
 
 

 

  

Abstract—The assimilation of formal logic into the domain 
of Software Engineering offers the possibility of enormous 
benefits in terms of software reliability and verifiability. To 
date, however, the integration of such techniques has proved 
difficult since they involve a significantly increased burden on 
the programmer in meeting the demands of the formal 
mechanisms being employed. The current paper investigates 
the advantages which may be gained by the software 
development process with the introduction of Artificial Neural 
Network technology into a formal software development 
system. Essentially, the adaptive artificial neural network 
model is employed to refine an existing formal software model 
in order to produce increasingly better approximations to a 
given solution. Each approximation is itself a valid formal 
system whose precise behaviour may be formally determined. 
The paper introduces a framework by which a programmer 
may define a system possessing the abstract structure of a 
traditional neural network but whose internal structures are 
taken from the formal mathematical domain of Constructive 
Type Theory. The system will then refine itself to produce 
successive approximations to a desired goal based on data 
presented to it. An example is presented addressing a problem 
domain which has previously proved difficult to model. 
Although the example presented is necessarily limited, it does 
provide an insight into the potential advantages of merging 
formal logic with artificial neural systems..  

 
Index Terms—Formal Logic, Constructive Type Theory, 

Neural Networks. 
 

I. INTRODUCTION 
he application of Formal Logic in the form of 
Constructive Mathematics such as Constructive Type 
Theory [6,13] to the design of major software systems 

can give rise to significant improvements in the reliability 
and dependability of the software produced.   

The major factors hindering the widespread application of 
such techniques lie in the difficulty encountered in deriving 
the logical statements (Judgements) defining the software 
system and inefficiencies in the implementation of the 
system so derived.  In essence, improvements in the 
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reliability of the final system are offset by costs associated 
with the initial formal derivation of the system.   

The purpose of this paper is to explore the relationship 
between Constructive Type Theory and Artificial Neural 
Networks by illustrating how a traditional example network 
may be implemented in a system derived from Type Theory. 
The development framework employed in the examples 
retains many of the advantages offered by Constructive 
Type Theory whilst removing some of the burden of design 
from the programmer and placing it on generic learning 
rules taken from the domain of Artificial Neural Networks. 
That is, the learning rules of the neural network will perform 
some of the work traditionally performed by the 
programmer.  The design framework  proposed offers the 
following advantages: 
• The construction of formally derived and verifiable 

software system related to the domain of artificial 
neural networks without requiring detailed 
mathematical analysis by the programmer. 

• The derived system may adapt itself to take into account 
differing future performance requirements within the 
limitations of the network architecture simulated. 

The application area of the framework is typically 
envisaged to be one possessing a significant amount of 
sample data which may be used for the neural network 
refinement (learning) process. A problem domain where the 
data is multidimensional in nature is especially suitable as it 
provides the opportunity to demonstrate the applicability of 
the system in areas which prove difficult to analyse using 
existing techniques. A problem domain meeting the above 
conditions is the derivation of a mathematical model to 
allow predictions to be made regarding variables pertaining 
to Dover Harbour in Kent, U.K. The variables governing the 
behaviour of the harbour are numerous and the harbour itself 
displays a complex, chaotic behaviour which has, to date, 
defied the construction of an accurate model 

II. CONSTRUCTIVE TYPE  THEORY 
Constructive Type Theory is a formal logic [6,7,8,13] and it 
is based on Constructive Mathematics in which proofs must 
be based on a demonstration of how to construct an example 
of the theorem or proposition being asserted. In other words, 
proofs by contradiction are not allowed. So, in Constructive 
Type Theory proofs can be thought of as algorithms to 
create an example of the proposition in hand. Furthermore, 
the proposition forms a datatype definition or at a higher 
level a formal specification for the algorithm itself. 

In Constructive Type Theory, each logical proposition 
is accompanied by its proof object forming a pair of values 
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termed a  Judgement. Judgements are usually written in the 
form p:P where the proof object p bears witness to the 
proposition P. Each logical connective in Constructive Type 
Theory is associated with four rules.  
• Formation (syntax) 
•  Introduction 
•  Elimination 
•  Computation (simplification) 
A simple example is the AND ( )∧  rules. 
 

 
Difficulties in the practical application of Constructive 

Type Theory centre around the derivation of the proof of a 
proposition and the practical evaluation of the proof 
(although the proof represents an algorithm, it may not 
represent an efficient algorithm).  The prime idea of this 
paper is to exploit learning algorithms derived from the field 
of Artificial Neural Networks to ease the burden on the 
programmer in deriving the required solution and hence 
allow for the practical exploitation of the logic. 

