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Abstract�We analyze the structure of the general solution
of the two-dimensional electrical impedance equation in analytic
form using Taylor series in formal powers, for the case when
the conductivity � is a separable-variables function only once
derivable, using a quaternionic reformulation that leads us to a
special kind of Vekua equation. Finally, we broach its applications
in the �eld of electrical impedance tomography.

Index Terms�Electrical impedance, pseudoanalytic functions,
quaternions, tomography.

I. INTRODUCTION

The study of solutions of electrical impedance equation

div (� gradu) = 0; (1)

where � is the conductivity function and u denotes the
electric potential, is crucial for approaching solutions of the
inverse problem posed by Calderon in 1980 [3], whose two-
dimensional case is known as electrical impedance tomogra-
phy. In 2006 Astala and Päivärinta [1] posed the solution of
this problem trough the path of relating the two-dimensional
electrical impedance equation with the theory of pseudoan-
alytic functions [2], [16]. In 2007 Kravchenko and Oviedo
[10], who had previously noticed the relations of the two-
dimensional stationary Schrödinger equation with a special
class of Vekua equation [8] (whose solutions are known as
pseudoanalytic functions), studied the structure of the general
solution of (1) for the two-dimensional case in terms of Taylor
series in formal powers, and gave an explicit general solution
for a special class of �.
We will analyze an alternative way for relating (1) with a

Vekua equation for the two-dimensional case, based onto a
quaternionic reformulation [11], [14], broaching the structure
of its general solution in terms of formal powers, and we
will study an analytical approach for the case when � is a
separable-variables function only once derivable, remarking
the contribution of this general solution in the �eld of electrical
impedance tomography.

II. PRELIMINARIES

A. Elements of quaternionic analysis
We will denote the algebra of real quaternions (see e.g.

[6], [9]) by H(R). The elements q 2 H(R) have the form
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q = q0 + q1e1 + q2e2 + q3e3 where qk 2 R, and ek are the
standard quaternionic units satisfying the relations

e1e2 = e3 = �e2e1;
e2e3 = e1 = �e3e2;
e3e1 = e2 = �e1e3;
e2k = �1; k = 1; 2; 3:

We will use the notation

q = q0 +
�!q ;

where �!q =
P3

n=1 qkek is usually known as the vectorial part
of quaternion q. Notice the set of purely vectorial quaternions
q = �!q can be identi�ed with the set of three-dimensional
vectors belonging to R3: This is, to every

�!
E = (E1; E2; E3) 2

R3 corresponds one purely vectorial quaternion
�!
E = E1e1 +

E2e2+E3e3. It is easy to see that this relation is one-to-one.
Due to this isomorphism, we can represent the multiplica-

tion of two quaternions q and p as follows

q � p = q0p0 + q0
�!p + p0�!q � h�!q ;�!p i+ [�!q ��!p ] ; (2)

where h�!q ;�!p i denotes the scalar product and [�!q ��!p ] is the
vectorial product. We shall notice q � p 6= p � q in general, so
we will use the notation

Mpq = q � p

to indicate the multiplication by the right-hand side.
The Moisil-Theodoresco differential operator D is de�ned

as
D = e1@1 + e2@2 + e3@3;

where @k = @
@xk
, and it acts on the set of at least once-

derivable quaternionic-valued functions. Using the classic vec-
torial notation we can write

Dq = grad q0 � div�!q + rot�!q : (3)

B. Elements of pseudoanalytic functions
Following [2], let F and G be a pair of complex-valued

functions such that

Im
�
FG

�
> 0; (4)

where F is the complex conjugation of F :

F = ReF � i ImF;
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and i denotes the standard complex unit i2 = �1 as usual.
Then any complex function W can be expressed as a linear
combination of the form

W = �F +  G;

where � and  are purely real-valued functions. A pair of
complex-valued functions satisfying (4) is called a generating
pair. The derivative in the sense of Bers, or (F;G)-derivative,
of a function W is de�ned as

d(F;G)W

dz
= (@z�)F + (@z )G (5)

where @z = @1 � i@2, and it exists iff

(@z�)F + (@z )G = 0 (6)

where @z = @1 + i@2 (usually the operators @z and @z are
introduced with the factor 12 ; nevertheless it will result more
convenient for us to work without it). Let us introduce the
following functions

