
Stochastic Nonlinear Gompertz Model of Tumour Growth

C.F. Lo∗

Abstract
In this communication, based upon the deterministic
Gompertz growth law, a stochastic nonlinear model of
tumour growth is proposed to model the conventional
size-dependent therapy strategy of tumours. The
probability density function of the size of the tumour
obeys a nonlinear Fokker-Planck equation which can
be solved analytically. It is found that during the
cancer treatments the dose intensity should not be
decreased at any time because this will allow the tu-
mour to relapse, and that the late logarithmic inten-
sification therapy could be the optimal therapeutic
strategy.

Keywords: Gompertz law; Tumour growth; Fokker-
Planck equation.

1. Introduction

Modelling tumour growth and treatment has be-
come one of the leading research areas since cancer is
a major cause of death in our modern society. To-
day most studies stem out of mechanistic population
growth models which consist of one or more differen-
tial equations. Despite their simplicity, such models
have proved to be appropriate to predict the evolution
of numerous biological phenomena (Preziosi, 2003).
Among the proposed models those based upon the
deterministic Gompertz growth law appears to be
particularly consistent with the evidence of tumour
growth (Fuchshuber et al., 1986; Bassukas, 1994; Ry-
gaard and Spang-Thomsen, 1997; Bass and Green,
1989; Qi et al., 1993; Tyurin et al., 1995). If x (t)
is the volume of the tumour at time t, then the de-
terministic Gompertz growth law is defined by the
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differential equation:

dx = {A1x−A2x ln (x)} dt , (1)

where A1 is the intrinsic growth rate of the tumour
(related to the initial mitosis rate) and A2 is the
growth deceleration factor (related to the antiangio-
genic processes). The parameters A1 and A2 charac-
terize the evolution of different tumour types. Eq.(1)
admits the solution of the form of a sigmoidal func-
tion:

x (t) = exp

½
A1
A2
−
·
A1
A2
− ln (x0)

¸
exp (−A2t)

¾
(2)

where x0 ≡ x (0). From the solution one can eas-
ily see the non-trivial equilibrium point x (∞) =
exp (A1/A2) representing the largest tumour size
that an organism can tolerate (i.e. carrying ca-
pacity). There also exists an inflection point
x∗ = exp (A1/A2 − 1) corresponding to the maximum
growth rate, which reflects the self regulation effect
by an intrinsic growth control mechanism. However,
it is quite often that discrepancies are found to exist
between clinical data and theoretical predictions due
to intense environmental fluctuations. For instance,
Ferreira et al. (2003) analyzed the effect of distinct
chemotherapeutic strategies for the growth of avascu-
lar tumours, and confirmed that an environment like
chemotherapy would affect tumour growth behaviour
and lead to morphological transitions under certain
conditions. Therefore, a better model is needed to
reflect the external randomness that affects the tu-
mour growth behaviour.
A few years ago Ferrante et al. (2000) proposed a

stochastic version of the Gompertz law to account for
random fluctuations of the model parameters. They
assume that the growth deceleration factor A2 does
not change, while the variability of environmental
conditions induces fluctuations in the intrinsic growth
rate A1. By assuming that the intrinsic growth rate
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varies in time according to

θ (t) = A1 + σ � (t) , (3)

where A1 is the constant mean value of θ (t), σ is
the diffusion coefficient, and � (t) is a Gaussian white
noise process, the proposed stochastic model is de-
fined by the stochastic differential equation

dx = {A1x−A2x ln (x)} dt+ σx dZ , (4)

where dZ denotes the standard Wiener process. By
Ito’s lemma Eq.(4) implies that the exponent ψ ≡ lnx
follows the Ornstein-Uhlenbeck process:(Gardiner,
1985)

dψ =

½
A1 − 1

2
σ2 −A2ψ

¾
dt+ σ dZ (5)

with the long term mean
¡
A1 − 1

2σ
2
¢
/A2. This model

has been applied to simulate the effects of a time-
dependent therapy for the case of a parathyroid tu-
mour via adding a suppresion factor to moderate the
intrinsic growth rate (Albano and Giorno, 2006).
In the administration of cancer treatments it is

conventional that strategic dosing is used to max-
imize anticancer-drug effects while minimizing host
toxicity (Sanga et al., 2006). Accordingly, many
therapy schedules employ intensive therapy initially,
when the tumour is largest, and then the dose is de-
creased as the tumour is reduced. For example, in the
post-surgical setting only microscopic foci of tumour
are left residual, and the dose schedule of adjuvant
chemotherapy chosen is often less intense in compar-
ison with the case of a larger tumour of equivalent
type. In this communication we propose that in or-
der to model this size-dependent therapy strategy, a
nonlinear tumour regression rate A3hψ (t)i is incor-
porated into the intrinsic growth rate as follows:

dψ =

½
A1 − 1

2
σ2 −A3hψ (t)i−A2ψ

¾
dt+ σ dZ (6)

where hψ (t)i is the first moment of the probability
density function Q (ψ, t):

hψ (t)i =
Z

ψQ (ψ, t) dψ , (7)

and without loss of generality A3 is assumed to
be a constant. The corresponding Fokker-Planck
equation governing the probability density function
Q (ψ, t) is then given by

