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Abstract—A mathematical model is derived that

describes the dynamics of a single stage relief valve

embedded within a simple hydraulic circuit. The aim

is to capture the mechanisms of instability of such

valves, taking into account both fluid compressibil-

ity and the chattering behaviour that can occur when

the valve poppet impacts with its seat. The initial

Hopf bifurcation causing oscillation is found to be ei-

ther super- or sub-critical in different parameter re-

gions. For flow speeds beyond the bifurcation, the

valve starts to chatter, a motion that survives for a

wide range of parameters, and can be either periodic

or chaotic. This behaviour is explained using recent

theory of nonsmooth dynamical systems, in particu-

lar an analysis of the grazing bifurcations that occur

at the onset of impacting behaviour.

Keywords: relief valve, chaos, grazing, piecewise-

smooth

1 Introduction

Hydraulic and pneumatic circuits are known sometimes
to show undesirable behaviour that is peculiar to nonlin-
ear dynamical systems. The source of the nonlinearity
is often backlash, dry friction, on-off switches or impact-
ing components, whose behaviour is not well modelled
by smooth evolution equations. There are by now count-
less examples of such nonsmooth nonlinear problems that
engineers face when they design mechanical systems, see
e.g. [2, 3, 16] and references therein. Avoiding chatter in
hydraulic relief valves is a good example of such a prob-
lem.

Relief valves are widely used to limit pressure in hydraulic
power transmission and control systems. There is a rich
literature that describes their usage in hydraulic circuits
and gives information on their design and application; see
[1] for a brief overview, or [11, 14] for a more industrial
perspective. There have been numerous documented in-
dustrial examples where these kinds of valves have been
found to vibrate when their equilibria lose stability, and
many researchers have been interested in the investiga-
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tion of this phenomenon. As far back as the 1960s re-
searchers suspected that the piping to and from the relief
valve cannot be neglected. Kasai [10] carried out a de-
tailed investigation of a simple poppet valve and he de-
duced a stability criterion analytically. He also showed
that effects other than fluid nonlinearity can lead to sta-
bility loss, such as changes in the poppet geometry or
the oil temperature. Moreover he performed experiments
and found good coincidence with his analytical results.
Thomann [15] was also interested in the analysis of a
pipe-valve system. He used a simple poppet type valve
but analysed how different poppet geometries affect the
stability. He investigated a conical and a cylindrical pop-
pet together with conical or cylindrical seats, and their
combination. Hayashi et al.[8, 9], built up a model with a
constant supply pressure and investigated the valve’s re-
sponse and stability, finding that the point of instability
can be characterised as a Hopf bifurcation.

The purpose of this paper is to go beyond the initial insta-
bility and to explain the dynamics that occurs when the
valve starts to chatter, that is, where the poppet starts to
periodically impact with the valve seat. Recent progress
in nonsmooth dynamical systems has enabled analysis
and simulation techniques to capture such behaviour, see
[3] and references therein. These techniques were recently
applied by Eyres et al. [5, 6] to a model of a hydraulic mo-
tion damper with relief valves that are present to achieve
certain bilinear damping characteristics. Complex dy-
namics in that system were explained by the presence of
grazing impact within the valves.

This article is organised as follows. In Section 2 a simple
mathematical model is derived that is inspired by recent
experimental results on a test valve embedded within a
simple hydraulic circuit. The model incorporates fluid
compressibility and Newtonian restitution to model the
impact between the valve poppet and seat and can be
shown to depend on four dimensionless parameters. Sec-
tion 3 presents a linear and nonlinear analysis of the ini-
tial instability of the model. Section 4 goes on to study
the more global dynamics for a particular set of parame-
ters for which there is an interval of flow speeds in which
the valve undergoes self-excited oscillations. The com-
plex nonlinear dynamics observed for these flow speeds is
then explained using the theory of grazing bifurcations.
Section 5 sums up the results.
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2 The mathematical model
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Figure 1: Schematic diagram of a simple hydraulic sys-
tem consisting of a gear pump (1), a relief valve (2), a
hypothetical chamber (3) that represents the total tub-
ing in a real system, an oil tank (5) and the pressure relief
valve (4) that we wish to test.