A(F;G) = �F@zG�G@zF
FG� FG

; (7)

B(F;G) =
F@zG�G@zF
FG� FG

;

a(F;G) = �F@zG�G@zF
FG� FG

;

b(F;G) =
F@zG�G@zF
FG� FG

:

This functions are known as characteristic coef�cients of the
generating pair (F;G). According to this notations, equation
(5) can be expressed as

d(F;G)W

dz
= @zW �A(F;G)W �B(F;G)W; (8)

and (6) will turn into

@zW � a(F;G)W � b(F;G)W = 0; (9)

which is known as Vekua equation [16]. The complex-valued
functions that ful�ll (9) are named (F;G)-pseudoanalytic
functions.
The following statements were originally posed in [2].
Remark 1: The complex-valued functions of the generating

pair (F;G) are (F;G)-pseudoanalytic, and in agreement with
(8) their (F;G)-derivatives satisfy

d(F;G)F

dz
=
d(F;G)G

dz
= 0:

De�nition 2: Let (F;G) and (F1; G1) be two generating
pairs such that their characteristic coef�cients satisfy

a(F;G) = a(F1;G1) and B(F;G) = �b(F1;G1): (10)

Hence the generating pair (F1; G1) is called successor pair of
(F;G), as well (F;G) is called predecessor pair of (F1; G1) :
Theorem 3: Let W be a (F;G)-pseudoanalytic function,

and let (F1; G1) be a successor of (F;G). Then the (F;G)-
derivative of W

d(F;G)W

dz

will be (F1; G1)-pseudoanalytic.

De�nition 4: Let (F;G) be a generating pair. Its adjoint
pair (F �; G�) is de�ned by the formulas

F � = � 2F

FG� FG
; G� =

2G

FG� FG
:

The (F;G)-integral of a complex-valued function W is
posed as Z z1

z0

Wd(F;G)z =

= F (z1)Re

Z z1

z0

G�Wdz +G (z1)Re

Z z1

z0

F �Wdz:

If W = �F +  G is (F;G)-pseudoanalytic, thenZ z

z0

d(F;G)W

dz
d(F;G)z =

=W (z)� � (z0)F (z)�  (z0)G (z) ;

and since
d(F;G)F

dz
=
d(F;G)G

dz
= 0

this integral represents the antiderivative of
d(F;G)W

dz
:

A continuous function w is said to be (F;G)-integrable iff

Re

I
G�wdz + iRe

I
F �wdz = 0:

Theorem 5: The (F;G)-derivative of a (F;G)-
pseudoanalytic function W is (F;G)-integrable.
Theorem 6: Let (F;G) be a predecessor pair of (F1; G1).

A complex-valued function E will be (F1; G1)-pseudoanalytic
iff it is (F;G)-integrable.
De�nition 7: Let f(Fm; Gm)g ; m = �1;�2;�3; ::: be

a sequence of generating pairs. If every (Fm+1; Gm+1) is
a successor of (Fm; Gm) we say that f(Fm; Gm)g is a
generating sequence. If (F0; G0) = (F;G) we say that (F;G)
is embedded in f(Fm; Gm)g :
Let W be a (F;G)-pseudoanalytic function, and let

f(Fm; Gm)g be a generating sequence in which (F;G) is
embedded. Then we can express the higher derivatives in the
sense of Bers of W as

W [0] =W ; =
d(Fm;Gm)W

[m]

dz
; m = 0; 1; :::

De�nition 8: The formal power Z(0)m (a; z0; z) with center
at z0, coef�cient a and exponent 0 is de�ned as the linear
combination of the generators Fm and Gm with real constant
coef�cients � and � such that

�Fm (z0) + �Gm (z0) = a:

The formal powers with exponents n = 1; 2; ::: are de�ned by
the formulas

Z(n)m (a; z0; z) = n

Z z

z0

Z
(n�1)
m+1 (a; z0; &) d(Fm;Gm)&:

It is possible to verify that formal powers posses the
following properties:
1) Z(n)m (a; z0; z) is (Fm; Gm)-pseudoanalytic.
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2) If a1 and a2 are real constants, then

