC system has proved to be able 
to deal with noisy sinusoidal vibrations. Its ability to deal 
with more complicated signals will be tested in the future. 

V. CONCLUSIONS 

An effective, adaptable, and real-time online AVC system 
to suppress noisy sinusoidal vibrations of a cantilever beam 
has been achieved. The efficiency of this controller is shown 
through experimental verification. This AVC system could 
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be used for machining chatter suppression because it is 
widely known that chatter signals have harmonic shapes, and 
their frequencies are around the respective natural 
frequencies of the machining systems. Moreover, some tools, 
e.g., a boring bar, can be modeled as some cantilever beams.  
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