∂Q (ψ, t)

∂t
=

1

2
σ2

∂2Q (ψ, t)

∂ψ2
− ∂

∂ψ

½·
A1 − 1

2
σ2

−A3hψ (t)i−A2ψ]Q (ψ, t)} (8)

which is manifestly nonlinear. The inclusion of the
nonlinear tumour regression rate would inevitably es-
calate the complexity of the problem dramatically,
and thus the system is expected to exhibit more in-
teresting properties. Following the method of Lo
(2005), the solution Q (ψ, t) of Eq.(8) can be easily
found to be

Q (ψ, t) =

Z ∞
−∞

K
¡
ψ, t;ψ0, 0

¢
Q(ψ0, 0) dψ0 (9)

where

K
¡
ψ, t;ψ0, 0

¢
=

1p
4πη (t)

exp {A2t} ×

exp

(
−
£
ψ exp (A2t) + ξ (t)− ψ0

¤2
4η (t)

)
(10)

ξ (t) = −
Z t

0

µ (t0) exp (A2t0) dt0 (11)

η (t) =
σ2

4A2
{exp (2A2t)− 1} . (12)

Obviously, this solution corresponds to the so-called
natural boundary condition.
We suppose that the random variable ψ initially

has the value ψ0, i.e. Q(ψ, 0) = δ (ψ − ψ0). Then,
Q(ψ, t) = K (ψ, t;ψ0, 0), and

hψ (t)i = − {ξ (t)− ψ0} exp (−A2t) (13)

which in turn yields

dξ (t)

dt
= −A3 {ξ (t)− ψ0}−µ

A1 − 1
2
σ2
¶
exp (A2t) . (14)

Eq.(14) can be easily solved to give

ξ (t) = ψ0 {1− exp (−A3t)}+
A1 − 1

2σ
2

A2 +A3
×

{exp (−A3t)− exp (A2t)} (15)

=⇒ hψ (t)i =
µ
ψ0 −

A1 − 1
2σ

2

A2 +A3

¶
×

exp {− (A2 +A3) t}+
A1 − 1

2σ
2

A2 +A3
. (16)

The solution Q(ψ, t) can then be expressed as

Q (ψ, t) =
1p

4πΩ2 (t)
exp

(
− [ψ − hψ (t)i]

2

4Ω2 (t)

)
(17)
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where

Ω (t) =
σ

2

s
1− exp (−2A2t)

A2
. (18)

Obviously, as t −→∞, we have

Ω (t) −→ Ω∞ ≡ σ

2
√
A2

(19)

hψ (t)i −→ ψ∞ ≡
A1 − 1

2σ
2

A2 +A3
. (20)

As a result, the probability density function Q (ψ, t)
will asymptotically approach the steady-state limit
Q∞ (ψ):

Q∞ (ψ) ≡ lim
t−→∞Q (ψ, t)

=
1p
4πΩ2∞

exp

(
−(ψ − ψ∞)

2

4Ω2∞

)
.(21)

It should be noted that increasing A3 will eventually
push the ψ∞ towards zero.
For comparison, we consider a therapy in which

the dose is linearly increasing in time (Albano and
Giorno, 2006). This can be implemented by sim-
ply replacing the nonlinear tumour regression rate
A3hψ (t)i by A3 (1 + βt), where β is an adjustable
positive parameter monitoring the rate. In this case
the desired Q (ψ, t) is given by

Q (ψ, t) =
1p

4πΩ2 (t)
×

exp

Ã
−{ψ − [ψ0 − ω (t)] exp (−A2t)}2

4Ω2 (t)

!
(22)

where

ω (t) =
A3β

A2
t exp (A2t)−·

A1 − σ2

2
−A3

µ
1− β

A2

¶¸
×½

exp (A2t)− 1
A2

¾
. (23)

Then the first moment hψ (t)i of the probability den-
sity function Q (ψ, t) can be easily evaluated as

hψ (t)i = [ψ0 − ω (t)] exp (−A2t) . (24)

For A2tÀ 1, we have

hψ (t)i ≈ Ψ (t) ≡ 1

A2

·
A1 − σ2

2
−

A3

µ
1− β

A2

¶¸
− A3β

A2
t (25)

and

Q (ψ, t) ≈ 1p
4πΩ2∞

exp

(
− [ψ −Ψ (t)]

