
Design and Implementation of New Data
Validation Service (NDVS) Using Semantic Web

Technologies in Web Applications

Shadi Aljawarneh∗ Faisal Alkhateeb†

Abstract—We have designed a novel server-side
data validation service, based upon semantic web
technologies to solve the lack of data validation and
bypassing validation issues. The NDVS consists of
five components: RDFa annotation for elements of
web pages, interceptor, RDFa extractor, RDF parser,
and data validator. Our solution is implemented as a
prototype. In this paper, we have conducted a pilot
study to prevent the security vulnerabilities at the
application level such as SQL injections. The results
of this initial study have shown that the proposed
service (NDVS) could provide a high coverage of pre-
vention of security vulnerabilities.

Keywords: Web application, data integrity, RDFa, web

system, ontology, semantic web technologies, data val-

idation, vulnerabilities

1 Introduction

Several security incident reports from emergency re-
sponse teams such as The Computer Emergency Re-
sponse Team (CERT) clearly demonstrate that the avail-
able security mechanisms have not made system break-ins
impossible [21, 3]. Furthermore, the Gartner study found
that 75% of Internet assaults are targeted at the web ap-
plication level [3]. Consequently, the data integrity can
be violated on the server even though the communication
channel between the server and client is secure.

Web applications is organized into three tiers: a web
browser tier, a web server tier, and a backend database
tier. The user interaction is proposed in a web browser
tier, the program logic (such as ASP and JSP) is run in
a web server tier, and the data operations (such as addi-
tion, deletion, and updating) are performed in a database
server tier [20]. It often have direct access to backend
databases and, hence, sensitive data is much more diffi-
cult to secure [1]. If there is no direct access to backend
databases, attacks can use legitimate application proto-
cols such as HTTP, and Simple Object Access Protocol
(SOAP) to capture data and transmissions [1, 3, 5].

∗Faculty of Science & Information Technology,
P.O. Box 22, Al-Isra Private University,Amman,Jordan
11622,shadi.jawarneh@ipu.edu.jo

†Yarmouk University, Irbid, Jordan, alkhateebf@yu.edu.jo

Data validation scheme is the first defence against web
attacks at the application level. Web developers have
adopted a number of validation approaches to prevent
loss of data integrity.

1. Server-side input validation [4]: this approach can be
used to validate sensitive data on a server before pro-
cessing them by an application server. Depending
upon the application and network traffic, the time
taken between the submitted form on a web browser
and the error message that is returned from a web
server can be considerable. However, inside criminal
might bypass the server-side input validation mod-
ules through using malicious manipulation software
that intercept the user inputs at the server-side.

2. Client-side input validation [4, 8]: this is effective for
minimizing the number of necessary communication
hits between the submitted form and received error
message. However, the form validation modules of
this approach can be removed. In addition, this ap-
proach cannot ensure that the client and server are
authentic.

3. The double-checking input validation [4, 8]: this ap-
proach duplicates the form validation modules on
both client and server sides. This approach adopts
alternative validation scheme on a server-side, even
though the validation scheme is bypassed at the
client-side. However, this approach is expensive and
involves high latency.

4. Honkala and Vuorimaa [12, 10] propose extending
the XForm form to a digital signature XForm. They
adopt the digital signature for XForm forms rather
than (X)HTML forms because it is hard to apply
a digital signature to an (X)HTML form. They
advocate the “what you see is what you sign” ap-
proach to secure web form components at the client-
side. Therefore, XForms is a new standard for better
graphical interfaces and specified to input validation
rather than the embedded scripts. However, XForm
is only supported by the XSmile browser.

Therefore, Criminals could break the client-side input

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

validation modules. Bypassing input validation is a seri-
ous problem because it might cause failures in the soft-
ware, and can also break the security upon web applica-
tions such as an unauthorized access to data [2, 13]. Even
the criminals can not bypass the client and/or server in-
put validation, web application flaws, such as cross-site
scripting or SQL injection, now account for more than
two thirds of the reported web security vulnerabilities
[13]. In an attempt to remedy this, we develop a new data
validation services, based on semantic web technologies.

This paper is organized as follows: case studies for the by-
passing input validation are described in Section 2. The
proposed semantic web technology-based architecture is
introduced, and a case study is presented in Section 3,
and the prototype of new validation service implemen-
tation and the inial testing are described in Section 4.
Related work is made in Section 5. Finally, conclusions
and future work are offered in Section 6.