Figure 1 depicts the schematic layout of an experimental
hydraulic rig that is designed to test the behaviour of a
pressure release valve. Preliminary experimental data for
this rig has indicated the propensity of the valve to self-
oscillate at around 300-400 Hz for a range of flow speeds
and for there to be significant hysteresis between the self-
oscillating and the equilibrium states [13]. The details of
these experiments will appear elsewhere.

In order to derive a mathematical model of the system we
embed a similar model of the value to that used by Ka-
sai [10] and Hayashi [9] within a simple mass flux model
for the fluid, whose flow we suppose to be supplied at a
constant rate Qp by a gear pump (labelled 1 in Fig. 1).
However due to compressibility of the fluid and elasticity
of the tubes, the flow rate at the test valve can be differ-
ent from that at the exit of the pump. So we consider a
hypothetical chamber whose volume is equal to the total
volume of the system when filled with oil, within which
we allow a flow rate difference between the inlet and the
outlet. This chamber will represent the stiffness of our
system.

The mass balance equation for the chamber (labelled 3
in Fig. 1) can be written as follows:

d

dt
(ρV ) = V

ρ

E

dp

dt
= ρ [Qp − Q (x, p)] , (1)

where V represents the total volume of the system, ρ
denotes the density of the fluid and p is the oil pressure
at the relief valve. Furthermore, the term

Q(x, p) = A(x)Cd

√

2

ρ
p (2)

is the flow rate of the fluid leaving the valve, where Cd

(which in general depends on Reynolds number Re, al-

though here we take to be constant) is the discharge coef-
ficient at the valve inlet. Also, A(x) is the cross sectional
area of the valve inlet, where x is the displacement of the
valve stem, which is zero when the valve is closed and
positive otherwise. In general, an accurate expression for
the orifice cross-sectional area as a function of the value
displacement A(x) will be nonlinear and will depend on
the precise valve geometry. Nevertheless, since during
most operations, the valve displacements will be small it
is reasonable to linearise and write A(x) = A1x. In prac-
tice any nonlinearity due to the valve geometry is likely
to be small compared with that due to fluid compressibil-
ity and to the impact. Note that in deriving (1) we have
used the chain rule for derivatives and also substituted
dp
dρ = E

ρ as a definition for the sonic speed, where E is
the reduced modulus of elasticity of the system after tak-
ing account of the oil compressibility and the expansion
of the tubes.

The equation of motion for the valve poppet is assumed
to take the form:

ẋ =v

(3)

v̇ =
pA

m
− k

m
v − s

m
(x + x0)

for x > 0, and to obey a Newtonian impact law

v+ = R
(

v−
)

= −rv− (4)

when x = 0. Here v denotes the velocity of the valve
stem, with v− being its value immediately before an im-
pact, and v+ its value immediately afterwards, r is the
coefficient of restitution, k is the valve’s damping coeffi-
cient when not in contact, s is the spring stiffness, m is
the total mass of the moving parts and x0 denotes the
pre-compression of the spring.

Introducing the dimensionless co-ordinates yi(τ), i =
1, 2, 3 where

τ = (
s

m
)

1

2 t, y1 =
s

A0p0

x, y2 =
(sm)

1

2

A0p0

v, y3 =
1

p0

p ,

where p0 is atmospheric pressure, A0 is the inlet cross
sectional area of the valve, Eqns. (1)–(4) can be written
in dimensionless form as

y′

1 = y2

y′

2 = −κy2 − (y1 + δ) + y3 (5)

y′

3 = β (q −√
y3y1)

for y1 > 0, where ′ represents differentiation with respect
to τ , and

y+

1 = −ry−

1 .
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for y1 = 0. The nondimensional parameters are

κ =
k

m

√

m

s
(nondimensional damping coefficient)

β =
E

V

CdA1A0

ρ

√

2p0m

ρs
(nondim. stiffness param.)

