
 

 

 

 

Abstract— The motion about a centre of mass of a 

spacecraft with a vertical tethered system under the action of 

the gravitational moment and small periodic tethered force at 

a circular orbit is studied. The paper contains bifurcation 

analysis, phase space research, and analytic solutions for 

separatrixes. The considered mechanical system performs 

chaotic motion near separatrixes under the influence small 

disturbances. Melnikov method gives a criterion for 

homo/heteroclinic chaos in terms of system parameters. 

Results of the research can be useful for the analysis of 

gravitational stabilization systems with space tethers and for 

studying the behavior of a spacecraft with a deployed tether. 

 
Index Terms—Chaos, Oscillation, Spacecraft, Tethered 

system.  

I. INTRODUCTION 

Space tethers have been proposed for a wide range of 

useful applications, including payload delivery from the 

Earth orbit and Earth monitoring, using surveillance 

equipment on the lower end of a vertical tether. In the 

majority of publications devoted to the analysis of space 

tethered systems, the object of investigation is the tether 

and the payload, the spacecraft is regarded as a point mass 

[1]-[4]. In this paper, we investigate the oscillations of a 

spacecraft as a rigid body under the action of the tethered 

force and gravitational moment in the case of the spacecraft 

with elastic tether deployed on a local vertical. The 

oscillations of the end mass initiate small periodic 

disturbances, affecting the spacecraft.  On the other hand, 

depending on the ratio between the spacecraft’s moments of 

inertia and tethered system parameters, points of unstable 

equilibrium can appear in a phase space. These two factors 

lead to chaos and irregular behavior of the spacecraft in its 

motion about a centre of mass [5], [6]. The aim of this 

paper is to research the influence of elastic fluctuations of 

the tether on chaotic behavior of the spacecraft.  

II. EQUATION OF SPACECRAFT MOTION AND 

 TETHERED PAYLOAD OSCILLATIONS 

Consider a mechanical system (Fig. 1), consisting of a 

spacecraft with the center of mass located in the point O , a 

tether 1 2PP  and an end mass 2P . The spacecraft moves in a 

circular orbit (dashed curve in Fig. 1). Coordinate system 
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1 1Ox y  lays in the orbital plane and 
1Ox  axis coincides with 

the local vertical. Oxyz is fixed in the spacecraft frame of 

reference. The plane Oxy  coincides with the orbital 

plane
1 1Ox y . Equation describing the motion of the 

spacecraft about of centre of mass, can be written as [7]  

 
33 ( )sin cos sin( )C p B A T           , (1)  

where   is the angle between the  axis Ox  and the local 

vertical, , ,A B C are the principal moments of inertia, T  is 

the tether force,   is the angle between the line of action of 

the tether force and the local vertical, 
1OP   (Fig.1),   

is the gravitation constant, p  is the orbit parameter. The 

motion of the payload about the spacecraft is described by 

the equations in polar coordinates ( , )r   [1] 
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where 1/2 3/2p   , r is the tether length, m - the 

payload mass. 

System (2) has two pairs of stationary solutions, one of 

them corresponds to the stable (vertical) position of the 

tether 
20, ; 3T mr    . (3) 

 

If 0   then the end mass is below the spacecraft and 

if   then the payload is above it. Let us consider an 

elastic tether 

 
1( 1)T E rl  , (4) 

 

 
Fig. 1. The Spacecraft and the tether with different 

moments of inertia. 
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where E is modulus of elasticity, l is the length of the 

unstrained tether. We can suppose that the payload moves 

strictly along the local vertical in the vicinity of the position 

of equilibrium (3). The second equation of system (2) 

subject to (3) takes the form 

 
2 1r r Em  , 

 (5) 

where 2 1 1 23 0Em l       for the materials 

implemented in orbital tether systems [1], [4]. The payload 

equilibrium is defined by the expression 

 
2 1

0 ( 3 )r E E m l l   . (6) 

 

For the initial conditions:  

 

0 0 00: ,t r r r V   ,  (7) 

 

solution of equation (5) is given in the form 

 
1

0 0 sinr r V t    . (8) 

 

In order for the tether to remain constantly stretched, it is 

essential that the initial speed of the payload (7) is less than 

the following value   

 
1/2

2 1/2 3/2 2

0 3 3V m l E m l 


 
.  

