
 
 

 

  
Abstract— Software reliability is one of the most important 
software quality attribute and Software reliability estimation is 
a hard problem to solve accurately. However for management 
of software quality and standard practice of the organization, 
accurate reliability estimation is important. Non-homogeneous 
Poisson Process (NHPP) models and Artificial Neural Network 
(ANN) models are among the most important software 
reliability growth models. In this paper we study an approach 
using past fault-related data with cubic spline Network model to 
estimate reliability. A numerical example is shown with 
simulated datasets. The example shows that the proposed model 
accurately estimate the software reliability. 
 
Index Terms— Software Reliability, Cubic Spline Smoothing, 
Artificial Neural Network, Software Reliability Growth Model. 
 

I. INTRODUCTION 
Software engineering is a well established discipline 

focused on set of management and design activities of 
software development. The key issues of software 
engineering are the management of time, cost and quality like 
in other engineering disciplines.  

Software quality engineering comes into play 
prominently when the software systems grow and the impact 
of the software systems affect almost all in the society. Today 
a rapidly increasing dependency exists on the software 
systems. Usage of software systems can be seen in various 
activities ranging even to life critical systems and critical 
economic functions. One of the software quality issues is 
accuracy which is affected by errors in the software. 

People are used to strike off the software systems due to 
software quality problems. However, when the software 
usage becomes mature and when the system becomes safety 
critical, such an attitude will not be accepted. Therefore 
software quality engineers are responsible to provide 
measurements of the quality attribute of the software system. 
 

A.  Software Quality 
The term software quality has several meanings and the 

scope is also broadened.  ISO9126 defines the software 
quality as: “the totality of features and characteristics of a 
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software product that bear on its ability to satisfy stated or 
implied needs” [1]. 

Software quality is described in the means of models 
which are called software quality models and these have their 
own quality attributes. ISO9126 defines software quality 
with six software quality attributes as functionality, 
reliability, usability, effectiveness, maintainability and 
portability. 

Another famous and useful categorization of factors that 
affect the software quality was proposed by McCall, 
Richards, and Walters [2]. According to that categorization, 
quality factors are categorized into three categories as 
product transition, product operation, and product revision. 
Software reliability is one of five product operation quality 
attributes.  

According to the fact that the software reliability is a 
quality attribute in most of the quality models, it can be 
concluded that high quality of the software is dependent on 
the software reliability too. Hence if a company is to develop 
high quality software, it is important to employee the efforts 
on software reliability. In spite of this, literature state that the 
reliability has not been made use of with regard to the quality 
activities in the commercial software development [3], [4]. 
The following sections describe the term software reliability 
and why the industry doesn’t pay much attention on 
assurance of software reliability for their software products. 
In section III, a model which overcomes those problems has 
been proposed and finally results of our model are presented. 

 
B. Software Reliability 

IEEE defines software reliability as the ability of a 
program to perform required functions under stated 
conditions for a stated period of time [3]. Hence failures of 
the software reduce the reliability and to ensure the quality of 
the software, the measurements of the software operational 
failures are important. The following section describes how 
the reliability of the software is measured. 

Software reliability is measured during the software 
development and during the operations using a software 
reliability model. There are two types of software reliability 
models, according to the phase which the reliability is 
measured.  

(1) Software reliability growth model (SRGM) or 
software reliability estimation model — estimates the 
software reliability based on the observed failure data 
during the testing and operation phase.  

(2) Software reliability prediction model — predicts the 
software reliability based on the reliability matrices 
measured or calculated during early stages of software 
development life cycle (prior to the integrated testing in the 
testing phase). 

This paper focuses on the first type, the software 
reliability estimation model. 
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II. EXISTING SOFTWARE RELIABILITY GROWTH MODELS 
The first None-homogeneous Poison Process (NHPP) 

model, which strongly influences the development of many 
other models, was proposed by Goel and Okumoto [4]. 
Huang et al. [5] have discussed a unified scheme of discrete 
NHPP models by applying the concepts of weighted 
arithmetic, weighted geometric or weighted harmonic means. 
Ohba [6] presented a NHPP model with S-shaped mean value 
function. Lots of the generalized SRGMs, including the 
generalized SRGMs mentioned above, have been discussed 
in terms of continuous-time SRGMs, because the 
continuous-time SRGM is specifically applicable to the 
reliability analysis [7]. S. Inoue et al. give a Generalized 
Discrete Software Reliability Modeling based on program 
size [7]. Okamura et al. [8] have discussed a unified 
parameter estimation method based on the 
expectation–maximization (EM) principle and investigated 
the effectiveness of the estimation method based on the EM 
algorithm by comparing with Newton’s method [9]. 
Khoshgoftarr et al. [10] introduced the use of the neural 
networks as a tool for predicting software quality. Their 
model used domain metrics derived from the complexity 
metric data. Papers [11]-[16] have also adapted neural 
networks to software reliability issues. Emanm and Melo [17] 
have performed to construct a logistic regression model to 
predict which classes in a future release of a commercial Java 
application will be faulty. 