δ =
sxp

A0p0

(nondimensional pre-stress parameter)

q =
Qp

Cdc1
A0p0

s

√

2 p0

ρ

(nondimensional flow rate).

We use experimental test rig [13] to estimate realistic
values for the dimensionless parameters. We obtain that

κ ≈ 1.25 [−], β ≈ 20 [−], and δ = 10 [−], (6)

which corresponds to an opening pressure for the relief
valve of popening = 10 [bar]. The dimensionless flow rates
are allowed to vary in the range 0−25, which corresponds
to Qp in the range 0−3.5[l/min]. Of these parameters the
nondimensional damping coefficient is the one that carries
the most uncertainty as it is the hardest to approximate
in practice.

3 Initial instability

Throughout this section, we take the simplifying assump-
tion that that there is no pre-stress in the valve, δ = 0
(which is not as gross a simplification as it might seem
since the average pressure p also acts like a pre-stress
term). Moreover in numerical evaluations we take the
dimensionless stiffness parameter β = 1. These simplifi-
cations make the analysis somewhat more tractable, and
in practice was found to make little qualitative differ-
ence; an effective adjustment can be made by reducing κ
to about 0.7.

3.1 Linear stability analysis

Under the assumption δ = 0, the equilibrium of Eq. (5)
is

(ye
1, y

e
2, y

e
3) = (q

2

3 , 0, q
2

3 ).

Linear stability analysis shows that a Hopf bifurcation
(corresponding to a pure imaginary pair of eigenvalues)
occurs along a curve in the (κ, q) parameter plane given
by

κ =
−β2q

2

3 − 4 +

√

β4q
4

3 + 40β2q
2

3 + 16

4βq
1

3

. (7)

Figure 2(a) shows this curve. For higher κ values the
system becomes unstable to linear oscillations. We can
also calculate the frequency of small amplitude oscilla-
tions, which is depicted as a function of κ in Fig. 2(b) in

the original dimensional co-ordinates. Note that this fre-
quency of instability is found to be remarkably constant
along the curve, at approximately 314Hz, which is within
the range observed in the experiments.

q

κ

stable

unstable

0.75

0.4
0 25

(a)
Qp [l/min]

f
[H

z
]

frequency at 314 [Hz]

300

0
0 3.5

(b)

Figure 2: (a) Stability diagram for the nondimensional
damping coefficient κ with respect to the nondimensional
flow rate q under the simplifying assumptions δ = 0, β =
1. (b) The corresponding vibration as a function of flow
rate, using the dimensional parameters derived from the
test rig.

3.2 Nonlinear analysis

Having found the presence of a Hopf bifurcation, let us
next investigate the stability of the bifurcating limit cy-
cle. We have applied the technique of centre manifold
reduction and normal form theory as described for exam-
ple in [7, 12]. The normal form for a Hopf bifurcation on
the centre manifold can be written in the complex form

ż = (λ + iω)z + l1z|z|2 + O(z5),

where λ gives the real part of the eigenvalues that cross
the imaginary axis at the bifurcation and ω their imagi-
nary parts. The sign of the first Lyapunov coefficient l1
determines the criticality of the Hopf bifurcation. That
is, if l1 < 0 small-amplitude limit cycle oscillations bi-
furcate supercritically (stable oscillations for λ > 0),
whereas for l1 > 0 they bifurcate subcritically (unstable
oscillations for λ < 0).

We have computed the Lyapunov coefficient at all points
along the instability curve in Fig. 2(a), see Fig. 3. In-
deed, note from the middle panel of the figure that l1
changes sign at some point along the curve. In fact, the
coefficient changes sign at precisely χ = 3.4087 [−] where
χ = βq1/3 ∼ q is a convenient combination of dimension-
less parameters.

