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Optimization of Space Structures with Fuzzy
Constraints Via Real Coded Genetic
Algorithm(RCGA)

A. Behravesh? |,

Abstract— Most conventional optimization methods
contain the problems with constraints having crisp numbers.
But in most practical engineering problems, the constraints
contain allowable non crisp numbers that make using fuzzy
optimum design inevitable. In this article the combination of a-
cut fuzzy method with evolutionary algorithms such as Genetic
Algorithm (GA) is investigated. Also some schemes to increase
the speed of Real Coded Genetic Algorithm (RCGA) are used.
The performance characteristics of the above methods are
investigated by two space structures. The examples show that
using fuzzy programming increase the efficiency of RCGA.

Keywords—fuzzy programming, membership
parametric nonlinear programming, Genetic Algorithm.
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1 INTRODUCTION

The problems in the real world often have complex
construction due to the imprecision and uncertainty inherent
in defining and perceiving them. It is possible to accurately
model the systems which have less complexity with
mathematical equations. If there is enough data from the
systems that their complexity is a little more, we will be able
to solve them with free models such as neural network.
However, in order to model the systems that have high
complexity, less data, ambiguous and imprecise information,
Fuzzy set theory is the best way.

Fuzzy set theory was introduced by Zadeh in 1965. Since
then it has been developed and applied in different branches
of sciences [1]. In crisp or Conventional set theory the value
of each sentence can be true or false but in fuzzy set theory
the value of each sentence can be a number between zero
and one. For example, in structural design problems the
stress (o) in the members must be limited by allowable
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values. In classical set theory it means that ¢ = oV is
acceptable but 6 = 6” + Ac (Ac > 0) even for very low
values of Ac is unacceptable, but in fuzzy set theory we can
accept it with a membership degree [7]. The fuzzy set based
optimization and the concepts of fuzzy constraints, fuzzy
objective and fuzzy decision were introduced by Bellmann
and Zadeh [1]. Since in most structural design problems, the
input data and parameters are fuzzy and the behavior of
structure is non linear, it is necessary to develop fuzzy
mathematical programming for optimum design [3].

After modeling imprecision in formulation of structural
optimization problem, Genetic Algorithm (GA) can be used
for solving the problem [4]. GA is a search and optimization
method based on principles of genetics and natural selection.
Genetic algorithm was introduced by John Holland in 1975
and developed by one of his students, Goldberg (1989). The
advantage of this method to other methods is its ability to
find the global minimum or maximum with continuous or
discrete variables without using the derivatives of cost
function [5]. Genetic algorithm is used directly only for
solving unconstrained optimization problems, so for solving
constrained problems we should transform them to
unconstrained problems by penalty function method [6].

For the first time Wang and Wang [7] applied a—cut
method for solving fuzzy structural optimization problem. In
this method, there is an optimal solution for each value of a.
This is the base strategy for solving structural optimization
problems in which the allowable stresses and displacements
are in fuzzy form.

Rao, Sundaraju and Prakash [8], have used A formulation
for solving fuzzy structural optimization problem. Contrary
to a—cut method, A formulation gives a unit optimum
answer and is often used in multi objective optimization
problems.

Sarma and Adeli [4], combined fuzzy A formulation with
binary genetic algorithm for solving fuzzy optimization
problem.

Soh and Yang [2], have used fuzzy logic for handling the
GA operators in size and shape optimization of structures.

Shih, Chi and Hsiao [3], have used multiple o cut method
(single - double and multiple cuts methods) for solving
fuzzy structural optimization problems with fuzzy
constraints.

In this article a—cut method is used to transform fuzzy
optimization problem to crisp parametric programming
problem, then an optimum RCGA is used for solving the
obtained problem. Two space structures with continuous
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sizing variables and fixed topology are presented to
demonstrate the robustness of the method. The programs for
analyzing the structures and RCGA are developed in
(MATLAB 6.5) software.

2 FUZZY CONCEPT
Assume X is a set of elements and A is a fuzzy subset of
X then the fuzzy set A can be defined as a set of ordered
pairs, each with the first element from X and the second
element from the interval [0,1] [9].

A={(x, p ()] xeX} 6]

nx(x) is the membership function or membership degree of
element x in fuzzy set A |, the membership degree maps the
elements of X to the interval M= [0,1].

