
 
 

 

  

Abstract—Two-dimensional stagnation-point flow in three 
different aspect ratios is studied by solving the full Navier-Stokes 
equations with the computational fluid dynamics (CFD) software 
of STAR-CD and results are compared with those obtained from 
the similarity solution. Pressure variation in the directions normal 
and parallel to the wall, as well as wall shear stress along the wall 
are investigated. Results show that pressure profiles are in good 
agreement for both numerical simulation and similarity solution 
at high aspect ratio in the stagnation-point region. Discrepancy of 
results in pressure profiles increases as aspect ratio decreases and 
in region which is away from the stagnation-point flow. It is found 
that wall shear stress is proportional to the distance from the 
stagnation-point along the wall as expected by similarity solution.  
 

Index Terms— Computational Fluid Dynamics, Similarity 
Solution, Stagnation-Point Flow.  
 

I. INTRODUCTION 

Consider a fluid stream whose velocity vector coinciding 
with the y axis as shown in Figure 1. The fluid impinges on a 
plane boundary which coincides with the x axis. 
Stagnation-point flow has been found in numerous 
applications in engineering and technology [1]. It can be 
located in the stagnation region of flow passing any shape of 
body, i.e., pier and aerofoil. Hiemenz [2] discovered that 
stagnation-point flow can be analyzed by the Navier-Stokes 
(NS) equations through similarity solution in which the 
number of variables can be reduced by one or more by a 
coordinate transformation. Similarity solution is limited to 
certain types of flow with certain boundary conditions and 
the result is valid in specific region of the flow. On the other 
hand, numerical simulation of the NS equations in 
stagnation-point flow can give a result which can be 
interpreted from different point of view.  In previous study 
[3][4] of velocity distribution and boundary layer thickness 
in 2-D stagnation-point flow, it is found that boundary layer 
thickness obtained in numerical calculation is not constant 
along the wall, but decreases slightly along the wall. The 
difference of the boundary layer thickness obtained from 
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numerical simulation and similarity solution is small for low 
aspect ratio and close to the stagnation point. The paper is to 
use computational fluid dynamics software to solve the 
Navier-Stokes equations for pressure in two-dimensional 
stagnation-point flow and the results are compared with 
those obtained from similarity solution. 

II. GOVERNING EQUATIONS 
The 2-dimensional Navier-Stokes equations for 

stagnation-point flow shown in Figure 1 can be written as [5] 

 
Fig. 1 Configuration of stagnation-point flow 
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Where V

r
= ui+υj is velocity with components u and υ along 

the x and y axis, p is pressure, ν is kinematic viscosity of fluid, 
and ∆ is the two-dimensional Laplace operator. The boundary 
conditions are u=υ=0 at y=0 and u=0, υ=-V when y→∞.  
 

A. Similarity Solution 
For 2-D planar incompressible flow, (1) can be satisfied 

automatically by introducing a combined stream function ψ  
(x, y): 
 
 
 
For stagnation flow without friction (ideal fluid flow), the 
stream function ψ ∝ xy or may be written as 
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                                     BxyI ==ψψ                                     (4) 
 
Where B is a constant and from which 
 
                             BxuI =  and  .ByI −=υ                            (5) 
 
We have uI=0 at x=0 and υI=0 at y=0. The point x=0 and y=0 
is a stagnation point. However, the no-slip boundary at wall 
(y=0) cannot be satisfied. 
For (real) viscous fluid, ψI can be modified as  
 
                                      )( yBxf=ψ .                                   (6) 

 
In this way, the no-slip boundary condition can be satisfied at 
y=0. Note that the x-dependence relationship, ψ ∝ x, is still 
the same as that for ψI in (4). The velocity components 
corresponding to (5) are 
 
                     )(' yBxfu =   and   )(yBf−=υ                  (7) 
 
Where dydff /'= . Substituting (7) into (3), we have 
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which is function of y only and gives 
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With (8), pressure can be eliminated by differentiating (2). 
The result is  
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The no-slip condition at y=0 implies that 
 

.0)0()0(' == ff  
 
For region sufficiently away from the wall, the viscous effect 
is negligible and the flow is expected to match with the 
inviscid flow result. Thus we require 
 
