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Abstract—My interest is automatic interpretation of 

natural line drawings of engineering objects. Such 
drawings only show that part of an object visible from a 
particular viewpoint, and the major challenge in inter-
preting them is deducing the remaining, unseen part of 
the topology. Since engineers routinely use sketched 
drawings as a means of communicating structure, using 
well-established (if unstated) conventions to deduce the 
invisible topology, it should be possible to identify these 
conventions and use them to interpret such drawings 
automatically. 

One practical approach to constructing the hidden 
topology is to treat the construction process as a search 
through the space of possible complete topologies. 
When this approach is used, the most frequent problem 
is that of mismatched vertex neighbourhoods: the side 
of an edge which is convex at one end is concave at the 
other. 

This paper describes a simple method for overcoming 
the problem of mismatched neighbourhoods, and analy-
ses the results which are obtained when this method is 
incorporated in the construction process. 

Insights gained from this work may also be applica-
ble to other fields, most obviously perception psychol-
ogy and the "healing" of CAD models. 

Keywords—Hidden Topology, Neighbourhood Match-
ing, Boundary Representation Models 

I. INTRODUCTION 

A. Objective 
My overall goal is to create a 3D solid model 

automatically from a single 2D drawing. A tool 
which could quickly interpret line drawings of engi-
neering objects as boundary representation CAD 
models would be of significant benefit in the process 
of engineering design. It would enable designers to 
spend more time on the creative aspects of their job 
and less on the routine aspects, it would reduce time 
spent correcting mistakes by allowing instant visuali-
sation, and the simpler “what you draw is what you 
imagine” interface will be less distracting than an 
array of menus and icons. 

B. Terminology 
A drawing depicts an object. The junctions, lines 

and regions of the drawing often, but not always, 
correspond to the vertices, edges and faces of the 

object.  A drawing is a natural line drawing if it de-
picts only those parts of the object visible from some 
chosen viewpoint. 

A vertex is trihedral if exactly three edges meet 
at it. An object is trihedral if all of its vertices are 
trihedral. 

My main interest is in solid objects, the faces of 
which bound a single continuous finite volume. A 
solid object is a polyhedron if all of its faces are pla-
nar. A polyhedron is a normalon if all of its edges 
and face normals are aligned with one of three mutu-
ally orthogonal axes, or a quasi-normalon if all of its 
vertices terminate at least one edge aligned with one 
of the three mutually orthogonal axes. 

An object or drawing is described by its topol-
ogy (discrete data such as vertex/edge connectivity) 
and geometry (continuous data such as vertex coor-
dinates and edge lengths). 

A drawing is from a general viewpoint if no 
small change in the viewpoint changes the topology 
of the drawing. I assume that all drawings are from 
general viewpoints. 

C. Problem Statement and Applicability 
The problem of creating hidden topology is this: 

given the frontal geometry of an object (sometimes 
called a 2½D model), determine the topology of the 
complete object, including those parts not visible to 
the viewer. 

This paper does not discuss how frontal geome-
try is produced from natural line drawings. Instead, it 
takes a correct frontal geometry (or nearly correct, 
allowing for the possibility of drawing inaccuracies) 
and creates a complete object from it. 

The techniques described in this paper are in-
tended for use as part of a system which reconstructs 
boundary representation CAD models from 2D natu-
ral line drawings. 

The ideas underlying these techniques may also 
be of use in other areas. Since our aim is to emulate 
the human ability to interpret natural line drawings, 
perception psychology is one obvious area in which 
they should be considered. Since our methods apply 
to incomplete wireframe models, they may be rele-
vant to other applications which also deal with in-
complete models, such as reverse engineering and 
the “healing” of broken models. 
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D. Structure of Paper 
Section 2 describes existing approaches to con-

structing hidden topology. Section 3 describes the 
original contribution of this paper: a method for de-
tecting mismatched neighbourhoods, a frequent 
cause of failure. Section 4 summarises my conclu-
sions. 