A () : X —>[0,1] (@)

3 NONLINEAR PROGRAMMING WITH FUZZY CONSTRAINTS

The basic concepts and procedure of conventional linear
programming with fuzzy constraints (FLP) can be applied to
nonlinear programming problems with fuzzy inequality
constraints (FNLP) [3].

The general model of nonlinear programming with fuzzy
resources can be formulated as [3]:

find X:[xl,xz,...,xn]T
min f(X)
- (3)
St g, (X)<b, i=1,2, .., m
L
X <X< XU

In (3) f(x) and gi(x) are fitness function and ith inequality
bjvi is
located in the fuzzy region of [b; , bi+P;] with the fuzzy
tolerance P;.

constraints, respectively. The fuzzy number

4 ol- CUT METHOD

In the Verdagay’s method for fuzzy mathematical
programming, the trapezoidal membership function is
considered for fuzzy constraints. Fig.1 shows the
trapezoidal membership function and (4) is its equation [3]:

A (04

b, &0 p+p g(X)

Fig. 1. Trapezoidal membership function for p o (x)
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1 if g{(X) <bi

_ 8i(X)-bj

P if bngi(X) <b; +p; 4)

by ) = 4 1

0 if g;(X)> bj+Pj

In fact (4) represents the degree of satisfaction of the ith
constraints with the vector X. Also it shows that by
increasing the resources i.e., by going to the base of
trapezoidal, the degree of satisfaction of constraint
decreases. (4) is equivalent to the following formulation [3]:

min f(X)

S.t )

Xe Xa
Where ae[0,1] and  Xq = {x; |ug (X 2av;, X 20} by
1

substituting (4) into (5) we will obtain the following
parametric nonlinear optimization problem.

min f(X)

S.t

(6)
g; X) < bj + (1-0)B;

xL<x<xVU

5 SOLVING PARAMETRIC NONLINEAR PROGRAMMING
PROBLEM

The obtained parametric programming problem (6), can
be solved for different values of o by reliable methods. In
this article we have used an optimum RCGA for solving the
crisp problem.

6  GENETIC ALGORITHM (GA)

GA is one of the methods which may be used to solve an
optimization problem. This algorithm is based on natural
selection using random numbers and does not require a good
initial estimate [10].

6.1

GA in the binary form works with binary string. Each
string which is called chromosome is the member of
population and the GA’s operators that are inspired from the
natural selection guide the population to the evolution or in
other words, maximize the fitness function. A simple
genetic algorithm consists of three operators [11]-[12]:

1- Reproduction

2- Crossover

3- Mutation

Fig. 2 indicates the different steps of the algorithm with

Binary Genetic Algorithm

WCE 2009



Proceedings of the World Congress on Engineering 2009 Vol 11
WCE 2009, July 1 - 3, 2009, London, U.K.

three operators. The process of each operator is detailed
bellow:

Initial Population (n)

|A
*‘

Reproduction

v

Crossover |

Fitness
Calculation

Yes
Fig. 2. simple flowchart of a GA

Reproduction

The reproduction operator copies each chromosome
proportional to its fitness function in the mating pool so the
chromosome with the best fitness function will be copied
more than the rest in the new population [11]-[12].

Crossover

The crossover operator works on two chromosomes and
produces two new offspring that will inherit some
characteristics of their parents. In this process two
chromosomes in the mating pool are selected in pairs with
(p.) probability, then another random number determines the
crossover point on the chromosome. Finally all bits of these
two strings are exchanged between each other [11]-[12].
Fig. 3 shows the process of this operator. Crossover point
can be selected more than once on the chromosome; the
process is called multi point crossover [11]-[12].

chromosome A;=0110]1
chromosome A,=1100]0
Crossover

chromosome Avl =01100

chromosome sz =11001

Fig. 3. Crossover operator

Mutation

The mutation operator causes random changes in the
people of population. In the process the chromosomes with
probability of (p,) are selected for mutation from the
population, then a random number determines the position
of mutation point and the bit in this place is complemented.

