
 
 

 

  
Abstract—In this paper, thermo-mechanical stress 

distribution has been determined for a three layered composite 
beam having a middle layer of functionally graded material 
(FGM), by analytical and numerical methods. Beam is 
subjected to uniformly transverse distributed loading whereas 
the uniform temperature gradient arises in it. FGM beams with 
continuous and smooth grading of metal and ceramics based on 
power law index are considered for study, whereas Poisson ratio 
is to be held constant through FGM layer. Analytical solution is 
based on simple Euler-Bernoulli type beam theory for long, 
slender beam. Also, the principle of stationary potential 
function is used to obtain the static finite element equations for 
the FGM composite beam. By comparing the deduced results 
with FEM calculations in ANSYS, good agreement has been 
indicated between them. 

 
Index Terms— composite beam, Euler-Bernoulli beam 

theory, functionally graded material, neutral axis, 
thermo-mechanical stress. 
 

I. INTRODUCTION 
Functionally graded material (FGM) is a kind of material 

in which the individual material composition varies 
continuously along certain directions in a controllable way. 
In FGM, the best properties of metal and ceramics are 
combined--the toughness, electrical conductivity and 
machinability of metals and the low density, high strength, 
high stiffness, and temperature resistance of ceramics. Hence 
the use of FGMs has been increasing in various engineering 
applications; these inhomogeneous solids also have received 
considerable scientific interest and numerous research papers 
have been published. In the following, however, only works 
related to FGM beams will be referenced. Suresh and 
Mortensen [1], Miyamoto, Kaysser, Rabin, Kawasaki and 
Ford [2] provided an excellent introduction to fundamentals 
of FGM. Analytical and numerical studies have been carried 
out to investigate thermo-mechanical behavior of FGMs 
[3]-[5]. Most of them have been limited to FGMs with linear 
compositional gradation. Sankar [6] has also solved the plane 
elasticity problem of an FGM beam subjected to transverse 
loading using a Fourier series technique. He assumed an 
exponential variation of properties. Sankar and Tzeng [7] 
have obtained a closed-form analytical solution for the 
thermal stresses in functionally graded beams considering 
thermo-elastic constants of the beam and the temperature 
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varying exponentially through the beam thickness. Zhu and 
Sankar [8] assumed that the elastic compliance parameters 
are some proportional to a polynomial of z, for which exact 
solution can not be obtained by Fourier series expansion 
method. Most of Exact methods are applicable only for 
symmetrical boundary conditions and loadings. Some 
researchers [9], [10], [11] have found the approximate and 
semi-analytical methods for obtaining thermo-elastic stresses 
in FGM beams. Nirmala and Upadhyay [12] a numerical 
scheme of discretizing the continuous FGM layer (in 
sublayers) and treating the beam as a discretely graded 
structure has also been discussed. Appropriate expressions 
for the solution have been derived for the power law 
gradation (mth power) of the FGM layer. Chakraboty, 
Golpalakrishnan and Reddy [13] developed a new beam 
finite element to study the thermo-elastic behaviour of FGM 
beam structures. The element was based on the first-order 
shear deformation theory and it accounts for varying elastic 
and thermal properties along its thickness. In the present 
paper, we proposed an analytical solution for deducing 
thermo-mechanical stresses in a three layered composite 
beam in plane strain condition. Then we used the principle of 
stationary potential function to obtain the static finite element 
equations for the FGM composite beam. The boundary 
condition is assumed to symmetric and non-symmetric one 
(simply supported and clamped-free boundary conditions). 
Effect of temperature rise/fall is considered by augmenting 
the thermal strain to the mechanical strain, instead of solving 
the coupled thermo-elastic equations. Power law is taken for 
the variation of material properties through the depth of the 
beam. FEM analysis in ANSYS commercial software is 
carried out to validate the results. 
 