II. CONSTRUCTING HIDDEN TOPOLOGY 

This section describes important contributions to 
the problem of constructing hidden topology and 
places the current paper’s contribution in context. 

Currently, the most successful methods are 
CSG-based methods. Two possibilities have been 
suggested. 

The first, suggested by Grimstead [3], is to treat 
planes as half-space separators, faces as patches of 
planes, and edges as half-space operators (convex 
edges are “intersection” and concave edges are “un-
ion”). My preliminary investigations found this idea 
to be hard to implement even for normalons, and the 
results were unimpressive. 

The second, suggested as long ago as Roberts 
[6] and shown by Suh [7] to be a practical approach 
to constructing hidden topology, is to use simple 
polyhedra as half-spaces (Roberts suggested using 
cuboids; Suh’s implementation uses extrusions of 
polygonal end-caps). 

Suh’s implementation assumes an accurate 
drawing. It remains to be seen whether or not it can 
be extended successfully to freehand drawings, 
which will inevitably contain drawing errors. 

Also, Suh’s approach is inevitably suboptimal as 
a design tool. On the one hand, it is not an ideal 
method of interpreting line drawings, since it is in-
herently restricted to drawings of objects which can 
be decomposed into extrusions of polygons. On the 
other hand, it is not an ideal tool for design engi-
neers, since if we are to model objects as unions and 
intersections of extrusions we should allow the de-
sign engineer to enter the extrusions in 3D the first 
place rather than insisting that he draw a 2D natural 
line drawing which the program interprets as extru-
sions. 

The major alternative to CSG-based methods 
aims at constructing boundary representation topol-
ogy in two stages: firstly, creating a complete wire-
frame, and secondly, filling in the remaining faces. 
The second stage is, in practice, much simpler than 
the related problem of finding all of the faces in a 
sketched 2D wireframe, since, given a 2D natural 
line drawing, we can deduce some of the faces di-
rectly from the drawing [8]. The unresolved problem 
is constructing a suitable wireframe. 

The first attempt at creating a complete wire-
frame was that of Grimstead [3], whose fundamental 
assumption was that the objective was to find the 
simplest possible reconstruction. Kyratzi and Sapidis 
[4] have recently contributed a similar idea which 
makes extensive use of graph-theoretical ideas. How-
ever, the assumption can be challenged: in many cas-
es, the simplest possible reconstruction does not lead 
to the object which a human would perceive the 
drawing as representing. The dodecahedron (Fig 1) is 
an obvious example of this: the simplest possible 
reconstruction would add three, not five, hidden ver-
tices. 

 
Figure 1: Dodecahedron 

 
More usefully, Cao et al [1] propose a method 

based on human perception principles. Essentially, 
their idea is to create all reasonable complete wire-
frames, and then assess the results using heuristics 
derived from human perception principles, choosing 
the best. It can be argued that Cao et al’s choice of 
heuristics is limited and should be wider, but the 
most serious objection to their idea is that the result-
ing algorithm appears to be of factorial order (the 
number of possible topological completions of a 
2½D wireframe is believed to be factorial in the 
number of incomplete vertices [8]), so although suc-
cessful for “toy” problems, it would be unacceptably 
slow for anything more complicated. 

Since exhaustive evaluation is impractical, it is 
necessary to search through the space of possible 
completions selectively. The idea which seems to 
have most potential is the tree-search approach of 
[8]. The process of seeking the most plausible topol-
ogy is implemented as a search through a directed 
acyclic graph (or tree) of possible topologies.  

Each branch of the tree represents the addition 
of new topology to the wireframe: either addition of 
a single vertex, linked by at least two edges to exist-
ing vertices, or addition of a single edge joining two 
existing vertices. Thus, each node of the tree includes 
more topology (either a new edge, or a new vertex 
and two or three new edges) than its parent node. 
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Identical nodes reached by different routes are not 
merged.  