ISBN:978-988-18210-1-0

The process is shown in Fig. 4 [11]-[12]:

chromosome A1= 10017001
mutation

chromosome Avl =10010001
Fig. 4. Mutation operator

6.2  Real Coded Genetic Algorithm (RCGA)

Since in structural optimization problems with continuous
variables we need to work on real numbers we have used
RCGA. In RCGA contrary to the binary method we do not
need to decode the variables also, less processing memory is
used [5]. In this method each chromosome is defined as an
array of real numbers with the mutation and crossover
operators working as shown in Fig. 5 [13]:

The mutation can change the value of a real number
randomly and the crossover can take place at the boundary
of two real numbers [13].

§=(x1,x2,x3)

X X, X3

Possible crossover position

Xi Mutation > xj=xj+rand (_Ximax,ximax)
2 2
Kimax 1 the maximum possible value for Xi
Fig. 5. mutation and crossover operators in RCGA

7 TRANSFORMING CONSTRAINED OPTIMIZATION TO
UNCONSTRAINED

Since GA is used only for solving unconstrained
optimization problems, it is necessary to transform the
constrained problem to the unconstrained optimization
problem. Here we have used a quadratic penalty function as
shown in (7) [6]:

N N lg.
minp(A) = szili A+ |3{Z[(M P
Lf 1 1 |2
i
M s,
N (R VA
1 |52
1
()
(mfl)"':max( %l 9)
ol o
1 1
(|6i| ~ 1) = max( il 1,0)
52 82
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c? = 5{4 when 6;<0
of = ciU when ¢;>0
& = 6iL when §;<0
o'=o6Y when §;>0

where the last term is the penalty function, L¢ is the
normalizing factor, p is the penalty coefficient, M is the
number of degrees of freedom, o; is stress in member i, &;
is the displacement in the direction of degree of freedom i

and of, & are allowable stresses and displacements,
respectively.

8 METHODS FOR INCREASING THE SPEED OF RCGA
(OPTIMUM RCGA)

Typically in structural optimization problems with GAs, a
population (pop) of many individuals with a high crossover
rate (p.) and very low mutation rate (p,) is used [6]-[14]-
[15]. Following the typical condition, RCGA with pop = 40,
pc = 0.7, pm = 0.01 was tested for two sample space
structures:

8.1  Sample structures:

The samples contain 25 and 72-bar space truss under two
load conditions [16]-[17]. Displacement method is used for
analyzing the structure. The value of B (penalty coefficient)
is increased by constant 10 in each 10 iteration and a value
of 1000 is used for normalizing factor L.

8.1.1  The 25 bar space truss:

The 25 bar transmission tower that is shown in Fig. 6 has
been optimized by different researchers [16]-[17]. In this
example the material density is 2779.48 kg/m’ and the
modulus of elasticity is 68900 MPa. The structure is
subjected to two loading conditions that are shown in Table
1. There are 25 members that are divided into 8 groups:

(1) Ar, (2) Ar-As, (3) Ag-Ag, (4) Ajp-Arr, (5) Aip-Ays,
(6) Ai-Ar7, (7) Aig-Agr , (8) Ap-Ass.

Table 1

Loading conditions for 25 bar space truss

Table 2
Member stress limits for 25 bar space truss

Compressive  Tensile stress
Variables stress limits limits (MPa)
(MPa)
1 241.78 275.6
2 79.855 275.6
3 119.23 275.6
4 241.78 275.6
5 241.78 275.6
6 46.569 275.6
7 47.947 275.6
8 76.354 275.6

Node Casel(kN) Case2(kN)

Px Py Pz Px Py Pz
1 0.0 89.0 -2225 445 445 -22.25
2 00 -89.0 -2225 0.0 445  -22.25
3 0.0 0.0 0.0 2225 0.0 0.0
4 0.0 0.0 0.0 2225 0.0 0.0

The stress limits of the members are listed in Table 2. All
nodes in all directions are subjected to the displacement
limits of +0.00889m. The lower bound of cross-sectional
areas is given as 0.00000645m?