A. Limitations of SRGMs  
Even though numerous models have been discussed in 

literature, none is working fine in all the circumstances 
[18]-[19]. The most prominent limitations of the models are 
as the software behavior changes because the software code 
changes during the testing phase and hence, assumption of 
estimated  mean time of SRGMs  is violated by the dataset 
and more numbers of failure data are required to estimate the 
reliability [14], [18], [20]. Due to these limitations in SRGMs 
the estimation accuracy is impaired. Although this affects 
dramatically the reliability no attention has been given to it 
by the industry [18]. So it is necessary for a SRGM to 
overcome the above limitations in order to improve the 
reliability techniques used in the industry.  

B. The Accuracy of Software Reliability Estimation  
Splines are used to interpolate a dataset to piecewise 

arbitrary functions which consist of third order polynomials 
[21], [22]. 

Cubic spline interpolation doesn’t assume any statistical 
distribution which as shown in the section II, is one of the 
most prominent limitations in most existing models. The 
software reliability is an arbitrary event and our model 
employee arbitrariness in several places. Pattern recognition 
using artificial neural network [23] makes use of randomness 
in its architecture when identifying an unknown pattern. That 
is when a new pattern is to be recognized; the artificial neural 
network is trained using known patterns before identifying 
the new pattern.   

As discussed in the Section II A, the past failure dataset 
is usually small to make the estimation which is another 
limitation and that we have overcome here. To make use of 
our model only 9 recent failure data is needed. This solves the 
problem of past failure data do not show the future behavior 
problem discussed in Section II A. 

III. SRGM WITH CUBIC SPLINES 
This paper gives the Artificial Neural Network (ANN) 

based model to capture the input–output (I/O) relationships 
of software systems to corresponding failures and to improve 
the accuracy of reliability prediction. This network captures 
input and output through an evolutionary algorithm. 
For the input vector of [ ]145 ,...,, −−−= nnn xxxX  

(where 9≥n ), the corresponding mapping of cubic spline 
network can be   written as ( )145 ,...,ˆ −−−= nnnn xxxgx .  

Our model for software reliability prediction is designed 
as a three-layer structure with an input layer, cubic spline 
layer, and an output layer. Each layer has fixed nodes such as 
Input layer has 5 nodes corresponding to each input and cubic 
spline layer has 3 nodes each corresponding to the boundary 
conditions. The input data vector X is connected to the input 
nodes of the network to predict the time to  thn  failure.   

We can derive the activation functions using cubic 
splines. Given a function Sf =  which passes through the  

145 ,...,, −−− nnn xxx  nodes, can be represented in splines 

iS defined on [ ]ii xx ,1−  where 15 −≤≤− nin .  

∑
−

−=
=

1

5

n

ni iSS  

A cubic spline interpolant S , for f  is a function that 
satisfies the following six conditions, 
i. The spline forms a continuous function i.e. 

)1()1(1 +=++ ixiSixiS  for each    2,...,4,5 −−−= nnni  
ii. The spline forms a smooth function i.e. 

)()( 111 +++ ′=′ iiii xSxS  for each 

2,...,4,5 −−−= nnni  
iii. The second derivative is continuous i.e. 

)()( 111 +++ ′′=′′ iiii xSxS  for each 

2,...,4,5 −−−= nnni  

iv. S  is a cubic polynomial, denoted iS  on subinterval 

[ ]1, +ii xx  for each 2,...,4,5 −−−= nnni  

v.  The spline passes through each node )()( ii xfxS =  

for each 1,...,4,5 −−−= nnni  
vi. One of following the boundary conditions is satisfied 

a. 0)()( 15 =′′=′′ −− nn xSxS  
b. Set boundary derivatives for specified values. 

α=′′=′′ −− )()( 15 nn xSxS  
c.  Set boundary derivatives for specified values 

β=′′=′′ −− )()( 15 nn xSxS  

βα ,  are any real numbers, i.e. +∞<<∞− βα ,  
The existing dataset is considered as intervals (i.e. ith 

interval is ixXix ≤≤−1  ). In our reliability estimation model, 
the cubic splines are used for future prediction and hence the 
boundary conditions are important. This network captures 3 
network nodes in the cubic spline layer; each is 
corresponding to the each boundary condition above. 
Varying the boundary conditions the results can be enhanced.  
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for each 1,...,4,5 −−−= nnni  and iii cba ,,  and id  
are constants. 
Let iii xxh −= +1  for all 2,...,4,5 −−−= nnni  

The equations are simplified in finding the coefficients 
as follows. 
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The activation function of the kth cubic spline node for 
estimating the nth failure is   

+−−−+−=− )2(,2,2)(,2 nxnxknbknanxknS  
3

)2(,2
2

)2(,2 −−−+−−− nxnxkndnxnxknc  

for 3,2,1=k  
When 1=k , the boundary condition 

0)1()5( =−′′=−′′ nxSnxS   is applied. 