Taking the specific case κ = 0.7, Fig. 3 shows that both
Hopf points are supercritical, since l1 < 0. This means
that the limit cycle that arises at the Hopf points will be
stable. However if we reduce κ, then the two bifurcation
points move apart and one of them becomes subcritical.
In order to understand these cases and provide verifi-
cation of the analysis, we have used the public domain
software AUTO [4] to continue the limit cycles as param-
eters vary. Figure 4 shows the numerical continuation
with κ = 0.7, where there are two supercritical Hopf bi-
furcation points. The solid lines represent the data from
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Figure 3: Stability curve (top), values of the Lya-
punov coefficient along the stability curve (middle) and
the nondimensional vibration frequency (bottom) against
χ = q1/3β, plot on a logarithmic scale

the AUTO calculation and the dashed lines show the an-
alytical estimates for the vibration amplitude which can
be obtained from the cubic-order normal form. Note that

q

y 1

12
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2

0
0 5 10 15 20 25 30

Figure 4: Continuation of equilibria and limit cycles with
q for κ = 0.7. The dashed lines represent the analytical
estimates, and the solid lines the results of AUTO com-
putation. The approximately straight line represents the
curve of equilibria, which is unstable between the two
Hopf bifurcation. The curves that bifurcate at the two
Hopf points represent the maximum amplitude and min-
imum amplitude of a limit cycle, which is stable for all
the depicted q-values.

for this κ-value the auto computations show that a stable
limit cycle exists throughout the region between the two
Hopf bifurcation points. Moreover this limit cycle has
a minimum amplitude for which y1 is positive, hence no
impacts occur.

q

y 1
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0 0.2

(a)

q

y 1

0 1000
0
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Figure 5: Continuation from Hopf bifurcation points with
κ = 0.4 showing: (a) a neighbourhood of the first, su-
percritical, Hopf bifurcation; (b) a neighbourhood of the
second, subcritical, bifurcation. Here stars mark the lo-
cation of equilibria and circles represent periodic solu-
tions. Black markers are stable solutions and red ones
are unstable. The dashed line again shows the analyti-
cal estimation from the normal form theory which can be
seen to be quadratically correct.

It is interesting to compare these results with what hap-
pens when κ is reduced to a value of 0.4. Again Fig. 3
shows that there are two Hopf bifurcation points, but
now the higher-q one (at the unphysically large value of
q = 668.2) is subcritical, while the lower q bifurcation
(at q = 0.096) remains supercritical. However, the re-
sults in Fig. 5(a) show that the bifurcating limit cycle
from the supercritical bifurcation only exists for a short
interval of q-values before it destabilises in a fold of limit
cycles. This unstable limit cycle exists all the way down
to q = 0. Fig. 5(b) shows continuation from the second
Hopf point at q = 668.2. The unstable limit cycle born in
this bifurcation can be continued up to arbitrarily large
q.

For this lower κ-value then we have found a large interval
of q parameters for which there are no stable dynamics
arising from the solutions born at the Hopf bifurcations.
To understand what happens for these flow speeds, we
must turn to direct numerical simulation.

4 Global dynamics

We now return to the original experimentally determined
values of the fixed parameters (6) in order to investigate
the dynamics well away from the initial Hopf instability.

4.1 Direct numerical simulation

In order to determine the long-time dynamics for any
parameter value we have performed numerical simulation
of the dimensionless model (5) using MATLAB R© and the
event handling solver option to accurately detect impact
points where y1 = 0. If an impact occurs at a point
y = y−(0, v−, p−)T then a reset map is applied so that

the new initial condition becomes y+ = (0,−rv+, p+)
T
.

We vary the nondimensional flow rate q as free parame-
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ter in order to produce a so called Monte Carlo bifurca-
tion diagram, in which we take a range of different initial
conditions at each q-value then run the simulation for
a long time, recording points only after transients have
died. In order to depict the results, we chose the plane
{y2 = 0} as a two-dimensional Poincarè section of the
three-dimensional phase space. The results are presented
in Fig. 6.