Using expressions (4) and (8) we can derive a harmonic 

function for the tether tension 

 

0 sinmT T T t   , (9) 

 

where  

 

 
1

2 2

0 3 3T m lE E m l 


 
, 

 
1/2

1/2 1/2 2
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. 

III. BIFURCATION ANALYSIS AND UNDISTURBED SOLUTIONS 

If the end mass oscillates on the vertical tether ( 0  ), 

then motion of the spacecraft about the centre of mass 

subject to (1) and (9) is described with the following 

equation 

 

sin sin cos sin sina c t          , (10) 

 

where  

 
1

0a T C  , 33 ( ) /c p B A C   , 1

mT C   . (11) 

 

If 0   then periodic force is absent, the system remains 

conservative and describes the motion of the undisturbed 

biharmonic oscillator as [8] 

 

sin sin cosa c      . (12) 

 

The coefficient 0a   is always greater than zero, and 

the sign of c depends on the ratio between the moments of 

inertia Aand B  in compliance with (11). Positions of 

equilibrium of the undisturbed system (12) are defined as 

roots of the following equation 

 

  sin 1 cos 0    , (13) 

 

where 1ca  . 

 

Expression (13) provides solutions for two constant 

positions of equilibrium: * 0,  , and third position 

* (0, )   existing only under the condition of 

 

1  . (14)   

 

If this condition is not satisfied, then there are only two 

positions of equilibrium. Point * 0   is always a center, 

and *   - a saddle. 

On the other hand, if 1    then both * 0  and 

*   are saddles, and the intermediate position of 

equilibrium 

 

 * 1arccos    
 -   

 

is a centre (the left branch of the diagram, fig. 2). 

 If 1  , we see the opposite picture (the right branch of 

the diagram, fig. 2). The diagram of bifurcations for 

negative values of  looks like a mirrored transformation 

relatively to an abscissa axis.  

Hyperbolic points (saddles) exist, when the condition 

(14) is satisfied. In such cases, the action of external 

periodic force sin sin t    in the disturbed system (10) 

may lead to chaos and homo/heteroclinic intersections [5]. 

Chaotic transitions can appear near separatrixes, dividing 

characteristic areas of motion and connecting hyperbolic 

points. 

 

 
Fig. 2. Bifurcation diagram of the undisturbed 

system (12). 

 

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



 

 

 

Now let us refer to the analysis of the disturbed system 

(10) by means of Melnikov method [9]. The Melnikov 

method is an analytical tool used to define the existence of 

homo/heteroclinic intersections and as a result the chaotic 

behavior. The method provides a necessary condition for 

the existence of chaos. In order to apply the Melnikov 

method we need know the analytical solutions of the 

equation of undisturbed motion at separatrixes.  

Solution form varies depending on the values of initial 

conditions and parameter
1ca  .  

We consider two cases: 1   (Fig 1.a) and 

1  (Fig. 1.b).  

 

Case 1.  If 

 
1 1ca    (Fig 1.a), (15) 

 

A case like this results in two unstable – saddle type 

points 

 

 1arccosS      (16) 

 

and two stable points – centers 

 

0,С   .  

 

We can notice, that the center 
С   coincides with 

the center 
С  . At the points   and at 

   the speeds   coincide, therefore we can say, that 

phase trajectories are closed on a cylindrical phase space. 