ISBN:978-988-18210-1-0
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200in

Fig. 6. 25 bar space truss structure
(1in=0.0254m)

8.1.2  The 72 bar space truss:

The 72 bar spatial truss which is shown in Fig. 7 has been
studied by different researchers [16]-[17]. In this example
the material density is 2779.48 kg/m’® and the modulus of
elasticity is 68900 MPa. The structure is subjected to two
loading conditions, in the first loading condition, node 17 is
subject to 22.25 kN, 22.25 kN, -22.25 kN along the x, y and
z directions, respectively. In the second loading condition,
nodes 17, 18, 19 and 20 are subjected to -22.25 kN along the
z axis. allowable stress for both tension and compression
are 172.25 MPa. The upper most nodes are subjected to the
displacement limits of £0.00635 m. The minimum permitted
cross-sectional area of each member is 0.00000645m” The
structure has 72 members that are divided into 16 groups
which are following:

(]) AI'A4a (2) A5-A|2, (3) Al}'Alﬁ’ (4) Al7'A18a (5) A19'
A22’ (6) A23'A30> (7) A31-A34, (8) A35'A36= (9) A37'A40> (10)
Asi-Asg , (11) Aso-Asz, (12) Asz-Ass, (13) Ass-Ass, (14) Aso-
A(x(n (15) A67'A70’ (16) A71'A72~

From the results the speed of convergence was not desirable.
For achieving more speeds, a variety of sets of conditions
with 40<pop<100, 0.6<p.<0.9 and 0.001<p,,<0.1 were used.
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Table 3

Optimal design for different values of a in 25 bar space truss

o 1 0.8 0.6 0.4 0.2 0.0
Ai(cm’) 0.7845 0.2548 1.1374 0.2787 0.0922 0.1012
Ay(cm?) 13.888 15.938 14.456 10.507 8.8295 9.6432
As(cm?) 18.047 16.819 20.630 17.128 17.779 14.022
Ay(cm’) 0.0980 0.0703 1.8626 0.1103 0.0909 0.1567
As(cm?) 0.1393 0.0806 0.3238 0.4509 0.0729 0.0651
Ag(cm?) 5.1061 6.4384 6.5287 4.3525 3.6711 3.8350
As(cm®) 10.527 10.637 9.1799 9.1328 9.2179 8.9973
Ag(cm’) 16.807 17.459 17.077 13.744 13.025 12.832

W) 2438.64 2305.52 2188.11 2070.21 1967.70 1876.96

Although in all these cases convergence occurred and the

parameters were obtained with enough accuracy, we did not

¥ o have desirabl.e ingrease in §peed of the algorithm and the

number of iteration remained around 9000 times. For

increasing the speed of convergence in the algorithm
following observations were made [13]:

1- Increasing py, -

2- Decreasing p. (An increase in pc causes the uniformity
of the population, and the algorithm loses its efficiency).

3- Decreasing the population (Although the increase in
pop decrease the number of iterations, the computation time
per iteration increases and this altogether decreases the
© (10) speed of the algorithm).

Regarding these facts the following conditions are used:

pop=6
) @ p=0.25
: Pm=0.9

Fig. 7. 72 bar space truss structure
(1in=0.0254m) After each iteration, the weakest individual in the new

generation is replaced by the strongest in the old generation
[13].
Table 4

Optimal design for different values of a in 72 bar space truss

a 1 0.8 0.6 0.4 0.2 0.0
Aj(cm’) 14.039 11.676 9.9928 10.724 12.262 11.893
As(cm®) 3.0150 2.8569 2.5053 2.7756 2.8640 2.0588
As(cm?) 0.0812 0.1348 0.1606 0.0696 0.0832 0.1264
Ay(cm?) 0.0690 0.0748 0.0825 0.1600 0.1193 0.1406
As(cm?) 7.7985 7.5604 7.0423 8.6908 8.4076 6.3932
Ag(cm’) 3.4402 3.5634 3.0388 2.4485 3.0679 2.8917
As(cm’) 0.0832 0.0941 0.1948 0.1600 0.0690 0.3826
Ag(cm®) 0.0909 0.0954 0.3709 0.1258 0.0935 0.0832
Ag(cm’ 4.3189 3.5363 3.3834 3.6408 2.2988 2.2304
Ajp(cm’) 3.6660 2.3562 2.6653 2.3498 2.7666 2.3169
Aji(em’) 0.1922 0.2258 0.2296 0.0787 0.1458 0.2780
App(em?) 0.8206 0.5671 1.0561 1.1058 0.4922 0.3664
Ajz(em’) 1.2342 1.0761 0.8716 0.8510 0.9219 0.9297
Ajy(en’) 3.0563 4.3499 4.0647 3.1550 2.0775 2.9498
Ajs(em’) 3.2524 3.0298 2.4543 2.5730 1.8233 1.9923
Ajg(em’) 3.5756 4.0247 4.2815 3.8363 3.1343 3.4821