2 Case studies for data validation by-
passing

A validation scheme is necessary for both client and
server-sides, but is not sufficient to ensure data integrity
of web applications, because fundamentally a client-side
input validation scheme is designed to validate basic
properties of the input data: length, range, format, de-
fault value, and type. In addition, input validation can
be used to enhance resistance to injection attacks such
as SQL injection attack because SQL injection vulnera-
bilities result from insufficient input validation [9]. How-
ever, an input validation scheme is useless if any malicious
script or listener is already installed on a server [13, 18, 4].

As a result of the transparency of code at the web browser
level, the following approaches can cause loss of data in-
tegrity at the (X)HTML form level:

1. Hidden fields manipulation: an adversary saves the
(X)HTML form to a disk, modifies a hidden field
value (such as the price of a product), and then
reloads this tampered form into a web browser for
rendering [18].

2. Script manipulation: an adversary removes the client
validation modules from a web browser to submit il-
legal data to a web server. A web server accepts
the tampered form and then the data is saved in
a backend database. Many web application secu-
rity vulnerabilities come from input validation prob-
lems including Cross-Site Scripting (XSS) and SQL
injection [13, 19, 16]. This approach is made pos-
sible by removing all script modules between the
<script> and </script> tags, removing the event-
handler that invokes the validation modules, or turn-
ing off the script and Java Applet options via web
browser settings.

3. Modules of validation analysis manipulation: an ad-
versary applies reverse engineering techniques on the
validation modules [13, 16].

As mentioned above, the SQL injection is one of the com-
mon web application vulnerabilities. Normally, web ap-
plications use data that read from a user to construct
database queries. If the data is not properly processed,
malicious code that results in the execution of any SQL
can be injected [11]. To explain more about the SQL in-
jection and how to authentication mechanism of a web
application can be bypassed, consider the following sce-
nario: a web page includes a (X)HTML form with two
edit boxes in its login.html to ask for a username and
password. The form declares that the values of the two in-
put fields should be submitted with the variables varUser-
Name and varPassword to login.asp, which includes the
following code [11]:

SQLQuery = "SELECT * FROM Users table WHERE
(UserName=’" + varUserName + "’) AND
(Password=’" + varPassword + "’);"

If a user submits the username ”Ali” and the password
”2009yosef”, the SQLQuery variable is interpreted as:
"SELECT * FROM Users table WHERE (varUserName=
’Ali’) AND (Password=’2009yosef’);"

It should be noted that a user inputs (stored in the
varUserName and varPassword variables) are used di-
rectly in SQL command construction without preprocess-
ing, thus making the code vulnerable to SQL injection
attacks. If a malicious user enters the following string for
both the UserName and Password fields: X’ OR ’A’ =
’A, then the SQLQuery variable will be interpreted as:

"SELECT * FROM Users table WHERE
(varUserName=’X’ OR ’A’ = ’A’) AND
(Password=’X’ OR ’A’ = ’A’);"

Because the expression ’A’ = ’A’ will always be evalu-
ated as TRUE, the WHERE clause will have no actual
effect, and the SQL command will always be the equiv-
alent of "SELECT * FROM Users table". Therefore, al-
lowing the web application’s authentication mechanism
to be bypassed.

3 Architecture of New Data Validation
Service

We present a new data validation service which is based
upon semantic web technologies to prevent the security
vulnerabilities at the application level and to secure the
web system even if the input validation modules are by-
passed. As illustration in Figure 1, the data validation

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

service architecture consists of the following components:
RDFa annotation for elements of web pages, interceptor,
RDF extractor, RDF parser, and data validator. The
next subsection will describe the functional overview of
the proposed solution.

InterceptorInterceptorRDF ExtractorRDF Extractor

RDFa annotation
for elements of
(X)HTML Forms

RDFa annotation
for elements of
(X)HTML Forms

Web Server

H
TTP

 R
equest

H
TTP

 R
esponse: O

K

RDF ParserRDF Parser

Data
Validator

Data
Validator

Validation
passed

Validation
failed

H
TTP

 R
esponse: R

efused

Figure 1: Schematic view of new data validation service
architecture

It should be noted that the components of the proposed
architecture framework do not need to run on a dedicated
machine, they can be run as separate processes on the
server.