                         1)(' =∞f   and   yf =∞)(                    (10) 
 
by comparing (7) with (5). Integrating (9), we have 
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The constant C can be determined from (10) and is 
 

.
ν
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Note that the conditions, 0)(''')('' =∞=∞ ff , have been 
used to ensure that the flow matches smoothly with the 
inviscid flow at y→∞. Thus (11) becomes 
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Note that B has the dimension as “1/time” and f  has 
dimension as “length”. By introducing the dimensionless 
variables  
 
               νη By=    and   ),()( yfBF νη =               (13) 
 
such that 
 

)(' ηBxFu =   and   )(ηνυ FB−= , 
 
(12) becomes 
 
                        0)'1('' 2''' =−++ FFFF ,                   (14) 
 
which is in dimensionless form, and is solved subject to the 
following boundary conditions: 
 
                    .01)(')0(')0( =−∞== FFF                  (15) 
 
Similarity solution [5] shows that region of nonzero vorticity, 
also known as boundary-layer thickness δSS, which is defined 
as the value of y such that u=0.99Bx, is constant along the 
boundary wall and is given by δSS=2.4(ν/B)1/2. It is noted that 
for 2-D plane stagnation-point flow as shown in Fig.1, the 
constant B is equal to V/D and ν is kinematic viscosity of 
fluid which is chosen as water at 250C and has the value of 
8.908728389×10-7 m2/s. The two-point boundary value 
problem of (14) and (15) is solved numerically with Matlab 
build-in function bvp4c.m as illustrated in [6] 

 
Once u and υ are available, pressure in the flow can be 

obtained by integrating (2). The result is  
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Where p0 is the stagnation pressure at x=0, y=0 and is setting 
to be zero in present study. Thus the pressure gradients in the 
direction parallel and normal to the wall are given by: 
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Hence the pressure gradient in the direction normal to the 
wall is small with the order of magnitude of ν  and is 
negligible for small fluid viscosity. Finally shear stress at the 
wall is defined as  
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which can be expressed as 
 

ν
µτ BBxFw )0("= .                       (19) 

 

B. Numerical Simulation 
As indicated in [7], a proof of uniqueness of a similarity 

solution of the stagnation-point flow is not available. 
Numerical solution is sought to solve stagnation-point flow 
problem by a commercial CFD software STAR-CD.  
STAR-CD employs implicit methods to solve the algebraic 
finite-volume equations resulting from the discretisation of 
the Navier-Stokes equations. Three implicit algorithms are 
available in STAR-CD. They are SIMPLE[8], PISO[9], and 
SIMPISO[10]. It is PISO method that is employed in this 
simulation. The acronym PISO stands for Pressure Implicit 
with Splitting of Operators. The PISO algorithm is a 
pressure-velocity calculation procedure developed originally 
for the non-iterative computation of unsteady compressible 
flows. It has been adapted successfully for the iterative 
solution of steady state problems. As s result of the 
decoupling of the equations for each dependent variable and 
subsequent linearization, large sets of linear algebraic 
equations are obtained and algebraic multigrid (AMG) 
method is chosen to solve matrix equations in STAR-CD. 
Boundary conditions are u=υ=0 at y=0 and u= 0, υ =-V when 
y=D. Three cases with different aspect ratios (D/W) have 
been investigated in present stagnation-point flow study and 
detailed information is given in Table I.  Rectangular finite 
volumes with non-uniform distribution is used to handle the 
large velocity gradient near the wall. Reynolds number, 
which is defined as Re=VD/ν, is also given in Table I. 
Number of finite volumes being used in cases I, II ,and III are 
60,000, 80,000, and 200,000 respectively. The order of 
residuals is 10-5 for all simulations. 
 