Z(n)m (a1 + ia2; z0; z) =

= a1Z
(n)
m (1; z0; z) + a2Z

(n)
m (i; z0; z) :

3) The formal powers satisfy the differential relations

d(Fm;Gm)Z
(n)
m (a; z0; z)

dz
= Z

(n�1)
m+1 (a; z0; z) :

4) The formal powers satisfy the asymptotic formulas

lim
z!z0

Z(n)m (a; z0; z) = a (z � z0)n :

Remark 9: As it has been proved in [2], any complex-
valued function W; solution of (9), accepts the expansion

W =
1X
n=0

Z(n) (an; z0; z) ; (11)

where the missing subindexm indicates that all formal powers
belong to the same generating pair. This is: expression (11) is
an analytic representation of the general solution of (9).
The Taylor coef�cients an are obtained according to the

formulas
an =

W [n] (z0)

n!
:

III. QUATERNIONIC REFORMULATION OF THE ELECTRICAL
IMPEDANCE EQUATION, AND ITS RELATION WITH

PSEUDOANALYTIC FUNCTION THEORY

Consider the electrical impedance equation

div (� gradu) = 0:

Indeed, the electric �eld vector
�!
E for the static case is de�ned

as �!
E = � gradu; (12)

so we can write
div

�
�
�!
E
�
= 0:

But
div

�
�
�!
E
�
=
D
grad�;

�!
E
E
+ � div

�!
E ;

then
div

�!
E = �

�
grad�

�
;
�!
E

�
: (13)

Beside, from (12) we immediately obtain

rot
�!
E = 0: (14)

Following [11], [14], let us consider now
�!
E as a purely

vectorial quaternionic-valued function
�!
E = E1e1 + E2e2 + E3e3:

Substituting the equalities (13) and (14) in (3) we have

D
�!
E = �

�
grad�

�
;
�!
E

�
;

or using again (3)

D
�!
E = �

�
D�

�
;
�!
E

�
:

According to expression (2) we can write�
D�

�
;
�!
E

�
=
1

2

�
D�

�
� �!E +

�!
E � D�

�

�
;

and it follows

D
�!
E = �1

2

�
D�

�
� �!E +

�!
E � D�

�

�
: (15)

Notice
1

2

D�

�
=
D
p
�p
�
;

thus introducing the notations
�!E =

p
�
�!
E ; (16)

and
�!� = D

p
�p
�
; (17)

equality (15) turns into the quaternionic equation�
D +M

�!�
��!E = 0; (18)

which is a quaternionic reformulation of (1).

A. The two-dimensional case
Let us consider the special situation when

�!E = E1e1 + E2e2 (19)

and when � depends upon two spatial variables � =
� (x1; x2) : We obtain that (17) adopts the form

�!� = @1
p
�p
�
e1 +

@2
p
�p
�
e2:

Let us denote

�1 =
@1
p
�p
�
; �2 =

@2
p
�p
�
: (20)

Substituting the expressions (19) and (20) in (18) we have

D (E1e1 + E2e2) + (E1e1 + E2e2) (�1e1 + �2e2) = 0;

which is equivalent to the system

@1E1 + @2E2 = �E1�1 � E2�2;
@1E2 � @2E1 = E3�1 � E1�2;

@3E1 = @3E2 = 0:

Multiplying the second equation by �i and adding to the �rst,
it yields

@z (E1 � iE2) + (�1 � i�2) (E1 � iE2) = 0;

but according to (20)

�1 � i�2 =
@z
p
�p
�
:

Taking this into account and introducing the notation

E = E1 � iE2;

we have
@zE +

@z
p
�p
�
E = 0: (21)
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This equation is closely related with a Vekua equation of the
form

@zW � @z
p
�p
�
W = 0; (22)

as we shall expose in the following paragraphs [10].
Let

F =
p
� and G =

ip
�
: (23)

It is easy to verify that these functions satisfy (4), so they
constitute a generating pair whose characteristic coef�cients,
according with (7), are

A(F;G) = a(F;G) = 0;

B(F;G) =
@z
p
�p
�
; b(F;G) =

@z
p
�p
�
:

In concordance with De�nition 2, a successor generating
pair (F1; G1) of

�p
�; ip

�

�
must have characteristic coef�-

cients
a(F1;G1) = 0; b(F1;G1) = �

@z
p
�p
�
;

and a (F1; G1)-pseudoanalytic function E must ful�ll equation
(21). Thus by Theorem 3, the

�p
�; ip

�

�
-derivative of any

solution of (22) will be a solution of (21).
Moreover, since the general solution of (22) can be rep-

resented asymptotically by means of (11), once we achieve
to build a generating sequence where the generating pair�p

�; ip
�

�
is embedded, we will be able to express the general

solution of (21) as the
�p

�; ip
�

�
-derivative of the general

solution of (22), in the way we have explained it in the last
paragraph of Preliminaries.

B. Explicit generating sequence for the case when � is a
separable-variables function of the form � = U2(x1)V

2 (x2)

Since the early appearing of Bers pseudoanalytic function
theory [2], a very interesting problem was located around the
techniques for constructing explicit generating sequences, once
a generating pair for a Vekua equation is given. The explicit
generating sequence is required because it is the only way to
express analytically the solution of such Vekua equation in
terms of Taylor series in formal powers.
When considering the electrical impedance equation, a very

important physical case is referred to a conductivity � that can
be expressed as a separable-variables function of the form

� (x1; x2) = U2(x1)V
2 (x2) ;

because this is a very useful approach for the problem of
electrical impedance tomography.
For this case, an explicit generating sequence was recently

introduced by V. Kravchenko in [7] as follows.
Theorem 10: Let (F;G) be a generating pair of the form

F =
p
� = U(x1)V (x2) ;

G =
ip
�
=

i

U(x1)V (x2)
:

It is possible to check that this generating pair is embedded
in the generating sequence f(Fm; Gm)g ; m = �1;�2;�3; :::
de�ned as

Fm = (x1 + ix2)
m
U(x1)V (x2) ;

Gm = i
(x1 + ix2)

m

U(x1)V (x2)
;

for even m, and

Fm =
(x1 + ix2)

m

U(x1)
V (x2) ;

Gm = i
(x1 + ix2)

m

V (x2)
U(x1)

for odd m.
Remark 11: Given the explicit generating sequence for two

arbitrary non-vanishing functions U(x1) and V (x2), such
that the conductivity function � = U2(x1)V

2 (x2), we are
in the possibility of calculating analytically the Taylor series
in formal powers that will constitute the general solution of
the Vekua equation (22). The

�p
�; ip

�

�
-derivative of such

solution, according to Theorem 3, will be the general solution
of equation (21). The real and the imaginary components of the
solution of (21) will constitute the general solution for the two-
dimensional case of the quaternionic equation (18). Hence,
using (16), it immediately follows we are able to write the
general solution of the two-dimensional electrical impedance
equation (1).

IV. CONCLUSIONS
Since the study of equation (1) is the base for well under-

standing the electrical impedance tomography problem, the
possibility to express the general solution of (1) by means of
Taylor series in formal powers, opens a new path for improving
the convergence speed of numerical methods designed for
image reconstruction.
We should notice that the mathematical methods exposed

before, minimally restrict the conductivity function �. Indeed,
it is only necessary for � to be a separable-variables function
in the Cartesian plane, and to be at least once derivable.
This is a very general case which includes most part of
mathematical approaches for physical situations in electrical
impedance tomography (see e.g. [4], [12]).
Beside, the numerical methods involved in these procedures

concern almost exclusively to the evaluation of the integral
operators related to the construction of formal powers, which
in fact can be accomplished by quite standard techniques.
This leads our further discussions to approach the constants
for Taylor series at the moment of solving the problem of
electrical impedance tomography.
Notice also that the equivalence of the electrical impedance

equation, in the two-dimensional case, with a Vekua equation
is precisely the key that warrants the uniqueness of the solution
of Calderon problem [1], hence from a proper point of view,
it is justi�ed to compare directly the value of the computed
potentials with the physical lectures. In the opinion of the
authors, this will work as a powerful complement to the well
developed electronic systems [5][13] designed for detecting
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with high accuracy the potentials around the domains of
interest of tomography.
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