3.1 Functional Overview

The following steps are performed:

1. Use an ontology to describe all data elements in a
web application using RDFa annotation1.

2. End user requests (X)HTML form.

3. Interceptor component intercepts each HTTP re-
quest at the server-side before the request arrives
to web server application for processing.

4. Extracting the RDFa annotations from RDFa ontol-
ogy vocabulary using the online RDFa extractor2.

5. Invoking the validator component to validate all user
inputs.

6. If the validation is correct then the request sends to
web server application for processing, otherwise, the
request is refused.

1http://wwww.w3.org/TR/xhtml-rdfa-primer/
2Note that there are several RDF extractors available at

http://www.w3.org/topic/RDFa

3.2 Overview of the proposed framework ar-
chitecture

An illustration of RDFa ontology-based architecture is
presented in Figure 1. This framework consists of five
components:

1. RDFa annotation for elements of web pages: RDF
(Resource Description Framework) is a knowledge
representation language dedicated to the annotation
of resources within the Semantic Web. In its abstract
syntax, an RDF document is a set of triples of the
form 〈subject, predicate, object〉. Currently, many
documents are annotated via RDF due to its simple
data model and its formal semantics. For example, it
is embedded in (X)HTML web pages using the RDFa
language, in SMIL documents using RDF/XML, etc.
Section 3.3 provides an illustration of how to use
RDFa to annotate an (X)HTML web page.

2. Interceptor: mediates between the server and client
machines by managing the HTTP requests. It in-
tercepts HTTP request, checks the availability of
HTTP request on the designated directories of web
server, and invokes the RDF extractor.

3. RDF extractor: The online RDFa distiller3 is used
to extract the RDFa annotation from the (X)HTML
web page and construct the RDF ontology given in
Figure 2.

4. RDF parser: parses the form inputs and their at-
tributes for validation process.

5. Data validator: when the description is extracted
using RDFa extractor, the validator takes the user
inputs for validation process. The validation process
checks to see if the value of user input is satisfied
the conditions of its attributes (such as length, data
type, minimum length, and if the value contains code
or special characters) the since it was used. Any mis-
matching causes the content integrity check to fail.
Based on whether the test passes or fails, the data
validator enforces the policy that makes the decision
about the next step in the process. If the integrity
check passes, the web content is sent to the running
process straight away. If it fails, it is refused the user
request.

3.3 Case Study

To illustrate our methodology we consider using our sys-
tem to secure a simple employee system. Consider the
following scenario: As final step in a registration trans-
action, employees are sent an (X)HTML form requesting
their name, address, department, and qualification.

3www.w3.org/2007/08/pyRDFa/

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

<FORM NAME=EmployeeForm ACTION=emp_add.jsp METHOD=post>

<h2>Add Employee Record</h2>

<I>Employee Number:
(1 to 6 characters)</I>

<INPUT TYPE=text NAME=EMPNO>

<I>First Name:</I>

<INPUT TYPE=text NAME=FNM VALUE=First Name>

<I>Middle Initial:</I>

<INPUT TYPE=text NAME=MIDINIT VALUE=M>

<I>Last Name: </I>

<INPUT TYPE=text NAME=LNME VALUE=Last Name>

<I>Telephone:</I>

<INPUT TYPE=text NAME=telep >

 <I>Department:</I>

<SELECT NAME=WORKDEPT >

<OPTION VALUE= 1 selected> Sales

<OPTION ALUE= 2 >Marketing

<OPTION VALUE= 3 >Development

</SELECT>

<I>Education:</I>

<SELECT NAME=EDLEVEL>

<OPTION VALUE=1 SELECTED>BS

<\scriptsize{OPTION VALUE=2 >MS

<OPTION VALUE=3>PhD

</SELECT>

<INPUT TYPE=submit NAME=Submit VALUE=Add>

</FORM>

Figure 2: Snapshot of an employee (X)HTML form.

Figure 3 illustrates the modified (X)HTML form as well
as the ontology description. The shaded rows denotes to
the ontology which describes each field in the (X)HTML
form.