III. ARTIFICIAL NEURAL NETWORKS (ANN) 
Artificial Neural Networks are employed today in a wide 

variety of application areas. These range from pattern [2] 
and character recognition [4] to financial time series 
forecasting [1], which call for a diverse set of different data 
representations ranging from binary values to values from 
the Clifford Algebra domain [10]. Faced with this unlimited 
diversity, those working in the field realised over the years 
the need for a unifying framework for a concise description 
of the various forms of neural networks and moreover, if 
possible, a formal specification system for them. As a result 
a number of systems were developed. One of the most 
notable was the one of the Neural Networks Council of the 
IEEE [9] for a canonical description of neural nets, the 
specification language and graphical interface developed 
under the NEUFODI European Project [3] and the 
mathematical model developed by L. Smith [12]. However 
these works are either descriptive or they do not provide a 
working prototype able to address real world problems, so 

that the results can be compared against the specifications 
given. 

Artificial Neural Networks present a powerful tool for the 
analysis of complex systems. However, ANN 
implementations are not usually amenable to formal analysis 
and verification of correct performance. This makes them 
inefficient tools for deriving algorithms meeting a given 
performance specification. Difficulties in their practical 
application centre around the derivation of suitable weights 
associated with the neural connections. On the other hand, 
Constructive Type Theory (CTT) offers the rigorous base of 
a formal logic and at the same time a formal specification 
tool which is capable of providing algorithmic solutions in 
the form of proofs of the propositions asserted. The purpose 
of the work reported here is to investigate the potential 
benefits of merging the areas of Artificial Neural Networks 
and Constructive Type Theory in a single framework in 
order to address the difficulties arising in the practical 
application of each one of them separately [5]. More 
specifically, this work aimed: 
• To enhance the current state of neural networks 

technology by generalising the concepts of ‘weight’ and 
‘activation function’ to assume values taken from the 
domain of Constructive Type Theory. 

• To show the generality of this system by implementing 
an existing Neural Network architecture as a special 
cases of it. 

• To illustrate the practical applicability of the system by 
developing an application to produce solutions to 
address a real world problem. 

IV. THE THEORETICAL FRAMEWORK 
The structure of the prototype system introduced in this 

paper retains the abstract structure of a neural network as a 
directed graph which was described above. However, unlike 
the conventional neural architectures in which the weights 
are represented, for example, as real numbers, in the 
prototype they are expressed as logical implications 

BA → , where A  and B  are datatypes. If ℜ=A  and 
ℜ=B , where ℜ  represents the set of real numbers, then 

our prototype may, for example, represent the conventional 
real valued Multi-layer Perceptron (MLP). Its training 
algorithm (the generalised delta rule) can be viewed as 
modifying only the proof portion of the proposition/proof 
pair. 

In fact, in our prototype, both weights and activation 
functions of the processing elements (nodes) comprising the 
network are expressed as logical implications. A node with 
two inputs, X and Y can then be represented as an 
implication of the type CBA →→ where the weights 
associated with these two inputs can be AX →  and 

BY → . If all the types are numerical then the 
corresponding proof will represent a mathematical function 
and the prototype will describe a conventional neural 
network of some particular form.  
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The distributed nature of processing in neural networks 
helps to overcome the difficulties arising in the practical 
application of Constructive Type Theory, which centre 
around the efficiency and the practical evaluation of the 
derived algorithms. 

Our implementation of the prototype is developed in the 
Functional programming language Haskell [14]. The 
advantage of using a functional language to realise our 
neural network prototype is threefold : 
1. There exists a correspondence between Type Theoretic 

entities and functional programming objects  
2. The expressions in a functional language preserve 

referential transparency. Furthermore, once proved 
correct they can be manipulated analogously to 
mathematical formulas. This allows the program to be 
considered a mathematical model. 

3. Functional languages can be thought of as executable 
formal specifications.  

In addition to these, our choice of Haskell for the 
implementation, which produces a compiled executable 
based on the C programming language, offered us a rather 
fast final program in comparison to the rather slowly 
running programs functional languages have been accused 
of producing 

V. THE PROTOTYPE 
The purpose is to use and implement the algorithms 

derived in the Constructive Type Theory framework. The 
derivation process is then a mechanism for modifying 
definitions needed by the prototype. It is developed, 
subsequently, as a hierarchy of three levels of abstraction, 
which gives it the necessary flexibility to easily handle the 
variety of data forms and network types usually met in real 
world applications. Before presenting the definitions (in 
Haskell code, which in most cases is self-explanatory) a 
brief note on notation:  
 
::  indicates a type signature - that is its left operand has 
the type of its right operand -,  
[A]  denotes a list of objects of type A and  
->  denotes a logical implication (i.e. a function type).  