II. ANALYTICAL FORMULATION AND SOLUTION   
  

A. Stress Analysis under Mechanical Loading 
In Figure 1, the dimension of FGM beam of length unit 

length and thickness h are considered, where the material 
property varies continuously in z direction. FGM beams have 
their volume fraction of ceramics Vc defined according to the 
power law function, based on rule of mixture and the volume 
fraction of metal Vm is obtained as follows[1]: 

 
Vୡሺzሻ ൌ ሺሺz ൅ hଷሻ/2hଷሻ୫                                                                     (1) 
Vୡሺzሻ ൌ 1 െ V୫ሺzሻ                                                                          (2) 

 
Where z is the distance from mid–surface and m is the 

power law index, a positive real number.  
Vc is zero for lower layer (hଵ ൑ z ൑ െhଷሻ and is unit for 

upper layer ሺhଷ ൑ z ൑ hଶሻ.  
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Fig. 1 Three layer composite beam under distributed load 
 
The mathematical modeling for evaluating of properties of 

FGM, P(z), is obtained in base of law of mixture: 
 

P(z)=  P୫ ൅ ሺPୡ െ P୫ሻVୡሺzሻ                                                            (3) 
 
  The basic assumptions are as follow: 
1. The Beam is assumed to be in a state of plane strain, it 

is normal to the xz plane. 
2. Simple Euler-Bernoulli type beam theory is applied. 
3. There is no variation in thickness along the length of 

beam. 
4.  Poisson’s ratio is to be held constant along FG layer. 
5. Material properties are independent of temperature 

gradient. 
Then, for a cantilever beam, the displacement field can be 

written as [6]: 
 
wሺx, zሻ ൌ wሺxሻ                        
uሺx, zሻ ൌ u଴ሺxሻ െ z ୢ୚ሺ୶ሻ

ୢ୶
                                                       (4) 

  
In above equations, u and w are denoted on horizontal and 

vertical displacement of beam across the thickness in 
anywhere. It may be noted that u0 denoted the displacements 
of points on the middle surface of the beam along the x 
direction. We assume that σzz is negligible. Then the 
stress-strain relations take the form: 
 
σ୶ሺzሻ ൌ Eෙሺzሻε୶  , τ୶୸ሺzሻ ൌ Gෙሺzሻγ୶୸                                       ሺ5ሻ 
    

Where the plane strain Young modulus is given by: 
Eෙ ൌ ୉

ଵି୴మ  .   The expressions for axial strain and stress can be 
derived as: 
 
σ୶ሺzሻ ൌ Eෙሺzሻ. ε୶଴ + z. Eෙሺzሻ. κ                                                       (6) 
 
   ε୶଴ and  κ are axial strain in the middle surface and the 
beam curvature.  According to Euler-Bernoulli beam theory, 
the axial force and bending moment, N and M, are defined as 
follows: 
(N,M)=׬ σ୶ሺzሻሺ1, zሻdz              ୦మ

ି୦భ
                                                (7) 

 
By substituting the (6) into (7), it may be derived the 

relation between axial force and moment resultants: 
 

(N,M)= ׬ ൣEෙሺzሻ. ε୶଴  ൅  z. Eෙሺzሻ. κ൧ ሺ1, zሻdz       ୦మ
ି୦భ

                (8)               
 

Since the axial force resultant is zero, the expressions for 
the deformation take the form: 

 
ε୶଴ ൌ B. M(x)   ,  κ = D. M(x)                                                      (9) 

 
By integrating of the first equation of differential 

equilibrium equations, the relation for distributing of shear 
stress can be derived, whereas shear stress is zero on top and 
bottom of the height of beam: 
 
பσ౮౮

ப୶
൅ ப τ౮౰

ப୸
ൌ 0 

        
ሱሮ                                                    (10) 

 τ୶୸ሺx, ζሻ ൌ െ ׬ பσ౮ሺ୸ሻ
ப୶

 dzζ
଴    

 

B. Stress Analysis due to Temperature Gradient 
 

When this kind of beam is subjected to a uniform 
temperature change (∆T), the total strain under a small strain 
assumption, can be taken as made up of elastic and a thermal 
part. For a beam under plane stress condition, the only 
nonzero stress component is σx[12]: 

 
σ୶ = Eሺzሻൣ ε୶଴

୘ ൅  z. κ୘ –  αሺzሻ ∆T൧                                           (12) 
 

Since it is assumed that only thermal loading is considered 
here: 
∑   F୶ ൌ 0   ,   ∑   M୶ ൌ 0                                                            (13) 
 
On the other hand: 
(N, M) =׬ σ୶୶ሺ1, zሻdz  ൌ 0          ୦మ

ି୦భ
                                     (14) 

 
Where ε୶଴

୘   is the strain at the midplane (z=0) of the FGM 
layer and κ୘ is the laminate curvature due to temperature 
gradient. After substitution of the values of E(z) and α(z), 
which depend on the nature of variation V(z) over the 
thickness, (14) and (12) can be integrated to give, 