2

4Ω2∞

)
. (26)

It is clear that hψ (t)i is a monotonically decreasing
function of t. Nevertheless, for the special case of
constant dose, i.e. β = 0, hψ (t)i attains an asymp-
totic limit Ψ∞:

Ψ∞ ≡ 1

A2

µ
A1 − σ2

2
−A3

¶
(27)

as t −→∞, whileQ (ψ, t) approaches the steady-state
limit Q∞ (ψ):

Q∞ (ψ) ≡ 1p
4πΩ2∞

exp

(
−(ψ −Ψ∞)

2

4Ω2∞

)
. (28)

Accordingly, one needs a sufficiently high-dose ther-
apy, i.e. A3 À A1, in order to reduce the tumour size
to a desired level.
Next, we also examine the late logarithmic intensi-

fication therapy proposed by González et al. (2003).
It has been shown that by using the same amount
of threapy, a logarithmic therapy not only induces a
larger reduction of the tumour size than a constant
therapy, but it is also expected to be more tolerable
than the one in which the dose is linearly increas-
ing in time. In order to model such a logarithmic
therapy, we replace the nonlinear tumour regression
rate A3hψ (t)i by A3 ln (e+ Γt), where e is the Neper
constant and the adjustable positive parameter Γ con-
trols the rate. The corresponding probability density
function Q (ψ, t) is thus found to be

Q (ψ, t) =
1p

4πΩ2 (t)
×

exp

Ã
−{ψ − [ψ0 − χ (t)] exp (−A2t)}2

4Ω2 (t)

!
(29)

where

χ (t) = −
µ
A1 − σ2

2

¶½
exp (A2t)− 1

A2

¾
+

A3

Z t

0

ln (e+ Γτ) exp (A2τ) dτ . (30)

Accordingly, the first moment hψ (t)i is given by

hψ (t)i = [ψ0 − χ (t)] exp (−A2t) (31)

from which the special case of contant-dose therapy
discussed above can be recovered by setting Γ = 0.
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It is obvious that the late logarithmic intensification
therapy is capable of further reducing the tumour size
by the amount

A3Γ

A2

Z t

0

1− exp {−A2 (t− τ)}
e+ Γτ

dτ

in comparison with the constant-dose therapy.

For illustration, in Figures (1) and (2) we plot
hψ (t)i (i.e. the expectation value of the tumour
size at time t > 0) versus time t for various val-
ues of ψ0 (i.e. the initial tumour size) under the
four different kinds of therapy. In Fig.(1) we con-
sider the case of a large tumour, namely ψ0 = 5.
Other input model parameters are selected as fol-
lows: A1 = A2 = A3 = σ = β = Γ = 1. Ac-
cording to the figure, the size-dependent therapy is
most effective in reducing the tumour size during the
initial stage, i.e. 0 6 t . 1, in comparison with the
other three treatments. After the initial stage the
dose of the size-dependent therapy is reduced by a
significant amount and the tumour size is maintained
at the limit ψ∞ = 1/4. On the other hand, while
the constant-dose therapy can shrink the tumour size
a bit more till the limit Ψ∞ = −1/2, the treatment
with linearly enhancing intensity is able to reduce the
tumour size monotonically. As expected, the late log-
arithmic intensification therapy is more effective than
the constant-does therapy, but it is outperformed by
the one with linearly increasing intensity. Fig.(2)
shows the results for the case of a tumour of mod-
erate size, i.e. ψ0 = 1. A similar pattern of the
reduction of the tumour size is observed for the four
different treatments, but the size-dependent therapy
is obviously not so effective as the other three.

In summary, based upon the deterministic Gom-
pertz growth law, we have proposed a stochastic non-
linear model of tumour growth to model the size-
dependent therapy strategy. The probability density
function Q (ψ, t) of the tumour size obeys a nonlinear
Fokker-Planck equation which can be solved analyti-
cally. The model is able to simulate the conventional
size-dependent therapy strategy of tumours. It is
found that during the cancer treatments the dose in-
tensity should not be decreased at any time because
this will allow the tumour to relapse, and that the
therapy intensity should be continuously increased
if possible. However, clinically a therapy with lin-
early increasing intensity could well be fatal to the
patient. Hence, the late logarithmic intensification
therapy could turn out to be the optimal therapeutic
strategy, as evidenced by the numerical results.
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Figure 1 : versus time for 0 = 5 under the four different kinds of
therapy.  The input model parameters are: A1= A2= A3= = = =1.
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Figure 2 : versus time for 0 = 1 under the four different kinds of
therapy.  The input model parameters are: A1= A2= A3= = = =1.
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