Figure 6: Monte Carlo bifurcation diagram for κ = 1.25,
β = 20, δ = 10 and q = 0 − 10.

There are some interesting regions in the figure that are
worthy of discussion. Let us consider reducing q from a
high value towards zero. At about q = 9.18 a supercritical
Hopf bifurcation occurs and a stable limit cycle is born
that rapidly grows in amplitude with further decrease of
the bifurcation parameter. This extreme growth can be
explained from the fact that the first Lyapunov coefficient
remains relative close to zero but is clearly negative for
these particular parameter values of q. A typical solution
trajectory within this region is depicted in Figure 7(a).

At q ∼= 7.54 a grazing bifurcation occurs. This means
that the minimum value of the vibration reduces until it
reaches the impacting barrier y1 = 0, which means that
the displacement x of the valve poppet has reached 0, the
value at the valve seat in our physical system. At grazing,
only zero velocity impacts occur, this also means that the
reset map that is used for determining the velocity after
impact is the identity map itself, the velocity before and
after the impact are both equal to zero.

With further decrease of the dimensionless flow rate,
period-three and period-two impacting solutions can be
seen between q = 6.1 and 7.54. Parts of this region seem
to be cloudy which is the hallmark of chaotic motion.
Figure 7(b) shows an impacting (weakly) chaotic solu-
tion.

The next interesting point is at q ∼= 5.9 where a period-
two and a period-one impacting solution coexist. The
period-two solution is an impacting/grazing one that can
be seen in Figure 7(c). This also suggests that another
grazing bifurcation occurs in this region when the non-
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Figure 7: Phase space trajectories along the bifurcation
diagram: (a) Non-impacting period-one (q = 8); (b) near-
grazing chaotic orbit (q = 7.4); (c) period-two impacting
(q = 6.5); (d) period-one impacting (q = 5); (e) period-
two impacting (q = 1.2); (f) period-four impacting (q =
1). The parameters are κ = 1.25, β = 20 and δ = 10.
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Figure 8: (a) Chaotic attractor for q ≈ 0.85 with κ =
1.25, β = 20 and δ = 10. (b) The frequency spectrum of
the solution.

impacting period of the period-two solution touches the
impact surface. Below q = 5.7 only a period-one impact-
ing solution exists until q = 1.4 where a so called period-
doubling cascade starts Figures 7(d), 7(e) and 7(f) show
trajectories corresponding to this region. This period-
doubling cascade ends up in the chaos that can be seen
on Fig. 8(a) and Fig. 8(b).
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4.2 Grazing bifurcation analysis

In our system for the particular nondimensional param-
eters used (6), grazing can occur at the two flow-rates
q = 7.54 (henceforth referred to as the first grazing) and
q = 5.95 (the second one). The first grazing occurs when
the period-one nonimpacting limit cycle depicted in Fig.
7(a) touches the impact barrier. The second grazing is
when a period-two limit cycle that already has an impact-
ing period undergoes another point of grazing (see Fig.
7(c)). In both cases this is characterised by the appear-

q

y 3

6.6 8.2
34

48

(a)

q

y 3

4.5 7

26

38

(b)

Figure 9: Two grazing events shown in the bifurcation
diagram. The first at q = 7.54 (a) and the second at
q = 5.95 (b).

ance of a zero velocity impact, however the two grazing
events have different effects on the global dynamics. In
the first case an immediate jump to chaos can be seen (see
Fig. 9(a)) while the second case looks more complicated
as depicted in Fig. 9(b).