Branches are generated by hypotheses about the 
incomplete wireframe. For example, where an exist-
ing vertex is met by only two edges, one must hy-
pothesise that a third edge exists, and where such 
hypothesised edges meet, it is reasonable to hypothe-
sise the existence of a new vertex. 

[8] also discussed the utility of “macro 
branches” which reconstruct in a single branch the 
entire topology required to satisfy a hypothesis (for 
example, that of bilateral symmetry); these “macro 
branches” are not considered here. 

In considering search approaches, [8] found no 
improvements on a standard greedy approach. Add-
ing backtracking is, in general, not helpful: the result 
of a mistaken branch is, more often than not, a topo-
logically valid but unexpected solid, not a topologi-
cally invalid solid, and in the absence of a detectable 
error condition there is nothing which triggers a 
backtrack. 

Branches are compared on the basis of merit fig-
ures, derived from: (a) the merit of the hypothesis 
which generated the branch (for example, the hy-
pothesis that the third edge of an incomplete vertex 
of a normalon is aligned with the unused major axis 
is very strong); (b) the number of competing hy-
potheses (for example, a vertex which is the only 
possible termination of a hypothesised edge is a 
stronger branch than a vertex which is one of several 
possible terminations of a hypothesised edge); (c) the 
number of reinforcing hypotheses (when several hy-
potheses suggest that the same new vertex should be 
added, the branch is very strong); and (d) the plausi-
bility of the topology which would result from taking 
this branch (for example, if a hypothesised new ver-
tex would be in a location which would make it visi-
ble in the original drawing, the branch is weak). 

Although [8] considers the creation and assess-
ment of hypothesis in detail, it is less thorough when 
considering how the tree of hypotheses may be 
pruned. Some hypotheses produce additional topol-
ogy which cannot be reconciled with the existing 
topology, and such hypotheses should be rejected 
immediately, not fed into the assessment process. 

For example, given knowledge of whether the 
existing and proposed edges at a vertex are convex or 
concave, it is usually possible to tell whether the 
proposed edge lies above or below the face contain-
ing the existing edges. Table I, from [8], is an ex-
haustive list of the possibilities at a trihedral vertex. 

By way of illustration, it can be seen (in row two 
of the table) that at any vertex met by two convex 
edges and one concave edge, the turn at the corner of 
the face where the two convex edges meet is concave 

(a left-hand turn, assuming a clockwise circuit), the 
edge leaving the face is concave, and it is below the 
plane of the face (where “inside the object” is below 
and “outside the object” is above). 

 

Table I: Possibilities at a Trihedral Vertex 
Incoming 
edge 

Outgo-
ing edge 

Turn Leaving 
edge 

Direc-
tion 

convex convex   right convex   below 
convex   convex   left   concave below 
convex   concave right convex   above 
concave convex   right convex   above 
concave concave left   convex   above 
concave convex   right concave below 
convex   concave right concave below 
concave concave right concave above 

 

Ensuring that these conditions are met for all 
proposed additional edges allows us to reject some 
hypotheses which are clearly erroneous. However, 
the idea is limited in application. It is appropriate for 
use for all trihedral objects, not only normalons and 
quasi-normalons, but there are several problems 
which make it difficult to extend beyond the domain 
of trihedral objects. It relies on line labelling, which 
is only reliable for trihedral and extended trihedral 
objects. Even given a reliable line-labelled drawing, 
the above/below implications of 4-hedral vertices are 
tedious to enumerate, and the above/below implica-
tions of higher-order vertices unlikely ever to be 
enumerated. 

Section 3 proposes a new method for pruning 
out erroneous branches, based solely on geometric 
reasoning. 

III. MISMATCHED NEIGHBOURHOODS 

Consider, as an example, the erroneous edge in-
troduced into the lower drawing in Fig 2. A cross-
section at the left-hand end would show a quarter 
empty and three-quarters solid. A cross-section at the 
right-hand end would show a quarter solid and three-
quarters empty. The part of the cross-section which is 
solid at one end is empty at the other, and vice versa. 
The local neighbourhoods at the two ends do not 
match. 