From now on, we can consider the evolution of the 

cylindrical space in the range of [ , ]    . The phase 

space can be divided into the areas 0A  and 1A , separated 

by the saddles 1s  and 1s  (Fig. 3). It is necessary to note, 

that the region 1A  has a discontinuity point ,    . 

From the expression (16) it follows, that the saddle 1s  

belongs to the interval: ( / 2, )S   , and at negative 

values of 0a   the saddle 1s  belongs to the interval: 

( / 2, )    . At    we receive / 2S  . 

The following energy integral corresponds to the 

equation (12):  

 
2 / 2 ( )W E   ,    (17) 

 

where 2( ) cos ( / 2)cosW a c      is the potential 

energy and E  is the total energy. The shape of the phase 

portrait depends on the potential energy ( )W  . The centers 

C  correspond to the minimums of the potential energy, 

and the saddles S  - to the maximums.  If SE W , where 

( )S SW W  , then the motion is possible in the outer 

regions (Fig. 3). In the opposite case ( SE W ) the motion 

can occur in any of the inner regions, depending on initial 

conditions. The equality 
SE W  corresponds to the motion 

along separatrixes. In this case, the two saddles 

1s and 1s are connected by four heteroclinic trajectories.  

First of all, we consider the separatrixes, limiting the 

region 0A . Separating the variables in the energy integral 

(17), the equation of motion on the separatrixes can be 

written in the integrated form 

 

    
0

1/2
22 cos / 2 cosSt W a c d




   



     , (18) 

 

where    2 2( ) cos / 2 cos / 2S S SW a c a c      . 

Changing the variable 

tan / 2x  , (19) 

simplifies the integral (18) and we obtain the following 

expression [10]: 

     
00

1
1/2 2 2 1/2

1 1 12 2 ln /
x x

xx
t P x x dx P x x x x


      , 

where  1 tan / 2Sx   and 
2( ) 0P c c a   . 

Finally, the solution of the equation (12) for the 

heteroclinic orbits in the region 0A  (Fig. 3), can be written 

as [8] 

   

 

1

1

1 1

( ) 2arctan tan / 2 tanh / 2 ,

( ) ( ) sin cosh cos

S

S S

t t

t t

  

     





 

    

   
  (20) 

where  
1/2

2 2 1/2

1 c a c    is real, if the condition (14) is 

satisfied. 

For the area 1A  heteroclinic trajectories have a similar 

form [8] 

 

   

 

1

1

1 1

( ) 2arctan cot / 2 tanh / 2 ,

( ) ( ) sin cosh cos

S

S S

t t

t t

   

     





 

    

  
 (21)  

 

 
Fig. 3. Phase space and potential energy plots for the 

undisturbed system (12) at a=1, c=4. 
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Case 2.  If  
1 1ca     (Fig. 1.b), (22) 

then there are two stable centers  

 1arccosC       

and one unstable saddle (Fig. 4)  

0S  .  

In this case the substitution of variables (19) simplifies 

the integral (18) and results in the following expression 

 

 

 

0

0

1/2
1/2 1 2 2

2

1/2
2 2 2

2 2 2ln / ,

x

x

x

x

t a x x x dx

x x x x


 



 

   
  


 (23) 

where  
1/2

2 a c    ,  
1/2

2 /x a c a     . 

 

Two homoclinic trajectories are symmetrical to the right 

and to the left of the hyperbolic point 0S   (Fig. 4). Let 

us consider only the right orbit. Making a reversed 

substitution of variables (19) in the expression (23) we 

receive the following solutions  

 

 

 

2 2

2 2

2 2 2 2 2

( ) 2arctan / cosh ,

( ) ( ) 2 sinh / cosh .

t x t

t x t t x

 

    



 

 

   
 

 
 (24) 

 

 
Fig. 4. Phase space and potential energy plots for the 

undisturbed system (12) at a=1, c=-4. 

IV. THE MELNIKOV FUNCTION  

Stable and unstable manifolds do not necessarily 

coincide and it is possible for them to cross transversally, 

leading to an infinite number of new heteroclinic points. 

