

Abstract— Software reliability is one of the most important
software quality attribute and Software reliability estimation is
a hard problem to solve accurately. However for management
of software quality and standard practice of the organization,
accurate reliability estimation is important. Non-homogeneous
Poisson Process (NHPP) models and Artificial Neural Network
(ANN) models are among the most important software
reliability growth models. In this paper we study an approach
using past fault-related data with cubic spline Network model to
estimate reliability. A numerical example is shown with
simulated datasets. The example shows that the proposed model
accurately estimate the software reliability.

Index Terms— Software Reliability, Cubic Spline Smoothing,
Artificial Neural Network, Software Reliability Growth Model.

I. INTRODUCTION
Software engineering is a well established discipline

focused on set of management and design activities of
software development. The key issues of software
engineering are the management of time, cost and quality like
in other engineering disciplines.

Software quality engineering comes into play
prominently when the software systems grow and the impact
of the software systems affect almost all in the society. Today
a rapidly increasing dependency exists on the software
systems. Usage of software systems can be seen in various
activities ranging even to life critical systems and critical
economic functions. One of the software quality issues is
accuracy which is affected by errors in the software.

People are used to strike off the software systems due to
software quality problems. However, when the software
usage becomes mature and when the system becomes safety
critical, such an attitude will not be accepted. Therefore
software quality engineers are responsible to provide
measurements of the quality attribute of the software system.

A. Software Quality
The term software quality has several meanings and the

scope is also broadened. ISO9126 defines the software
quality as: “the totality of features and characteristics of a

Manuscript received March 10, 2009. Software Reliability Estimation

Based on Cubic Splines.
P. L. M. Kelani Bandara is with Vocational Training Authority of Sri

Lanka, Colombo 00500, Sri Lanka and is a postgraduate student at
University of Colombo School of Computing (e-mail:
manoharik@gmail.com).

G. N. Wikramanayake is with University of Colombo School of
Computing, Colombo 00700, Sri Lanka (e-mail: gnw@ucsc.cmb.ac.lk).

J. S. Goonethillake is with University of Colombo School of Computing,
Colombo 00700, Sri Lanka (e-mail: jsg@ucsc.cmb.ac.lk).

software product that bear on its ability to satisfy stated or
implied needs” [1].

Software quality is described in the means of models
which are called software quality models and these have their
own quality attributes. ISO9126 defines software quality
with six software quality attributes as functionality,
reliability, usability, effectiveness, maintainability and
portability.

Another famous and useful categorization of factors that
affect the software quality was proposed by McCall,
Richards, and Walters [2]. According to that categorization,
quality factors are categorized into three categories as
product transition, product operation, and product revision.
Software reliability is one of five product operation quality
attributes.

According to the fact that the software reliability is a
quality attribute in most of the quality models, it can be
concluded that high quality of the software is dependent on
the software reliability too. Hence if a company is to develop
high quality software, it is important to employee the efforts
on software reliability. In spite of this, literature state that the
reliability has not been made use of with regard to the quality
activities in the commercial software development [3], [4].
The following sections describe the term software reliability
and why the industry doesn’t pay much attention on
assurance of software reliability for their software products.
In section III, a model which overcomes those problems has
been proposed and finally results of our model are presented.

B. Software Reliability

IEEE defines software reliability as the ability of a
program to perform required functions under stated
conditions for a stated period of time [3]. Hence failures of
the software reduce the reliability and to ensure the quality of
the software, the measurements of the software operational
failures are important. The following section describes how
the reliability of the software is measured.

Software reliability is measured during the software
development and during the operations using a software
reliability model. There are two types of software reliability
models, according to the phase which the reliability is
measured.

(1) Software reliability growth model (SRGM) or
software reliability estimation model — estimates the
software reliability based on the observed failure data
during the testing and operation phase.

(2) Software reliability prediction model — predicts the
software reliability based on the reliability matrices
measured or calculated during early stages of software
development life cycle (prior to the integrated testing in the
testing phase).