Such mismatched neighbourhood problems are 
comparatively common: [8] found that they were the 
largest single category of error made by the tree-
search approach. 
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Figure 2: Mismatched Neighbourhoods 

 
This section introduces an idea for avoiding the 

problem of mismatched neighbourhoods. What is 
desired is a method by which such branches, thus 
ruling them out of consideration entirely, not heuris-
tics which make them less plausible, in order that 
some other branch of the search tree will be pre-
ferred. 

It is assumed that, by analysing the drawing, the 
process of determining the frontal geometry can 
identify groups of 2D lines which correspond to 
edges aligned with the three major 3D object axes, as 
shown in Fig 3. In reality, this process is not entirely 
reliable: it is trivial for normalons, but there are some 
quasi-normalon drawings which still present prob-
lems. 

 

 
Figure 3: Three Major Object Axes 

 

Secondly, it is assumed that, by analysing the 
drawing, the process of determining frontal geometry 
can determine which lines are convex, which are 
concave, and which are occluding (the line-labelling 

problem [2, 5]). Although, as with approaches to 
determining the major object axes, there is no en-
tirely satisfactory general-case line-labelling algo-
rithm [9], we are nearer to solving the line-labelling 
problem than we are to solving the problem of con-
structing hidden topology. For example, if the infla-
tion process produces correct 2½D geometry, it is 
possible to determine geometrically which edges are 
convex and which concave, bypassing traditional 
line-labelling algorithms. For the purposes of this 
investigation, the remaining problems posed by line-
labelling are ignored. 

A. Zones 
The idea described here subdivides the 

neighbourhood surrounding each vertex into eight 
zones, each of which is an infinitesimal axially-
aligned cube. In a normalon, each of these zones 
must be full (entirely within the object) or empty (en-
tirely outside the object). While parts of the object 
structure remain unknown, zones may also be un-
known. In non-normalons and non-trihedral solids, 
zones may be mixed (a face of the object intersects 
the zone, which is neither fully inside nor fully out-
side the object).  

For notational convenience, I label the eight 
zones efg, efk, ejg, ejk, ifg, ifk, ijg and ijk. Zone efg is 
the zone nearest the viewer; zone ijk is that furthest 
from the viewer. 

Assume initially that we are dealing with a nor-
malon. 

At every visible vertex, the zone efg must neces-
sarily be empty as this is the zone which includes the 
line-of-sight. 

Each edge must be aligned with one of the three 
ijk axes. Axis-alignment of hypothesised edges is 
part of the existing scheme [8] (it is one of the crite-
ria used to create hypotheses in the first place), so 
this information is already available. Each line must 
also be convex, concave, occluding with the solid 
face on the left, or occluding with the solid face on 
the right; this information comes from line-labelling. 
This leads to a total of twelve possible cases, as listed 
in Table II. 

In columns 7 to 12, the position of the occluding 
solid (left or right) in the final six columns is as 
viewed in 2D. For i-aligned and j-aligned edges, this 
is the same as the position of the occluding solid as 
viewed along the edge, but this is not the case for k-
aligned edges, since k-aligned edges run from 
top/near to bottom/far. In column 9, the occluding 
solid is on the left as viewed in 2D but on the right 
relative to the edge direction, and vice versa for col-
umn 12. 
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Table II: Local Neighbourhoods for Normalons, by Edge Type and Alignment 
Edge 
Type 