 

ቊ
  I଴ε୶଴

୘  ൅  Iଵκ୘ െ   Iଷ  ൌ 0   
Iଵε୶଴

୘   ൅  Iଶκ୘–   Iସ  ൌ  0
                                         (15)                   

 
 By solving the above equations: 
 

ε୶଴
୘  =

  ୍ర  ୍భି  ୍య  ୍మ
  ୍భ

మ ି  ୍బ  ୍మ 
                                                       (16-a) 

κ୘=  ୍య  ୍భି  ୍ర  ୍బ
  ୍భ

మ ି  ୍బ  ୍మ 
                                                                 (16-b) 

 
Where, 
 

(  Iଷ, Iସ) = ׬ Eሺzሻሺ1, zሻαሺzሻdz     ୦మ
ି୦భ

                                        (17) 
 

III. NUMERICAL FORMULATION AND SOLUTION 
The most presented exact solutions were developed for 

symmetrical loadings and boundary conditions. Employing 
such this solution are complicated and approximately not 
applicable for complicated geometrical situations. Numerical 
solutions can overcome to this limitation. In this section, 
finite element method is carried out to determination the 
thermo-mechanical stresses in a composite beam which is 
subjected to both transverse loading and temperature 
gradient.  
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The basic assumptions are as follows: 
1. Displacement and rotation is very small. 
2. Moment of inertia is constant along the element and 

the effective Young Modulus is varied across the 
thickness. 

Static differential equation is governed on FGM beam 
under distributed loading, takes the form: 

 
பమ

ப୶మ ቂEሺzሻ Iሺxሻ ୢమ୚ሺ୶ሻ
ୢ୶మ ቃ - qሺxሻ = 0                                              (18)  

 
In above equation, I(x), q(x) and V(x) are denoted on moment 
of Inertia, distributed loading and shear force. Total potential 
energy, Π, is: 
 
Π= Û – Ŵ                                                                             (19) 
 

Where  Û  is the work done by internal forces or in the 
other hand, strain energy in a beam. (In here, only the effect 
of bending moment in internal work is considered): 

 

Û =ଵ
ଶ ׬ EෙሺzሻIሺxሻ ቀୢమ୚ሺ୶ሻ

ୢ୶మ ቁ
ଶ

dx୐
଴                                                  (20) 

 
and   Ŵext  is the work done by external  loads: 
 
Ŵext=׬ qሺxሻwሺxሻdx ൅ ∑ p୏ w୏

୐
଴                                          (21) 

 
By using equations (19), (20) and (21): 
 

Π=ଵ
ଶ ׬ EෙሺzሻI ቀୢమ୚ሺ୶ሻ

ୢ୶మ ቁ
ଶ

dx୐
଴                                                     (22) 

െ න qሺxሻwሺxሻdx െ ෍ p୩ w୏

୐

଴

 

 
Where w୏  is transverse deflection of beam.   p୩  is any 

concentrated loading that may be applied in two ends of the 
beam element. The FGM is idealized using finite element 
with two nodes per element. One dimensional Hermitian 
Cubic polynomial is used for transverse deflection w and its 
first derivative for slope  ߮  [14]: 

 
w (s) = ∑ Ň୨ሺsሻସ

୨ୀଵ W୨   ,  ߮ (s) = ∑ Ň′୨ሺsሻସ
୨ୀଵ W୨                (23) 

 

Ňଵ= 1-3ሺ ୱ
୐౛

ሻଶ+2ሺ ୱ
୐౛

ሻଷ  , Ňଶ= ቂ ୱ
୐౛

 െ 2ሺ ୱ
୐౛

ሻଶ ൅ ሺ ୱ
୐౛

ሻଷቃ Lୣ  

Ňଷ= 3ሺ ୱ
୐౛

ሻଶ - 2ሺ ୱ
୐౛

ሻଷ    ,  Ňସ= ቂെሺ ୱ
୐౛

ሻଶ ൅ ሺ ୱ
୐౛

ሻଷቃ Lୣ          (24) 
 
 

Le is the length of element. s is the local coordinate. 
Therefore, the order of interpolation for transverse deflection 
is one order higher than slope. These shape functions have the 
required feathers: That is, either the function or its derivative 
takes the value of unity at one end and both are zero at the 
other end, due to the boundary values of transverse deflection 
and slope for two end of beam element [14]: 

 
w(0) = wଵ , w(Lୣ) = wଶ  ,  θ (0) = θଵ  , θ (Lୣ) = θଶ         (25) 
 