This paper focuses on the first type, the software
reliability estimation model.

Software Reliability Estimation Based on Cubic
Splines

P.L.M. Kelani Bandara, G.N. Wikramanayake and J.S.Goonethillake

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

II. EXISTING SOFTWARE RELIABILITY GROWTH MODELS
The first None-homogeneous Poison Process (NHPP)

model, which strongly influences the development of many
other models, was proposed by Goel and Okumoto [4].
Huang et al. [5] have discussed a unified scheme of discrete
NHPP models by applying the concepts of weighted
arithmetic, weighted geometric or weighted harmonic means.
Ohba [6] presented a NHPP model with S-shaped mean value
function. Lots of the generalized SRGMs, including the
generalized SRGMs mentioned above, have been discussed
in terms of continuous-time SRGMs, because the
continuous-time SRGM is specifically applicable to the
reliability analysis [7]. S. Inoue et al. give a Generalized
Discrete Software Reliability Modeling based on program
size [7]. Okamura et al. [8] have discussed a unified
parameter estimation method based on the
expectation–maximization (EM) principle and investigated
the effectiveness of the estimation method based on the EM
algorithm by comparing with Newton’s method [9].
Khoshgoftarr et al. [10] introduced the use of the neural
networks as a tool for predicting software quality. Their
model used domain metrics derived from the complexity
metric data. Papers [11]-[16] have also adapted neural
networks to software reliability issues. Emanm and Melo [17]
have performed to construct a logistic regression model to
predict which classes in a future release of a commercial Java
application will be faulty.

A. Limitations of SRGMs
Even though numerous models have been discussed in

literature, none is working fine in all the circumstances
[18]-[19]. The most prominent limitations of the models are
as the software behavior changes because the software code
changes during the testing phase and hence, assumption of
estimated mean time of SRGMs is violated by the dataset
and more numbers of failure data are required to estimate the
reliability [14], [18], [20]. Due to these limitations in SRGMs
the estimation accuracy is impaired. Although this affects
dramatically the reliability no attention has been given to it
by the industry [18]. So it is necessary for a SRGM to
overcome the above limitations in order to improve the
reliability techniques used in the industry.

B. The Accuracy of Software Reliability Estimation
Splines are used to interpolate a dataset to piecewise

arbitrary functions which consist of third order polynomials
[21], [22].

Cubic spline interpolation doesn’t assume any statistical
distribution which as shown in the section II, is one of the
most prominent limitations in most existing models. The
software reliability is an arbitrary event and our model
employee arbitrariness in several places. Pattern recognition
using artificial neural network [23] makes use of randomness
in its architecture when identifying an unknown pattern. That
is when a new pattern is to be recognized; the artificial neural
network is trained using known patterns before identifying
the new pattern.

As discussed in the Section II A, the past failure dataset
is usually small to make the estimation which is another
limitation and that we have overcome here. To make use of
our model only 9 recent failure data is needed. This solves the
problem of past failure data do not show the future behavior
problem discussed in Section II A.

III. SRGM WITH CUBIC SPLINES
This paper gives the Artificial Neural Network (ANN)

based model to capture the input–output (I/O) relationships
of software systems to corresponding failures and to improve
the accuracy of reliability prediction. This network captures
input and output through an evolutionary algorithm.
For the input vector of []145 ,...,, −−−= nnn xxxX

(where 9≥n), the corresponding mapping of cubic spline
network can be written as ()145 ,...,ˆ −−−= nnnn xxxgx .

Our model for software reliability prediction is designed
as a three-layer structure with an input layer, cubic spline
layer, and an output layer. Each layer has fixed nodes such as
Input layer has 5 nodes corresponding to each input and cubic
spline layer has 3 nodes each corresponding to the boundary
conditions. The input data vector X is connected to the input
nodes of the network to predict the time to thn failure.

We can derive the activation functions using cubic
splines. Given a function Sf = which passes through the

145 ,...,, −−− nnn xxx nodes, can be represented in splines

iS defined on []ii xx ,1− where 15 −≤≤− nin .