Con-
vex 

Con-
vex 

Con-
vex 

Con-
cave 

Con-
cave 

Con-
cave 

Oc-
clud-
ing 
Solid 
on 
Left 

Oc-
clud-
ing 
Solid 
on 
Left 

Oc-
clud-
ing 
Solid 
on 
Left 

Oc-
clud-
ing 
Solid 
on 
Right 

Oc-
clud-
ing 
Solid 
on 
Right 

Oc-
clud-
ing 
Solid 
on 
Right 

Align i j k i J k i j k i j k 

Near 
efg 

Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty 

Near 
efk 

  Empty   Empty   Empty   Empty 

Near 
ejg 

 Empty   Empty   Empty   Empty  

Near 
ejk 

 Empty Empty  Full Full  Empty Empty  Full Full 

Near 
ifg 

Empty   Empty   Empty   Empty   

Near 
ifk 

Empty  Empty Full  Full Full  Full Empty  Empty 

Near 
ijg 

Empty Empty  Full Full  Empty Full  Full Empty  

Near 
ijk 

Full Full Full Full Full Full Empty Empty Empty Empty Empty Empty 

Far 
efg 

Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty 

Far 
efk 

Empty Empty  Full Full  Full Empty  Empty Full  

Far 
ejg 

Empty  Empty Full  Full Empty  Empty Full  Full 

Far 
ejk 

Full   Full   Empty   Empty   

Far 
ifg 

 Empty Empty  Full Full  Full Full  Empty Empty 

Far 
ifk 

 Full   Full   Empty   Empty  

Far 
ijg 

  Full   Full   Empty   Empty 

Far 
ijk 
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Ignoring T-junctions, there are eleven possible 
ways that a trihedral vertex can be labelled. Table III 
lists some additional deductions which can be made 
from these labels. 

We can use the rules in Tables II and III to as-
sign initial values to the eight zones surrounding 
each vertex. What do these rules tell us about non-
normalons? 

Clearly, they also apply to any cubic corner (a 
trihedral vertex where the three edges are aligned 
with the major object axes), regardless of what the 
rest of the object may contain. 

Similarly, with one modification, they can be 
applied to any vertex which terminates an axis-
aligned edge. The modification is that, where the 
previous section identified a zone as empty, all we 
can say about the corresponding zone of a general 
(non-cubic-corner) vertex is that it is not full, and 
where the previous section identified a zone as full, 
all that we can say is that it is not empty. 

B. Hypotheses 
This section describes how neighbourhood 

matching can be used in assessing hypotheses. As 
previously noted, I only consider here hypotheses 
which create topology incrementally (new edge, or 
new vertex plus two or three edges), and not macro-

hypotheses (e.g. complete as much topology as pos-
sible from a hypothesised mirror plane). 

If any new edge is i-aligned, the zones efg, efk, 
ejg and ejk of the “far” vertex must be the consistent 
with the zones ifg, ifk, ijg and ijk of the “near” ver-
tex. If any of this creates a conflict, the hypothesis 
should be rejected. 

Similarly, for j-aligned edges, the zones efg, efk, 
ifg and ifk of the “far” vertex must be consistent with 
zones ejg, ejk, ijg and ijk of the “near” vertex, and for 
k-aligned edges, the zones efg, ejg, ifg and ijg of the 
“near” vertex must be consistent with zones efk, ejk, 
ifk and ijk of the “far” vertex. 

In the case of new-vertex hypotheses, if zone efg 
of the new vertex is empty, the merit of the hypothe-
sis should be reduced as this implies that the vertex 
would be visible since the line-of-sight to the vertex 
passes through this zone. 

The neighbourhoods of T-junctions are ignored; 
it is those of the true vertices which are important. 

IV. CONCLUSIONS 

In this paper, I present a reasoning process 
which can be used to identify the majority of errone-
ous hypotheses which are generated when attempting 
to complete partially-complete wireframe. 

 
Table III: Local Neighbourhood Reasoning for Normalons, by Junction Shape and Label 

Vertex Shape + - Consequences 

Y 3 0 zone ijk is full and all of the other seven zones are empty 

Y 2 1 Three of the zones are full; the other five are empty 

Y 0 3 Zone efg is empty and all of the other seven zones are full 

L, W 3 0 One of the zones is full; the other seven are empty 

L, W 2 1 Three of the zones are full; the other five are empty 

L, W 1 2 Five of the zones are full; the other three are empty 

6-way 3 3 Zones ijk, ijg, ifk and ejk are full; zones efg, efk, ejg and ifg are empty 
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