Using the principal of total potential energy, the first 

variation of Π (variation of Π with respect to each nodal 
variation) Πߜ  ൌ 0  leads to different element matrices and 
load vectors. The element equation takes the final form: 

 

∑ ৣ୨ ׬ EሺzሻI Ň୨
ሺsሻŇ୧״

ሺsሻds୐౛״
଴

ସ
୨ୀଵ                                              (26) 

׬ =                                                  qሺsሻŇ୧ሺsሻds ൅ ୐౛
଴ p୧ 

 
Substituting equations (28) and (25) into equation (26), 

results in the final form of element equation matrix: 
 

୉౛ሺ୸ሻ୍
୐౛

య

ۏ
ێ
ێ
ۍ

12 6Lୣ
6Lୣ 4Lୣ

ଶ
െ12 6Lୣ
െ6Lୣ 2Lୣ

ଶ

െ12 െ6Lୣ
6Lୣ 2Lୣ

ଶ
12 െ6Lୣ

െ6Lୣ 4Lୣ
ଶ ے

ۑ
ۑ
ې

൞

vଵ
θଵ
vଶ
θଶ

ൢ =                  (27) 

                                                              ୯୐౛
ଶ

ە
ۖ
۔

ۖ
ۓ 1

୐౛
଺
1

ି୐౛
଺ ۙ

ۖ
ۘ

ۖ
ۗ

൅ ൞

Fଵ
Mଵ
Fଵ
Mଶ

ൢ 

 

 
Fig. 2   Free diagram of beam element in local coordinate 
 
In the left side of the above equation, the first sentence is 

related to uniformly transverse loading and the second 
sentence is written for the probable concentrated loading that 
is assumed to be applied on the nodal points, as they were 
shown in Fig. 2. Based on the formulation discussed, a 
MATLAB code is developed to consider the accuracy of the 
numerical analysis. 
 

IV. RESULTS AND CONCLUSION 
Regarding the problem undertaken in this study, results 

were obtained for the linear, quadratic and cubic variations  to 
verify the present analytical and numerical methods for 
obtaining the thermo-mechanical stresses in a composite 
beam with an FGM layer of any arbitrary gradation profile. 
Then for consideration of the accuracy of results, the FEM 
modelling is carried out using ANSYS. The three layered 
system of Steel–FGM–Al2O3 was assumed. The properties of 
the metallic (Steel) and ceramic (Al2O3) are given in Table 1. 

 
Table 1.  Thermo-elastic properties for metallic (Steel)  

and ceramic (Al2O3 )phases 
E (Gpa)  υ ߙ (˚cିଵ)  material  

390 .25 6.9ൈ 10
ି଺

 Al2O3 

210  .25 14 ൈ 10
ି6

 Steel  
 
Using these materials a functionally graded cantilever 

beam of 0.5 m length subjected to transverse distributed load 
on upper surface is considered. The topmost material is steel 
which has a thickness of 0.005 m and bottom layer is alumina 
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of thickness 0.005 m. In between these layers there is a FGM 
layer of 0.01 m. The beam has unit width.  

Two boundary conditions are taken: clamped-free (CF) 
and both ends are simply supported (SS). First, beam is 
subjected to a uniform distributed loading (q=100 kN/m) and 
there is no rise in temperature (∆T = 0). Next, the effect of 
thermal loading is studied. In this step, beam is subjected to a 
temperature gradient (∆T = 100 oC). Effect of temperature 
rise/fall is considered by augmenting the thermal strain to the 
mechanical strain.  

Fig. 3 and Fig. 4 show the effect of existence and absence 
of FGM layer. In Fig. 3, we see that in the absence of FGM 
layer for a beam which is subjected to transverse loading 
under CF edges, there is discontinuity in stress distribution. 
Introduction of a small FGM layer smoothens the axial stress 
about 10 Mpa over .02 m depth which corresponds to an axial 
stress gradient of 500pa/m.  

 

 
Fig. 3   Depthwise stress distribution for transverse loading in a 

beam with CF edges for m=1 with and without FG layer 
 
Fig. 4 depicts the depthwise thermal stress distribution, 

whereas there is no mechanical loading. Introduction of FGM 
layer has effect in the same way as seen in Fig. 3 smoothens 
the thermal stress to the tune of about 210 Mpa which 
corresponds to a thermal stress gradient of 1150 pa/m. 