The ontology itself extracted using RDFa extractor is
shown in Figure 4 This ontology means that there ex-
ists someone whose first name ”foaf:firstName” is the
”fnm” (Note this is the name of the label), last name
”foaf:lastname” is ”lnm”, employee key ”vcard:KEY” is
”EMPNO”, phone number ”foaf:phone” is ”telephone”,
fax number ”foaf:fax” is ”faxNumber”, mbox ”foafmbox”
is ”emailbox”, title ”foaf:title” is ”EDLEVEL”, address
”vcard:ADR” is ”address”. This person is a member
”foaf:member” of ”WORKDEPT”. The employee ontol-
ogy is stored in the employeeontology.ttl which contains:

4 Implementation of New Data Valida-
tion Service (NDVS)

The proposed service (NDVS) is implemented in Java us-
ing JBuilder (2007) and Java Servlet and filters. The web
servers used are Apache 1.3.20 running on MS Windows
Server 2003, and Apache Tomcat 5.01 on MS Windows
Server 2003. As far as performance is concerned, NDVS
is able to prevent infinite number of application attacks.
The prototype implementation of NDVS service consists

<FORM NAME=EmployeeForm ACTION=emp_add.jsp METHOD=post>

<h2>Add Employee Record</h2>

<I>Employee Number:
(1 to 6 characters)</I>

<INPUT TYPE=text NAME=EMPNO>

<I>First Name:</I>

<INPUT TYPE=text NAME=FNM VALUE=First Name>

<I>Middle Initial:</I>

<INPUT TYPE=text NAME=MIDINIT VALUE=M>

<I>Last Name: </I>

<INPUT TYPE=text NAME=LNME VALUE=Last Name>

<I>Telephone:</I>

<INPUT TYPE=text NAME=telep >

<I>Department:</I>

<SELECT NAME=WORKDEPT >

<OPTION VALUE= 1 selected> Sales

<OPTION ALUE= 2 >Marketing

<OPTION VALUE= 3 >Development

</SELECT>

<I>Education:</I>

<SELECT NAME=EDLEVEL>

<OPTION VALUE=1 SELECTED>BS

.̇. </FORM>

Figure 3: Snapshot of he modified HTML form with the
ontology description.

of three major components: HTTP Interceptor Mecha-
nism, RDF parser , and Data validator.

1. HTTP Interceptor Mechanism: The HTTP Intercep-
tor takes advantage of the fact that browser requests
are directed at both a specific host and a specific
port. In this program, the Tomcat server listens on
port 8081. The utility listens for browser requests
on a default port 80 and redirects to Tomcat. Re-
sponses coming to this mechanism are both sent to
the client on port 80.

In this paper, we have developed multi-threaded java
application for handling concurrent connections (re-
quests in parallel) using multiple threads that in-
crease the power and flexibility of a web server and
client programs significantly.

2. RDF parser: It is written in Java programming lan-
guage to parse the form inputs and their attributes.
Each form input is parsed, the id of input is sent to
the Data validator mechanism. It should be noted
the attributes of each input also is sent to the the
Data validator mechanism.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

this is a comment

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

_:someEmployee rdf:type foaf:Person.

_:someEmployee vcard:KEY ’EMPNO’ .

_:someEmployee foaf:firstName ’fnm’ .

_:someEmployee foaf:surname ’lnm’ .

_:someEmployee foaf:phone ’telephone’ .

_:someEmployee foaf:fax ’faxNumber’ .

_:someEmployee foaf:mbox ’emailbox’ .

_:someEmployee foaf:member ’WORKDEPT’ .

_:someEmployee foaf:title ’EDLEVEL’ .

_:someEmployee vcard:ADD ’address’ .

Figure 4: Snapshot of the employee ontology is
stored in the employeeontology.ttl file. Note that
this RDF ontology is written in the Turtle format,
http://www.dajobe.org/2004/01/turtle/

3. Data validator: when the description is extracted
using RDFa extractor, the validator takes the user
inputs for validation process as shown in Section 3.
If the integrity check passes, the web content is sent
to the running process straight away. If it fails, it is
refused the user request.

The testing environment is composed of Apache 1.3.29
with Tomcat container 5.01 on MS Windows Server 2003.
The Tomcat web server contains a copy of target web
site and shopping cart application. The shopping cart
includes five (X)HTML forms. Over 45 attacks have
been performed against the generated static and dynamic
web content security properties. We exploited different
type of security vulnerabilities (such as spoofing attack,
and SQL attacks). As a result, all the attacks launched
against the suggested server and clients were prevented
by the NDVS service.