∑
−

−=
=

1

5

n

ni iSS

A cubic spline interpolant S , for f is a function that
satisfies the following six conditions,
i. The spline forms a continuous function i.e.

)1()1(1 +=++ ixiSixiS for each 2,...,4,5 −−−= nnni
ii. The spline forms a smooth function i.e.

)()(111 +++ ′=′ iiii xSxS for each

2,...,4,5 −−−= nnni
iii. The second derivative is continuous i.e.

)()(111 +++ ′′=′′ iiii xSxS for each

2,...,4,5 −−−= nnni

iv. S is a cubic polynomial, denoted iS on subinterval

[]1, +ii xx for each 2,...,4,5 −−−= nnni

v. The spline passes through each node)()(ii xfxS =

for each 1,...,4,5 −−−= nnni
vi. One of following the boundary conditions is satisfied

a. 0)()(15 =′′=′′ −− nn xSxS
b. Set boundary derivatives for specified values.

α=′′=′′ −−)()(15 nn xSxS
c. Set boundary derivatives for specified values

β=′′=′′ −−)()(15 nn xSxS

βα , are any real numbers, i.e. +∞<<∞− βα ,
The existing dataset is considered as intervals (i.e. ith

interval is ixXix ≤≤−1). In our reliability estimation model,
the cubic splines are used for future prediction and hence the
boundary conditions are important. This network captures 3
network nodes in the cubic spline layer; each is
corresponding to the each boundary condition above.
Varying the boundary conditions the results can be enhanced.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

3
)(.

2
)()()(ixXidixXicixXibiaXiS −+−+−+=

for each 1,...,4,5 −−−= nnni and iii cba ,, and id
are constants.
Let iii xxh −= +1 for all 2,...,4,5 −−−= nnni

The equations are simplified in finding the coefficients
as follows.
 icixS *2)(=′′)1(

iaixf =)()2(

)1)(/3(1)1(211 −−=+++−+−− iaiaihicihihihicih)3(

i
h

i
d

i
c

i
c **3

1
+=

+
)4(

)12)(3/()1)(/1(++−−+= icicihiaiaihib)5(
The activation function of the kth cubic spline node for
estimating the nth failure is

+−−−+−=−)2(,2,2)(,2 nxnxknbknanxknS
3

)2(,2
2

)2(,2 −−−+−−− nxnxkndnxnxknc

for 3,2,1=k
When 1=k , the boundary condition

0)1()5(=−′′=−′′ nxSnxS is applied.

When 2=k , the boundary condition
α=−′′=−′′)1()5(nxSnxS is applied

When 3=k , the boundary condition
β=−′′=−′′)1()5(nxSnxS is applied

The weight kω that connects the kth weighting node and

the output node are indicated by the weighting
vectors],,[321 ωωωω = . These parameters are determined
by global back propagation algorithm [22].

The final output of the cubic spline networks summing
layer is:

∑
= +−=
3

1
*)1(,2k knXknSy ω

The reliability estimation of the nth failure is y

IV. RESULTS
To illustrate the proposed approach with cubic spline

network model, numerical examples are studied in this
section.

Table I: Time to failure data for xth failure taken from [18].

FNo
Time to
Failure FNo

Time to
Failure

1 20 36 21 220

2 11779 22 35580

3 40933 23 81000

4 34794 24 643095

5 17136 25 47857

6 148446 26 154800

7 7995 27 170460

8 1636 28 108540

9 15830 29 73800

10 21932 30 1860

11 2485 31 336600

12 11000 32 268140

13 2880 33 74880

14 61182 34 286200

15 4800 35 25320

16 38005 36 7080

17 16200 37 59820

18 6000 38 87900

19 1000 39 76200

20 10000 40 89280

The example data of Table I is based on a project for a
large Telecommunication software system [18] with FNo
indicating the Failure Number for x=1...40.