 

 
Fig. 4   Depthwise stress distribution for thermal loading in a 
beam with CF edges for m=1 with and without FG layer 

 
Fig. 5 shows the distribution of the axial stress for 

Steel-FGM-Al2O3 beam with Clamped-Free edges. When a 
uniform distributed transverse loading is applied.  

As shown, the axial stress variation across FGM thickness 
is not linear, whereas in the metallic and ceramic ones, it is 
linear. The effect of power law index (m=1, 2, 3) is not 
considerable. Due to CF boundary condition, applying the 
transverse loading on the top surface of beam, distributes 
compressive axial stress in depth of  Steel layer and some part 
of  FGM one.  

 

 
Fig. 5   Depthwise axial stresses distribution for transverse 
uniform loading in a beam with CF edges at x=.0625 m 

 
Fig. 6 depicts the variation of the shear stress across the 

thickness of beam. With increasing power law index (m), the 
tip of shear stress decreases. By the way, it has not 
considerable effect on the distribution of shear stress. 

 

 
Fig. 6   Depthwise shear stresses distribution for transverse 
uniform loading in a beam with CF edges at x=.0625 m 

 
Fig. 7 shows the variation of axial stresses for a beam with 

SS edges. For this kind of boundary condition the axial 
stresses is less than the one in CF edges. The location of 
neutral axis is in FGM layer, above the central axis of cross 
section of beam. In x=0.25, there is no shear stress 
distribution. 

In Fig. 8 and Fig. 9, the variation of axial stress in a 
Steel–FGM–Al2O3 beam, is plotted under transverse uniform 
distributed loading whereas the beam is exposed to 
temperature gradient too. As seen, the stress distribution for 
FGM layer is nonlinear. In a beam with CF edges, the neutral 
axis is unit(approximately 0.003 m above the central axis of 
cross section of beam), but for the same beam with SS edges 
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there are three location which the axial stress gets zero across 
the thickness of beam. By introducing the different FGM 
layer based on power law index (m), the profile of stress 
distribution is changed somehow.  

 

 
Fig. 7   Depthwise axial stresses distribution for transverse 

uniform loading in a beam with SS edges at x=.25 m 
 

 
Fig. 8   Depthwise axial stresses distribution for thermal and 

transverse uniform loading in a beam with CF edges at x=.0625 m 
 

 
Fig. 9   Depthwise axial stresses distribution for transverse 

uniform loading in a beam with SS edges at x=.25 m 
 
For comparison the results of analytical method with the 

other methods, Fig. 10(a) and 10(b) were plotted. In 
numerical method using FEM based on presented 

formulation in section III, 16 beam elements were used. 
Table 2 gives the convergence study for FEM formulation 
that was presented here. The beam with SS edges under 
uniform distributed transverse loading is undertaken. It is 
observed from table 2 that convergence is obtained for 16 
elements.  

 
Table 2. Convergence study for FGM beam 

σ୶ 
             (Mpa) 

 
No. of  
Elements 

 
z= -0.01 

(m) 

 
z=  0.01 

(m) 

2 13 -19 
4 24 -33 
6 32 -44 

12 36 -49 
16 41.1 -55.2 
32 41.5 -55.5 

 
The obtained results were compared with FEM model 

using ANSYS that gave good agreement between three 
models.  

 

 
(a) 

 
(b) 

Fig. 10 Comparison between present analytical and numerical 
model with ANSYS FEM calculation for stress distribution across 

the thickness under transverse uniform loading in FGM beam 
for m=1 (a) shear stress (b) axial stress 
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It can be seen from these two figures that there is no 
practically considerable difference, between stress profiles 
obtained analytically and from FEM model and ANSYS 
results. Therefore, from the results the following may be 
concluded: 

• Introduction of a FGM layer, smoothen the stress 
distribution and solves the problem of discontinuity in 
stress distribution in border between the two layers 
with apparent difference of properties. 

• Different values of power index (m), has considerable 
effect on profile of thermo-mechanical stress 
distribution. 

• Stress distribution in a FGM beam across the 
inhomogeneous layer is nonlinear. 

• Studies from plots of thermo-mechanical stress 
reveals that, for FGM beams the neutral plane location 
is influenced by the power law index (m).  
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