Note that, the duration of the test was almost exactly
30 minutes where the run-time policy was ramping up
(i.e. Generating a number of virtual users that increases
throughout the test.) from 2 users by adding 2 users
every 2 minutes. The virtual users were connecting at
100Mbps through a local network. The NDVS service
tested is a prototype, and thus is not really optimised.

5 Related work

A number of researchers are developing solutions to ad-
dress this problem. For example, Scott and Sharp [18]
proposed a gateway model which is an application-level
firewall on a server for checking invalid user inputs and
detecting malicious script (e.g. SQL injection attack and
cross-site scripting attack). This approach offers protec-
tion through the enforcement of a number of defined poli-

cies, but fails to assess the code itself or to identify the
actual weaknesses. They have developed a security policy
description language (SPDL) based on XML to describe
a set of validation constraints and transformation rules.
This language is translated into code by a policy com-
piler, which is sent to a security gateway on a server.
The gateway analyzes the request and augments it with
a Message Authentication Code (MAC).

Another different approach to make self-protection,
Huang and others [11] used behavior monitoring to detect
malicious content before it reaches users. They develop
WAVES (Web application security assessment system)
that performs behavior stimulation to induce malicious
behavior in the monitored components. However, the
testing processes cannot guarantee the identification of
all bugs, and they cannot support immediate or direct
security for web applications.

MOPS [6] used the static analysis techniques that have
been made to identify security vulnerabilities in UNIX
programs. Static analysis can also be used to analyze
web application code, for instance, ASP or PHP scripts.
However, this technique fails to adequately use the run-
time behavior of web applications [11].

Jovanovic et al. [14] have developed Pixy, which is the
first open source tool for statically detecting XSS vulner-
abilities in PHP 4 code by means of data follow analysis
which is based on a static analysis technique. Although
the Pixy prototype is aimed at the detection of XSS vul-
nerabilities, it can be equally applied to other taint-style
vulnerabilities such as SQL injection or command injec-
tion.

However, Pixy does not support object-oriented features
of PHP. Each use of object member variables and meth-
ods is treated in an optimistic way, meaning that mali-
cious data can never arise from such constructs. Further
limitation is that they have focused on the problem of
identifying vulnerabilities in which external input is used
without any prior sanitization (e.g. a particular type of
input validation). It should be noted that a sanitization
is performed to remove possibly malicious elements from
the user input These vulnerability detectors are typically
based on data flow analysis that tracks the flow of infor-
mation from the inputs of application’s (called sources) to
points in the program that represent security-relevant op-
erations (called sinks). However, the assumption of this
approach is that if a sanitization operation is performed
on all paths from sources to sinks, then the application
is secure.

Cova et al [15] have presented approach to the analysis of
the sanitization. This means that they combined static
and dynamic analysis techniques to identify faulty san-
itization procedures that can be bypassed by the crim-
inal. Therefore, they implemented this approach in a

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

tool, called Saner, and they applied it to a number of
real-world web applications. They have described a static
analysis technique that characterizes the sanitization pro-
cess by modeling the way in which a web application pro-
cesses input values. This permits us to define the cases
where the sanitization is incorrect or incomplete. Fur-
thermore, they introduced a dynamic analysis technique
that is able to reconstruct the code that is responsible for
the sanitization of application inputs, and then execute
this code on malicious inputs to identify faulty sanitiza-
tion procedures.

6 Conclusions and further work

Because of the possibility of bypassing input validation
either on client-side or server-side, data integrity of web
application can be violated even though the communi-
cation channel between the server and client is secure.
Therefore, we present the proposed web technology-based
architecture for new data validation in the web applica-
tions. This architecture includes a real-time framework
consisting of five components: RDFa annotation for el-
ements of web pages, interceptor, RDF extractor, RDF
parser, and data validator. It might be suggested that
the proposed data validation service could provide a de-
tection, and prevention of some web application attacks.
In future work, we are intended to optimize the imple-
mentation of our solution to increase the effectiveness and
performance. Furthermore, we will investigate a number
of experiments for security and performance objectives.

7 The References Section

References

[1] Acunetix. Web applications: What
are they? what of them?., 2007.
http://www.acunetix.com/websitesecurity/web-
applications.htm, Accessed Data: 15/2/2007.

[2] S. Aljawarneh, C. Laing, and P. Vickers. Security policy
framework and algorithms for web server content pro-
tection. In ACSF ’07, Liverpool, UK, 12–13 July 2007.
Liverpool John Moores University.