W) 1655.07 1593.35 1497.24 1407.74 1353.34 1298.72
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After performing the above modifications, the number of
iteration is reduced from 9000 to 1800 and the number of
structural analysis is reduced from 360000 to 10800 times.
In fact the speed of convergence is increased about 33 times.
Since the last step has an important effect in speed up, they
are explained in the following paragraph:

8.1.3  Placing the strongest of old generation

Since the process is highly randomized, to preserve the
characteristics of the old generation, or in other words, to
prevent the extinction of the old generation, after each
iteration and the execution of the crossover and mutation
operators the strongest individual from the previous
population replaces the weakest one in new generation [13].

5000 T T T T

4500 il

4000 i

3500 H B

3000 - B

weight (H)

2500 - i S
0.8

0.6

L 02 .
2000 =

1500 L L I I I L L I
1] 200 400 600 800 1000 1200 1400 1600

iteration

1800

Fig. 8. Convergence history for different values of a in
25 bar space truss

2500

2400 -

2300 -

2200 -

2100 -

weight (N)

2000 -

1900 -

I
1] 01 02 03 04 05 06 07 08 09 1

1800 L I I L

iteration

Fig. 9. Variations of weight with different values of a in
25 bar space truss

Table 5

Now it is possible to use the obtained optimum RCGA for
solving the (6) with different values of o in the two sample
structures. The trapezoidal membership function with the
tolerance of (Pi=0.3bi)[4] is used for stress and displacement
constraints in sample structures. Tables 3 and 4 show the
optimal solution of the algorithm for different values of a.
Figs. 8 and 10 provide the convergence history for different
values of o in 25 and 72 bar samples, respectively. As it can
be understood by Figs. 8 and 10 (Fig. 11 is the magnified
form of Fig. 10 which shows the obtained results clearly),
reducing the values of o, decreases the weight of structures.
Also we have drawn the weight of structure curve for
different values of o, in Figs. 9 and 12.

%10

weight (N)

0 I L L L L L L I
1] 200 400 600 800 1000 1200 1400 1600 1800

iteration

Fig. 10. Convergence history for different values of a in
72 bar space truss

3000 - q

2500 - q

2000 - q

weight (N)

1500 0.6

T

0.4

1000 - q

. . . . . .
1680 1700 1720 1740 1760 1780 1800
iteration

L L L L L
1580 1600 1620 1640 1660

Fig.11. magnified form of Fig.10

Variation of weight with iterations for a=1 in 25 bar space truss

iters 0 200 400 600 800 1000 1200 1400 1600 1800

W) 48122 25543 24755 2462.2 2448.8 24453 2442.6 24422 24422 2438.64
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Table 6

Variation of weight with iterations for a=1 in 72 bar space truss

iters 0 200 400 600

800

1000 1200 1400 1600 1800

W(N) 18330 4596 2490 1971

1817

1768 1661 1660 1658 1655

1700

1650

1600

1550

1500

1450

weight (N)

1400

1350

1300

L
0 01 02 03 04 05 06 0F 08 09 1

1250 I I L L

alpha

Fig. 12. Variations of weight with different values of a in
72 bar space truss

The variation of weight with iterations for a=1 in 25 and
72 bar space trusses, are shown in Tables 5 and 6,
Respectively.

9 CONCLUSION:

In this article fuzzy Real Coded Genetic Algorithm was
used for optimizing the structures. Also, some points were
used to increase the speed of RCGA. The method was
examined for two sample space structures (25 and 72 bar
space structure). It is concluded that by integrating fuzzy
programming with RCGA we can increase the efficiency of
GA and the results will be better than those obtained when
the constraints are in the crisp form (o=1). Also it is
observed in all examples, that by reducing the values of a,
the weight of structure will decrease. If we draw the weight
of structure curve for different values of a, it gives a fuzzy
solution for the optimization problems in which the
allowable values are the functions of o parameters, and can
be developed for different structures.
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