Finally parentheses are used to indicate either grouping of 
results or clarify application of functions to a subset of their 
argument set (partial application of functions).  

The first level of the prototype incorporates the 
definitions for the network itself and its components along 
with the functions that create them. In Haskell code these are 
expressed as follows: 

 
data NeuralNet = NN { 

arch :: Net_Arch, 
fun :: Net_Func, 
layer_nodes :: Layers}  
| ENN  

where 
type Net_Arch = Array Edge Weight 
type Weight  = Maybe Weight_Function 

type Weight_Function  
     = Param -> Output -> Input 
type Edge  = (Vertex, Vertex) 
type Vertex   = Int 
type Layers   = [[Vertex]] 
type Net_Func = [Node] 

 
The above code defines a neural network to be an object 

which has an architecture (Net_Arch), a list of nodes 
(Net_Func), and a list of its vertices representing their 
arrangement in layers (Layers) (if this is applicable to the 
particular network). The architecture is represented as a 2-
dimensional array of weights (Weight) indexed by the 
edges of the network. 

 A Neural Net is modelled as a record type with named 
fields so that each one of them can be recalled by name and 
possibly updated. The architecture is described as a 2-
dimensional array with the elements representing the 
weights (logical implications - functions) in the cells 
corresponding to the connections of the vertices of the 
network. Net_Func is a list of Node type elements that 
express the functionality of the network. Layers is a list of 
lists of the (Integer) name tags of the nodes arranged in a 
layered configuration.   

A node is defined as an object consisting of inputs 
(Input), output (Output), activation function (a logical 
implication from Input to Output), parameters associated 
with each one of its inputs, and error (Delta) to use during 

the training. The corresponding code reads as shown below. 
The second level of the abstraction implements functions 

which handle and update the network components. This 
level includes a general description of the learning process 
from the examples provided incorporating functions which 
define how to: 
1. propagate “inputs” into a particular 

“neural_net”, given a set of associated 
“parameters”, and produce the corresponding 
outputs,  

2. evaluate the produced outputs with respect to 
“targets”, if required by the particular ANN model 
implemented, and  

3. update the parameters of the node given a 
“learning_rate”.  

data Node = Nd { 
 inp :: Inputs,  
 outp :: Output, 

par :: Params, 
activation_function :: 
 Inputs -> Output,   

 error :: Delta} 

type Input = [Data] 
type Inputs = [Input] 
type Output = [Data] 
type Param = [Data] 
type Params = [Param] 
type Delta = [Data] 
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Training may now be defined as the composition (denoted 
by “.”) of the three functions (“propagate”, 
“evaluate” and “update”):  

 
type Target = [Data] 
train ::LParam -> [Input] -> [Target] 

-> [[Param]] -> NeuralNet -> 
NeuralNet 

train learning_rate inputs targets 
weights neural_net 

= ((update learning_rate) . 
(evaluate targets) . 
(propagate inputs 

parameters)) neural_net  
 
The definition of the update function, which is used below 
to define two different ANN models, may be given by:- 
 

type Lparam   = [Data] 
 

update :: LParam -> NeuralNet -> 
NeuralNet 

update lr nn  = nn {fun = set_params 
nn ps} 
 

where “lr” (of type “Lparam”) is the learning rate while 
“nn” indicates the current state of the neural network. Note 
that by implementing the neural network as a record type 
with named fields, the update operation is simplified. The 
right hand side of the equality in the “update” function 
definition in effect means that we replace the networks 
element called “fun” using a function “set_params” which 
replaces the old parameter values stored in the network’s 
“nn” nodes with the new ones “ps”. These are calculated 
using the given learning parameter and the possibly the old 
weights’ values. In the following we will see that by 
appropriately defining “ps”- the list of the new (updated) 
parameters-we are able to implement a variety of ANN 
models with our prototype. 