Using (1)–(5) and the 3 boundary conditions in section
II, the estimation of y has been done. Table II shows the
estimated reliability values for our model. Validity of the
estimation was checked using estimated and actual time to
failure values for dataset (for x=9, 10…40). Here x
commence from 9 as past 8 data is needed to estimate the
parameters of our model.

S,0

nx̂

Input Layer Cubic Spline Layer Output Layer

Fig. 1: cubic spline networks

1ω

2ω

3ω

S,α

S,β

5−nx

4−nx

1−nx

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Table II: Actual and Estimated times for each FNo, using our
model

FNo
Actual
Time

Estimated
Time FNo

Actual
Time

Estimated
Time

9 15830 24696 25 47857 394748

10 21932 28946 26 154800 79836

11 2485 2696 27 170460 67951

12 11000 9042 28 108540 7202

13 2880 4972 29 73800 10374

14 61182 569 30 1860 11319

15 4800 41287 31 336600 1027239

16 38005 8765 32 268140 20089620

17 16200 23063 33 74880 21488

18 6000 317 34 286200 15821

19 1000 1506 35 25320 122321

20 10000 3369 36 7080 33926

21 220 5692 37 59820 111515

22 35580 3701 38 87900 105684

23 81000 23608 39 76200 13531

24 643095 28156 40 89280 1744

0

100000

200000

300000

400000

500000

600000

700000

9 11 13 15 17 19 21 23 25 27 29 33 35 37 39

Ac C S E

Fig. 2(a): Actual time (Ac) and estimated time using our
model (CSE- Cubic Spline model Estimation) to failures.

0

200000

400000

600000

800000

1000000

1200000

9 11 13 15 17 19 21 23 25 27 29 31 34 36 38

Ac Ge JM LiL MuB
MuL Nh LiG CSE

Fig. 2(b): Comparison of estimation models with ours

Fig. 2(a) compares the estimated values (Ac-Actual)

using our model (CSE- Cubic Spline model Estimation) with
actual time to failure data for the dataset in Table II. Fig. 2(b)

compares estimation ability of software reliability using
famous models (Ac- Actual; Ge.-Geometric Model; JM
-Jelinski/Morada Model; LiL - Littlewood Linear Model;
MuB - Musa's Basic Model; MuL - Musa's Log Model;
NHPP – None-homogeneous Poison Process Model; LiG -
Littlewood Geometric Model; CSE - Cubic Splines Model).

According to the comparison, it can clearly be seen that
our model and None-homogenious Poisson Process software
reliability estimation model are more applicable.

The difference between actual and estimation values is
lower using our model than using None-homogenious
Poisson Process model.

Our model is more suitable to estimate the reliability for
a dataset which doesnot have sudden deviations in the pattern
(i.e. no outliers among the data values).

V. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied an approach of reliability

prediction by Cubic spline networks. Since cubic spline
interpolation assumes a random distribution for the data, our
model take into account the randomness. The analysis with
example shows that the proposed approach works effectively.
Fig. 2 indicates that our model estimation is more accurate Cubic
splines interpolate a polynomial. The estimation using cubic
splines can have errors upon the approximation. Since the
estimation goes through weighting function in the output layer,
the error component is minimized.

Since this method requires less number of input data, this
can be used in the early prediction accurately.

Changing the failure behavior and the code of the software,
the old data may not be valid when accounting them in reliability
estimation. Recent data are only considered in our model and
hence, our model improves accuracy of software reliability
prediction.

However, when the dataset has outlier data such as huge
increment or decrement of reliability, the estimation made using
our model is less accurate. It is an identified limitation of our
model.

This model contains more calculations and hence the
practice of the model is tricky unless it is automated.

REFERENCES
[1] Scalet et al, “2000: ISO/IEC 9126 and 14598 integration aspects: A

Brazilian viewpoint”. The Second World Congress on Software
Quality, Yokohama, Japan, 2000.

[2] J.A. McCall, P.K. Richards, and G.F. Walters, “Software Quality
Assurance”, 1998.

[3] A. Fries and A. Sen, “A survey of discrete Reliability-growth models.”,
IEEE Trans. Rel., 45(4), 1996, pp. 582–604.