[3] T. Bass. CEP and SOA: An open event-
driven architecture for risk management.
IT Financial Services ’07, Portugal, 2007.
www.idc.pt/resources/PPTs/2007/Financial Services/
7 TIBCO.pdf.

[4] C. Brabrand, A. Moller, M. Ricky, and M. I.
Schwartzbach. PowerForms: Declarative client-side form
field validation. World Wide Web Journal, 3(4):205–314,
December 2000. Kluwer.

[5] R. Cardone, D. Soroker, and A. Tiwari. Using XForms to
simplify web programming. In WWW ’05: Proceedings
of the 14th international conference on World Wide Web,
pages 215–224, New York, NY, USA, 2005. ACM Press.

[6] H. Chen and D. Wagner. Mops: an infrastructure for
examining security properties of software. In In Pro-
ceedings of the 9th ACM Conference on Computer and

Communications Security, pages 235–244. ACM Press,
2002.

[7] B. Gehling and D. Stankard. eCommerce security. In
Proceedings of Information Security Curriculum Devel-
opment (InfoSecCD) Conference 0́5, pages 32–37, Ken-
nesaw, GA, USA, Sep 23–24 2005.

[8] A. Ghosh and T. Swaminatha. Software security and
privacy risks in mobile e-commerce. Commun. ACM,
44(2):51–57, 2001.

[9] G. Halfond and A. Orso. Preventing SQL injection at-
tacks using AMNESIA. In ICSE ’06: Proceedings of the
28th international conference on Software engineering,
ACM, pages 795–798, New York, NY, USA, 2006. ACM.

[10] M. Honkala. Web User Interaction a Declarative Ap-
proach Based on XForms. Technology, Department of
Computer Science and Engineering - Helsinki University
of Technology, Espoo, Finland, January 2007. ISBN 978-
951-22-8566-2.

[11] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web applica-
tion security assessment by fault injection and behavior
monitoring. In WWW ’03: Proceedings of the 12th inter-
national conference on World Wide Web, pages 148–159,
New York, NY, USA, 2003. ACM Press.

[12] H. Mikko and P. Vuorimaa. Secure Web Forms with
Client-Side Signatures. In ICWE, pages 340–351, 2005.

[13] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass test-
ing of web applications. In ISSRE 2004 15th Interna-
tional Symposium on Software Reliability Engineering,
pages 187–197. IEEE Computer Society, Los Alamitos,
CA, 2004.

[14] Jovanovic,, Nenad and Kruegel,, Christopher and Kirda,,
Engin. Pixy: A Static Analysis Tool for Detecting Web
Application Vulnerabilities (Short Paper). In SP ’06:
Proceedings of the 2006 IEEE Symposium on Security
and Privacy, pages 258–263. IEEE Computer Society,
Los DC, USA, 2006.

[15] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E.
Kirda, C. Kruegel, and G. Vigna. PSaner: Composing
Static and Dynamic Analysis to Validate Sanitization in
Web Applications. In In Proceedings of the 2008 IEEE
Symposium on Security and Privacy, pages 387-401. SP.
IEEE Computer Society, Washington, DC, 2008.

[16] Open Web Application Security Project. The Ten Most
Critical Web Application Security Vulnerabilities. Ver-
sion 1.1, January 13 2003.

[17] F. Ricca and P. Tonella. Analysis and testing of web ap-
plications. In ICSE ’01: Proceedings of the 23rd Interna-
tional Conference on Software Engineering, pages 25–34,
Washington, DC, USA, 2001. IEEE Computer Society.

[18] D. Scott and R. Sharp. Specifying and Enforcing
Application-Level Web Security Policies. IEEE. Knowl.
Data Eng, 15(4):771–783, 2003.

[19] S. Sedaghat, J. Pieprzyk, and E. Vossough. On-the-
fly web content integrity check boosts users’ confidence.
Commun. ACM, 45(11):33–37, 2002.

[20] J. Tzay, J. Huang, F. Wang, and W. Chu. Constructing
an Object-Oriented Architecture for Web Application
Testing. IJ. Information Science and Eng., 18(1):59–84,
2002.

[21] CERT. CERT Statistics 1988–2006., Jan 2007.
http://www.cert.org/stats.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