The third and final level of the prototype’s hierarchy 
comprises of the functions that form the operators on the 
various value types (e.g. Binary or Integer values). As soon 
as appropriate operators are defined at this level for any type 
of data, the prototype can be recompiled to produce an 
executable in order to process this kind of data. Thus, a 2-
dimensional array of binary values representing a black and 
white image can be thought of as a single input to an input 
node and the parameters of the weight function associated 
with the network’s connections may themselves be 
multidimensional arrays. All that is needed is to define the 
appropriate function at the lower level of the hierarchy for 
the operations on these arrays. 

Note that up to the second level of abstraction there is no 
requirement for any assumption about the specific type of 
the values that the data (“Data”) can take. To retain the 
flexibility of easily handling the variety of data forms and 
network types met in areas where integration with an 
existing system is needed, we chose to use a polymorphic 
datatype [14] defined in Haskell code as follows: 

 
data Maybe  A = Just A | Nothing 

 
where A is a free variable representing any datatype. This in 
effect means that for any particular datatype “A” (e.g. 
Integer), which might be appropriate for a specific 
application, “Data” will either carry the information 
represented by it, taking a value of “Just A”, or carry no 
information at all, assuming the “Nothing” value. In the 
examples we present below, we chose “Data” to be 
“Maybe Float”, as the sensory device outputs, forming 
out sample data, are represented by real numbers. Then the 
“Data” associated with the input and output of every node 
in the network and the target values, if required in training, 
are defined as follows: 
 

type Data = Maybe Float 
 

This definition of the “Data” type offers itself to on-line 
(and hence possibly hardware) implementations because 
invalid sensory device output can be represented by the 
“Nothing” value so they would not convey any information 
(as indeed is the truth). We call this approach to data type 
definitions “domain restriction” because it can be used to 
restrict the domain of functions operating on the 
corresponding data types to the set of valid data values only.  

VI. A FEEDFORWARD NEURAL NETWORK 
The first task in the derivation of a new network 

implementation algorithm is to use the rules of Constructive 
Type Theory to derive an algorithm which the programmer 
believes is a good approximation to the desired result. This 
is equivalent to a first prototype in a traditional Software 
Engineering task. The derivation of such an algorithm 
involves the application of the rules of Constructive Type 
Theory and a detailed description of the process is lengthy. 
Many examples are given in [6] and [13]. 

In order that this paper emphasises the way such a derived 
prototype may be merged with the paradigm of Artificial 
Neural Networks, we here assume that the derivation of a 
traditional Neural Network Architecture has been 
performed. We are not seeking to say that the derivation is 
trivial, but that such a derivation, once performed, may be 
used as the basis of an automated system capable of 
removing errors in the algorithm by means of given 
examples of the problem. In other words, the traditional 
testing and debugging phases of algorithm construction have 
been automated and, since the algorithm is expressed in a 
formal logical system, are amenable to formal mathematical 
analysis. The system may also be used to amend existing 
algorithms by “training” them in new example data. 

The derivation of the network leads to the definition of 
the various functions required by the prototype. The first 
example is a simulation of a standard Multi-layer Perceptron 
(MLP). Firstly the node activation functions and the weight 
functions are derived so that they reflect the specific 
functional forms required by the model: 
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act_f :: NeuralNet -> Vertex -> 
(Inputs -> Output) 

act_f nn = \i -> fnn_node_activ_func 
nn i  
 

where “nn” is the neural network in its current state, “i” is 
a vertex number corresponding to the node whose activation 
function we define, and “x” is an input to this node. Then 
we have to derive “fnn_node_activ_func” to assign to 
each node a specific, for example if the node is in the hidden 
layer the appropriate function could be data_tanh (where 
tanh denotes the well known hyperbolic tangent function) 
defined as follows: 

 
data_tanh Nothing = Nothing 
data_tanh (Just y) = Just (tanh(y)) 

 
where y is an appropriate combination of the inputs of the 
node. Next we can define suitable weights (recall that the 
weights in our prototype are logical implications). The 
corresponding code is:  
 

weight :: Weight_Function 
weight = \par -> fnn_weight par 

 
fnn_weight :: [Data] -> [Data] -> 

[Data] 
fnn_weight = zipWith data_mult 

 
where “zipWith f” is a function which when applied to two 
lists of objects, recursively applies “f” to the corresponding 
elements of the lists and returns the list of the results.  