When 2=k , the boundary condition 
α=−′′=−′′ )1()5( nxSnxS   is applied 

When 3=k , the boundary condition 
β=−′′=−′′ )1()5( nxSnxS   is applied  

 
The weight kω that connects the kth weighting node and 

the output node are indicated by the weighting 
vectors ],,[ 321 ωωωω = . These parameters are determined 
by global back propagation algorithm [22]. 

The final output of the cubic spline networks summing 
layer is: 

∑
= +−=
3

1
*)1(,2k knXknSy ω  

The reliability estimation of the nth failure is y 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IV. RESULTS  
To illustrate the proposed approach with cubic spline 

network model, numerical examples are studied in this 
section. 
 
Table I: Time to failure data for xth failure taken from [18]. 

FNo 
Time to 
Failure FNo 

Time to 
Failure 

1 20 36 21 220 

2 11779 22 35580 

3 40933 23 81000 

4 34794 24 643095 

5 17136 25 47857 

6 148446 26 154800 

7 7995 27 170460 

8 1636 28 108540 

9 15830 29 73800 

10 21932 30 1860 

11 2485 31 336600 

12 11000 32 268140 

13 2880 33 74880 

14 61182 34 286200 

15 4800 35 25320 

16 38005 36 7080 

17 16200 37 59820 

18 6000 38 87900 

19 1000 39 76200 

20 10000 40 89280 
 

The example data of Table I is based on a project for a 
large Telecommunication software system [18] with FNo 
indicating the Failure Number for x=1...40.   

Using (1)–(5) and the 3 boundary conditions in section 
II, the estimation of y has been done. Table II shows the 
estimated reliability values for our model. Validity of the 
estimation was checked using estimated and actual time to 
failure values for dataset (for x=9, 10…40). Here x 
commence from 9 as past 8 data is needed to estimate the 
parameters of our model. 
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Input Layer Cubic Spline Layer Output Layer 

Fig. 1: cubic spline networks

1ω

2ω

3ω

S,α

S,β

5−nx

4−nx

1−nx

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 
 

 

 
Table II:  Actual and Estimated times for each FNo, using our 
model 

FNo 
Actual 
Time 

Estimated 
Time FNo 

Actual 
Time 

Estimated 
Time 

9 15830 24696 25 47857 394748 

10 21932 28946 26 154800 79836 

11 2485 2696 27 170460 67951 

12 11000 9042 28 108540 7202 

13 2880 4972 29 73800 10374 

14 61182 569 30 1860 11319 

15 4800 41287 31 336600 1027239 

16 38005 8765 32 268140 20089620 

17 16200 23063 33 74880 21488 

18 6000 317 34 286200 15821 

19 1000 1506 35 25320 122321 

20 10000 3369 36 7080 33926 

21 220 5692 37 59820 111515 

22 35580 3701 38 87900 105684 

23 81000 23608 39 76200 13531 

24 643095 28156 40 89280 1744 
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Fig. 2(a): Actual time (Ac) and estimated time using our 
model (CSE- Cubic Spline model Estimation) to failures. 
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Fig. 2(b): Comparison of estimation models with ours 

 
Fig. 2(a) compares the estimated values (Ac-Actual) 

using our model (CSE- Cubic Spline model Estimation) with 
actual time to failure data for the dataset in Table II. Fig. 2(b) 

compares estimation ability of software reliability using 
famous models (Ac- Actual; Ge.-Geometric Model; JM 
-Jelinski/Morada Model; LiL - Littlewood Linear Model; 
MuB - Musa's Basic Model; MuL - Musa's Log Model; 
NHPP – None-homogeneous Poison Process Model; LiG - 
Littlewood Geometric Model; CSE - Cubic Splines Model). 

According to the comparison, it can clearly be seen that 
our model and None-homogenious Poisson Process software 
reliability estimation model are more applicable.  

The difference between actual and estimation values is 
lower using our model than using None-homogenious 
Poisson Process model.  

Our model is more suitable to estimate the reliability for 
a dataset which doesnot have sudden deviations in the pattern 
(i.e. no outliers among the data values). 

V. CONCLUSIONS AND FUTURE WORK  
In this paper, we have studied an approach of reliability 

prediction by Cubic spline networks. Since cubic spline 
interpolation assumes a random distribution for the data, our 
model take into account the randomness. The analysis with 
example shows that the proposed approach works effectively.  
Fig. 2 indicates that our model estimation is more accurate Cubic 
splines interpolate a polynomial.  The estimation using cubic 
splines can have errors upon the approximation. Since the 
estimation goes through weighting function in the output layer, 
the error component is minimized.  

Since this method requires less number of input data, this 
can be used in the early prediction accurately.  

Changing the failure behavior and the code of the software, 
the old data may not be valid when accounting them in reliability 
estimation. Recent data are only considered in our model and 
hence, our model improves accuracy of software reliability 
prediction.   

However, when the dataset has outlier data such as huge 
increment or decrement of reliability, the estimation made using 
our model is less accurate. It is an identified limitation of our 
model. 

This model contains more calculations and hence the 
practice of the model is tricky unless it is automated. 
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