Then, a heteroclinic tangle is generated. In such case, as a 

result of disturbance, the motion of the system (10) near the 

undisturbed separatrixes becomes chaotic. Inside this 

chaotic layer small isolated regions of regular motion with 

periodic orbits can also appear. The existence of 

heteroclinic intersections may be proved by means of the 

Melnikov method [9]. We present a more convenient way 

of using Melnikov method, applying it to a system of two 

first order differential equations instead of one disturbed 

equation of the second order (10). 

 

1 1

2 2

,

sin sin cos sin sin

,

f g

a c t

f g

 

     

  

    

 



  (25) 

where  

1 2

1 2

, sin sin cos ,

0, sin sin( ).

f f a c

g g t

   

  

   

  
 (26) 

 

The Melnikov function [9] for system (25) is given as  

 

0 0

0 1 2 0

0 0

2 1 0

0 0

1 2 0

( ) { [ ( )] [ ( ), ( )]

[ ( )] [ ( ), ( )]}

{ [ ( )] [ ( ), ( )]} ,

M t f q t g q t t t

f q t g q t t t dt

f q t g q t t t dt




 


 



 


   

 

  





 (27) 

 

where 
0 ( ) [ ( ), ( )]q t t t     are the solutions at the 

undisturbed homo/heteroclinic orbits (20), (21) or (24).  

The Melnikov function (27) subject to expression (26) 

can be written as 

0 0

0

( ) [sin sin( )]

cos sin sin .

M t t t dt

t tdt

  

  




 




 


    

  




 (28) 

 

An integral from of the expression (28)  

 

sin sinI tdt 


 


    (29) 

 

defines the amplitude of changes in the thickness of 

chaotic layer. We can calculate  its absolute size for three 

orbits: 

two heteroclinic orbits (20) and (21) - case 1, 

one homoclinic orbit (24) - case 2. 

Substituting the solutions (20), (21) and (24) into the 

integral (29) properly, we receive three integrals in the form 

of functions of a dimensionless frequency of the external 

disturbance 

 

  2 1

0 1 1 1 12

1

sinh
sin sin( ) ,

(cosh cos )
S
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I d
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  (32) 

where 1 1t  , 2 2t   is the dimensionless 

time, 1

1 1
   and 1

2 2
   are the dimensionless 

frequencies. 
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Fig. 5. Evolution of the maximum thickness of chaotic 

layers (30), (31) and (32) as the functions of dimensionless 

frequencies 1

1 1
  and 1

2 2
   

 

We can notice, that according to (11), the natural 

frequencies 

 

  
1/2

2 2 1/2

1 c a c    and  
1/2

2 a c     

 

depend on the parameters of the tethered system and on 

inertia moments of the spacecraft. We have analyzed the 

evolution of the maximum thickness of the chaotic layers 

for the homo/heteroclinic orbits (20), (21) and (24) as the 

functions of the dimensionless frequencies 
1  and 

2 . 

Calculations, based on the numerical integration of (30)-

(32) show, that at 
1 2, 6    the thickness of chaotic layer 

tends to zero (Fig. 5), therefore the regular structure of a 

phase space of the disturbed system (10) is observed and 

trajectories have no homo/heteroclinic intersections (Fig. 

5). It means, that at 
1 2, 6    the external periodic force 

sin sin t    has no influence on the behavior of the 

disturbed system (10). 

 

V. CONCLUSION 

This work attempts to describe transient cases of motion 

of a spacecraft with an elastic tether deployed on a local 

vertical using the methods of chaotic mechanics, 

particularly, the Melnikov method. We have established the 

borders of homo/heteroclinic chaos using the Melnikov 

method, which allows us to choose tethered systems 

parameters that will ensure a regular behavior of the  

spacecraft with elastic tether in their motion around the 

centre of mass. 
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