The final step is to set up an “update” function suitable 
for the model in hand. Recall that: 
 

update lr nn = nn { 
fun = set_params nn ps} 

and: 
ps = learning_law lr nodes_2_update nn 

 
where “ps” is the list of the new network parameters being 
updated according to a particular “learning_law”, “lr” 
is the learning rate, “nodes_2_update” is the list of 
nodes whose parameters should be updated, and “nn” as 
usual is the neural network in its current (pre-updated) state. 
Then the last thing we need to define is the 
“nodes_2_update” list to be the list of all the non-input 
nodes in the network. Our FNN prototype is now completed. 
Below, we present one of the real world tasks on which this 
prototype has been employed 

A. Forecasting the Dover Tides 
The real world problem used to demonstrate the system 

arises from collaboration with the Dover Harbour Board. 
The Dover Harbour Board have been seeking a means to 
evaluate data relating to the current flows and tidal levels 
present within the harbour. Their main problem revolves 
around the complexity of the system comprising of the tides 
and the current flow mechanism which have proved difficult 

to model and forecast. Conventional techniques have proved 
rather ineffective to date at producing satisfactory results 
and hence the application of neural networks has been 
considered.  

The task presented here is to produce predictions of the 
tidal levels using a series of past measurements collected via 
a set of sensory devices within the harbour. The data set 
used consisted of hourly measurements of six variables 
considered affecting the tide dynamics. These variables are 
the tide level, the air and sea temperatures, the atmospheric 
pressure and wind speed and direction.The neural network 
used in this case had six one-dimensional input nodes (one 
for each one of the predictor variables),  two hidden nodes 
and one output node. The activation functions selected for 
the hidden nodes are sigmoid nonlinearities (in particular the 
tanh function which has a range of  (-1,1)). For the input 
and output nodes,the identity function was chosen. 

The input variables were normalised to correspond to the 
effective range of the hidden nodes’ activation functions, 
while the weights were initialised for the training phase to 
random values uniformly destributed in (0,1). The training 
algorithm employed was the standard on-line version of 
Backpropagation of Errors [11]; here derived in the 
Constructive Type Theory framework.  
 

 
Figure 1: Air temperature measurements for November 1997. 

 
The trained network was used to produce one-step-ahead 

predictions out-of-sample. That is a data set of the same 
configuration from a different month’s sample, namely 
November 1997, was used as inputs for our predictions. 
Figure 1 presents the 740 data points from this set for the air 
temperature measurements. Observe that between 
observations 280 to 400 the variable assumes values not 
consistent with the rest of the data set. In fact, these values 
represent a failure of the sensory system during the 
corresponding time period (can be thought of as corrupted 
data in general), a common problem in a practical real world 
environment. 

Figure 2 illustrates the behaviour of the network 
implemented within our framework in comparison to one 
implemented in a conventional manner (for example using 
an imperative language like C). From this Figure, note that, 
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on the one hand, our implementation and the conventional 
network present errors with no significant differences for the 
time periods with no corrupted data (indices 230-280, and 
400-430), and on the other hand, their performances 
deteriorate in a very similar way when data which contains 
corrupted measurements (indices 280-330) is presented to 
them. 
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Figure 2: Prediction error; i) implementation of a MLP within our 
framework, without domain restriction, and using a training set with no 
corrupted air temperature values; ii) conventional implementation of MLP 
using the same training parameters and input data as in case i above 

 
Conventionally, there are a number of ways to address the 

issue of corrupted data. We chose one of the most often used 
in practice to compare with our proposal of employing the 
“domain restriction” approach (see section V above) to 
tackle the problem.  

Figure 3, shows the mean square error of the predictions 
produced using each of the above approaches for a period 
which contains both correct (indices 230-280) and corrupted 
data (indices 280-330). In order to have a basis for our 
comparisons we replot here (line with squares) the 
corresponding prediction error curve of the conventionally 
implemented MLP. The comparative advantage offered by 
our Prototype through the application of the “domain 
restriction” (line with diamonds in the Figure) can be easily 
verified.  
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Figure 3: Prediction error; i) network using 6 inputs and domain restriction 
during the prediction phase and using a training set with no corrupted air 
temperature values; ii) network using 6 inputs without domain restriction 
but using a training set which includes corrupted data; iii) conventional 

implementation of MLP using the same training parameters and input data 
as in case i above. 

VII. CONCLUSION 
A mechanism has been introduced to illustrate the 

benefits of merging the areas of formal mathematics and 
artificial neural network. Such a technique is useful for 
problem domains which present difficulties in engineering 
an accurate solution but nevertheless possess a number of 
examples of valid results which may be employed as 
training data. This is a significant result in integrating formal 
logic with the field of Software Engineering. 
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