We have carried out a more detailed investigation of the
first grazing, in order to understand the apparent imme-
diate transition to chaotic dynamics. For this we used the
theory for nonsmooth systems described in [3]. First we
have to find the grazing limit cycle exactly. Our bifurca-
tion diagram in Fig.6 is very helpful, because it contains
the critical flow rate q and the nondimensional pressure
y3 can also be obtained. Since we chose the zero veloc-
ity plane as our Poincarè section y2 = 0 and at grazing
our displacement is also zero. We now have initial con-
ditions that correspond to the last non-impacting limit
cycle. The next step is to solve the linear variational
equations along the limit cycle at the grazing point, to
obtain the monodromy matrix M whose eigenvalues are
the Floquet multipliers of the orbit. The variational equa-
tions can be written in the form

ẇ = Ĵ(y0)w, (8)

where Ĵ is the linear part of the nonlinear system defined
in Eq.(5) evaluated along the impacting orbit y0. We
have to solve (8) together with (5) over the period T of
the grazing limit cycle. To compute a basis for M , we
need to solve (8) with three different initial conditions
(

w01
1 , w01

2 , w01
3

)

= (1, 0, 0), (0, 1, 0) and (0, 0, 1). We can
then form the monodromy matrix M from the solution

w (T ) after one complete period:

M =
(

w01 (T )w02 (T )w03 (T )
)

.

We then have to compute the eigenvalues of M in order
to apply the theory of grazing bifurcations.

Since the grazing limit cycle is stable, the eigenvalues
of M (apart from the trivial multiplier 1) must both lie
inside in the unit circle. If these eigenvalues ν1,2 are both
real, then generically we may assume |ν1| > |ν2| and,
according to theory in [3] there are three scenarios:

1. If 0 < |ν1| < 1/4 then grazing is followed by a period
adding cascade, in which overlapping parameter in-
tervals exist in which there is an orbit of period nT ,
where n → ∞ as the grazing point is approached;

2. if 1/4 < |ν1| < 2/3 then chaotic and stable periodic
solutions alternate and the periodic motion forms a
period adding cascade;

3. if 2/3 < |ν1| < 1 then there is a sudden jump to chaos
where the chaotic attractor’s size is proportional to
the square root of the bifurcation parameter.

For the grazing flow rate q = 7.54 we find that
(

y0
1 , y

0
2 , y

0
3

)

= (0, 0, 47.07) represents the initial condition
of a periodic orbit that grazes. When we integrate for
one period (T = 2.6547 [−] for this flow rate) and solve
the linear variational equations we obtain that the non-
trivial eigenvalues of M are ν1 = 0.8537 and ν2 ≈ 0.
Since we have 2/3 < ν1 < 1, the above classification
shows that a robust chaotic attractor should be born at
the bifurcation, whose size grows with

√
7.54 − q. This is

exactly as seen in Fig. 9(a). The second grazing bifurca-
tion at q = 5.95 can be analysed similarly, but here the
computations are more involved, since the periodic orbit
undergoing the bifurcation is itself an impacting one.

5 Conclusions

In this paper we presented a mathematical analysis of
a simple hydraulic pressure relief valve. We found that
these kind of dynamical systems can lose their stability
in a particular way in which self-excited limit cycle vi-
brations occur. We obtained a criterion for stability re-
garding the flow rate and damping coefficient parameters
using linear stability analysis. We have shown that damp-
ing of the system has a notable effect on the stability of
limit cycles that arises. Overall, an increase of damp-
ing κ makes the system more stable, and if the damping
is moderate but not too small, it can help to avoid the
appearance of unstable limit cycles.

We also found that for low enough damping, the system
typically undergoes grazing bifurcations at two flow rates
and we determined the type of grazing bifurcation that
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causes the initial onset of impacting behaviour as the flow
rate is decreased. We were able to show that this causes
a transition from a stable limit cycle to robust chaos. We
believe this is the first proper explanation of the onset
of chattering behaviour in relief valves, as most previous
studies have assumed smooth behaviour, and essentially
has just found the presence of Hopf bifurcations. As we
have shown, an analysis of chatter requires instead non-
smooth dynamical systems theory.

This work is part of an ongoing wider study, and a de-
tailed comparison between theory and experiment will be
discussed elsewhere. It is also planned to do further para-
metric studies, in particular implementing continuation
that take account of the system’s discontinuity.
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