 
 
 
 

TABLE I 
CONFIGURATION OF STAGNATION-POINT FLOW 
 W (mm) D(mm) V(mm/s) Re 

Case I 20 30 10 337 
Case II 20 40 10 449 
Case III 20 100 10 1122 

 

III. NUMERICAL RESULTS AND COMPARISONS 
 

Fig. 2 shows the pressure variation normal to the solid 
wall at x=0.001m, 0.0025m, and 0.0075m for case I with low 
aspect ratio of D/W=1.5. Lines without markers denote 
results obtained form numerical simulation (NS) and lines 
with markers are from similarity solution (SS). Results 
obtained from those two methods are in good agreement in 
the region near the stagnation point and within the boundary 
layer, i.e., x≤0.0025m, y≤δSS=0.00392m. The difference 
increases as either x or y increases, i.e., away for the 
stagnation point. It is noted that pressure curves at x=0.001m 
and 0.0025m, are close to each other for either similarity 
solution or numerical simulation. A large difference is 
observed at x=0.0075m from both methods. Also shown in 
Fig. 2 is the boundary layer thickness (δSS) obtained from 
similarity solution. As we increase the aspect ratio from 
D/W=1.5 to D/W=2 as shown in Fig. 3, the discrepancy of 
results from these two methods has been improved by about 
50%. This can be seen even more clearly when we further 
increase the aspect ratio to D/W=5 as shown in Fig. 4. In Fig. 
4, all pressure curves almost fall on a single curve within the 
boundary layer. The difference of results is only observed in 
the region where it is out of the boundary layer and that 
difference is still much smaller than those obtained from low 
aspect ratio. It should be noted that in all three cases, the 
pressure gradient normal to the wall within the boundary 
layer thickness in small which is consistent with (18).  
 

 
 

Fig. 2 Pressure profiles and boundary layer thickness of stagnation-point 
flow for case I 

 

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



 
 

 

 
Fig. 3 Pressure profiles and boundary layer thickness of stagnation-point flow for case II 

Fig. 4 Pressure profiles and boundary layer thickness of stagnation-point flow for case III 
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 Pressure variations parallel to the wall within the boundary 
layer and outside the boundary layer are given in Figs. 5 and 6, 
respectively. Again lines without markers represent results 
obtained from numerical simulation (NS) while lines with 
markers are from similarity solution (SS). Fig. 5 shows that, 
within the boundary layer, i.e., y=0.001m, the pressure 
variations parallel to the wall obtained by numerical 
simulation and similarity solution are very close for high 
aspect ratio. For low aspect ratio, they are still close near the 
stagnation point (x≤0.00025m), but differ from each other 
when x is increasing. Nevertheless, the fact that pressure is 
proportional to x2 can be observed for all cases. Fig. 6 
presents pressure variations parallel to the wall outside the 

boundary layer at y=0.01m. Results obtained from both 
methods are in good agreement only for high aspect ratio.  
Discrepancy of results is observed even in the region of 
stagnation point for low aspect ratio. It should be noted that 
the trends of pressure profiles are similar to each other for all 
cases.  
 

Distribution of wall shear stress is given in Fig.7. All cases 
show that the wall shear stress is proportional to x except in 
the region close to the exit on both sides. This in fact is 
consistent with those indicated in (19). It is also found that 
wall shear stress by numerical simulation is always larger 
then those predicted by similarity solution. 

Fig. 5 Pressure variations parallel to the wall within boundary layer thickness at y= 0.001m 
 

 

 
 

Fig. 6 Pressure variations parallel to the wall outside the boundary layer thickness at y= 0.01m 
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Fig. 7 Distribution of wall shear stress 
 

 

IV. CONCLUSION 
 
 This study provides a numerical testing of the 
distribution of pressure and wall shear stress in 
stagnation-point flow. Numerical findings show that pressure 
variation obtained from similarity solution and numerical 
simulation are in tremendously good agreement for large 
aspect ratio and in region close to the stagnation point.  
Discrepancy of results in pressure profiles increases as aspect 
ratio decreases and in region which is away from the 
stagnation point. Results from numerical simulation show 
that pressure variation normal to the wall and within the 
boundary layer is negligibly small, which is consistent with 
those predicted by similarity solution. Both similarity 
solution and numerical simulation give good agreement of 
pressure distribution parallel to the wall with high aspect ratio 
in the region which is within or outside the boundary layer. 
Numerical simulation finds that results of wall shear stress are 
larger than those predicted by similarity solution. But the 
variation of wall shear stress with x has been observed. It is 
concluded that in order to simulate more accurately the 
stagnation-point flow, high aspect ratio should be chosen  
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