[4] A. L. Goel and K. Okumoto, "Time dependent error detection rate
Model for Software Reliability and Other Performance Measures, IEEE
Trans. on Rel., 28(3), 1979, pp. 206-211.

[5] C.Y. Huang, M. R. Lyu and S. Y. Kuo, “A unified Scheme of some
Non-homogeneous Poisson Process models for software reliability
Estimation”, IEEE Trans. Soft. Eng., 29(3), 2003, pp. 261–269.

[6] S. Inoue and S. Yamada “Generalized Discrete Software Reliability
Modeling With Effect of Program Size.” IEEE Trans. on Sys., Man,
and Cybernetics— Part A: Systems and Humans, 37(2), 2007, pp.
170-179.

[7] P.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl and S.J. Aud,
“Application of Neural networks to software quality modeling of a very
large telecommunications system”, IEEE Trans. on Neural Network,
vol. 8, 1997, pp. 902-909.

[8] H. Okamura, A. Murayama, and T. Dohi, “EM Algorithm for discrete
software reliability Models: A unified parameter estimation Method”,
in Proc. 8th IEEE Int. Symp. HASE, 2004, pp. 219-228.

[9] P. Deuflhard, “Newton Methods for Nonlinear Problems. Affine
Invariance and Adaptive Algorithms”. Springer Series in
Computational Mathematics, Vol. 35. Springer, Berlin, 2004.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

[10] N. Karunanithi, Y. K. Malaiya, and D. Whitley, “Prediction of
Software Reliability Using Neural Networks”, Proc. 1991 IEEE Int.,
Symp. on Soft. Rel. Eng., 1991, pp. 124-130.

[11] J.P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar and E. B. Allen, et al.,
“EMERALD: Software Metrics and Models on the Desktop”, IEEE
Soft., 13(5), 1996, pp. 56–60.

[12] K.Y. Cai, L. Cai, W. D. Wang and Z. Y. Yu, et al., “On the Neural
Network Approach in Software Reliability Modeling”, The J. of Sys.
and Soft., 2001, pp. 47-62.

[13] S. Yamada, and S. Osaki, “S-shaped Software Reliability Growth
Model with Four Types of Software Error Data.”, Int. J. Sys. Sc., vol.
14, 1983, pp. 683-692.

[14] N. Karunanithi, D. Whitley, Y. K. Malaiya, “Using Neural Networks in
Reliability Prediction”, IEEE Soft., 9(4), 1992, pp. 53-59.

[15] ANSI/AIAA, “Am. Nat’s Standard: Recommended practice for
Software Reliability”, R-013-1992, Feb. 1992.

[16] S.L. Ho, M. Xie, and T.N. Goh, “A Study of the Connectionist Models
for Software Reliability Prediction” Computers and Mathematics with
Applications, vol. 46, 2003, pp. 1037-1045.

[17] E. Emam, and W. Melo, “The Prediction of Faulty Classes Using
Object-Oriented Design Metrics”, J. of Systems and Soft., Elsevier Sc.,
2001. Tec. Rep., NRCERB-1064, NRC 43609, 1999.

[18] M.R. Lyu, “Handbook of software reliability Engineering”, IEEE
Comp. Soc. Press, 1996.

[19] J.A. Denton, “Accurate software reliability estimation”, Thesis of
Degree of Master of Science, Colorado State University, Fort Collins,
Colorado, 1999.

[20] A. Wood, “Software Reliability Growth Models”, TANDEM Tec. Rep.
96.1, Sep. 1996.

[21] B. Alford and L. Urimi, “An Analysis of various Spline Smoothing
Techniques for Online Auctions, AMSC 689”, Dec. 10, 2004.

[22] J.O. Ramsay, B.W. Silverman, “Functional Data Analysis”, 2nd ed.,
Springer pub., 2005.

[23] Smith, Murray (1993) “Neural Networks for Statistical Modeling”,
Van Nostrand Reinhold,

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

