

Abstract—The assimilation of formal logic into the domain
of Software Engineering offers the possibility of enormous
benefits in terms of software reliability and verifiability. To
date, however, the integration of such techniques has proved
difficult since they involve a significantly increased burden on
the programmer in meeting the demands of the formal
mechanisms being employed. The current paper investigates
the advantages which may be gained by the software
development process with the introduction of Artificial Neural
Network technology into a formal software development
system. Essentially, the adaptive artificial neural network
model is employed to refine an existing formal software model
in order to produce increasingly better approximations to a
given solution. Each approximation is itself a valid formal
system whose precise behaviour may be formally determined.
The paper introduces a framework by which a programmer
may define a system possessing the abstract structure of a
traditional neural network but whose internal structures are
taken from the formal mathematical domain of Constructive
Type Theory. The system will then refine itself to produce
successive approximations to a desired goal based on data
presented to it. An example is presented addressing a problem
domain which has previously proved difficult to model.
Although the example presented is necessarily limited, it does
provide an insight into the potential advantages of merging
formal logic with artificial neural systems..

Index Terms—Formal Logic, Constructive Type Theory,

Neural Networks.

I. INTRODUCTION
he application of Formal Logic in the form of
Constructive Mathematics such as Constructive Type
Theory [6,13] to the design of major software systems

can give rise to significant improvements in the reliability
and dependability of the software produced.

The major factors hindering the widespread application of
such techniques lie in the difficulty encountered in deriving
the logical statements (Judgements) defining the software
system and inefficiencies in the implementation of the
system so derived. In essence, improvements in the

Manuscript received February 25, 2009. This research was supported by

the UK Engineering and Physical Sciences Research Council (EPSRC)
under grant No. GR/L78338..

Gareth Howells is with the Department of Electronics at the University
of Kent. Canterbury Kent, UK (phone: +44 1227 823724; fax: +44 1227
456084; e-mail: W.G.J.Howells@kent.ac.uk).

Konstantinos Sirlantzis is with the Department of Electronics at the
University of Kent. Canterbury Kent, UK (e-mail: K.Sirlantzis@kent.ac.uk).

reliability of the final system are offset by costs associated
with the initial formal derivation of the system.

The purpose of this paper is to explore the relationship
between Constructive Type Theory and Artificial Neural
Networks by illustrating how a traditional example network
may be implemented in a system derived from Type Theory.
The development framework employed in the examples
retains many of the advantages offered by Constructive
Type Theory whilst removing some of the burden of design
from the programmer and placing it on generic learning
rules taken from the domain of Artificial Neural Networks.
That is, the learning rules of the neural network will perform
some of the work traditionally performed by the
programmer. The design framework proposed offers the
following advantages:
• The construction of formally derived and verifiable

software system related to the domain of artificial
neural networks without requiring detailed
mathematical analysis by the programmer.

• The derived system may adapt itself to take into account
differing future performance requirements within the
limitations of the network architecture simulated.

The application area of the framework is typically
envisaged to be one possessing a significant amount of
sample data which may be used for the neural network
refinement (learning) process. A problem domain where the
data is multidimensional in nature is especially suitable as it
provides the opportunity to demonstrate the applicability of
the system in areas which prove difficult to analyse using
existing techniques. A problem domain meeting the above
conditions is the derivation of a mathematical model to
allow predictions to be made regarding variables pertaining
to Dover Harbour in Kent, U.K. The variables governing the
behaviour of the harbour are numerous and the harbour itself
displays a complex, chaotic behaviour which has, to date,
defied the construction of an accurate model

II. CONSTRUCTIVE TYPE THEORY
Constructive Type Theory is a formal logic [6,7,8,13] and it
is based on Constructive Mathematics in which proofs must
be based on a demonstration of how to construct an example
of the theorem or proposition being asserted. In other words,
proofs by contradiction are not allowed. So, in Constructive
Type Theory proofs can be thought of as algorithms to
create an example of the proposition in hand. Furthermore,
the proposition forms a datatype definition or at a higher
level a formal specification for the algorithm itself.

In Constructive Type Theory, each logical proposition
is accompanied by its proof object forming a pair of values

A Framework for the Merger and Practical Exploitation of Formal
Logic and Artificial Neural Networks

Gareth Howells and Konstantinos Sirlantzis

T

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

termed a Judgement. Judgements are usually written in the
form p:P where the proof object p bears witness to the
proposition P. Each logical connective in Constructive Type
Theory is associated with four rules.
• Formation (syntax)
• Introduction
• Elimination
• Computation (simplification)
A simple example is the AND ()∧ rules.

Difficulties in the practical application of Constructive

Type Theory centre around the derivation of the proof of a
proposition and the practical evaluation of the proof
(although the proof represents an algorithm, it may not
represent an efficient algorithm). The prime idea of this
paper is to exploit learning algorithms derived from the field
of Artificial Neural Networks to ease the burden on the
programmer in deriving the required solution and hence
allow for the practical exploitation of the logic.

III. ARTIFICIAL NEURAL NETWORKS (ANN)
Artificial Neural Networks are employed today in a wide

variety of application areas. These range from pattern [2]
and character recognition [4] to financial time series
forecasting [1], which call for a diverse set of different data
representations ranging from binary values to values from
the Clifford Algebra domain [10]. Faced with this unlimited
diversity, those working in the field realised over the years
the need for a unifying framework for a concise description
of the various forms of neural networks and moreover, if
possible, a formal specification system for them. As a result
a number of systems were developed. One of the most
notable was the one of the Neural Networks Council of the
IEEE [9] for a canonical description of neural nets, the
specification language and graphical interface developed
under the NEUFODI European Project [3] and the
mathematical model developed by L. Smith [12]. However
these works are either descriptive or they do not provide a
working prototype able to address real world problems, so

that the results can be compared against the specifications
given.

Artificial Neural Networks present a powerful tool for the
analysis of complex systems. However, ANN
implementations are not usually amenable to formal analysis
and verification of correct performance. This makes them
inefficient tools for deriving algorithms meeting a given
performance specification. Difficulties in their practical
application centre around the derivation of suitable weights
associated with the neural connections. On the other hand,
Constructive Type Theory (CTT) offers the rigorous base of
a formal logic and at the same time a formal specification
tool which is capable of providing algorithmic solutions in
the form of proofs of the propositions asserted. The purpose
of the work reported here is to investigate the potential
benefits of merging the areas of Artificial Neural Networks
and Constructive Type Theory in a single framework in
order to address the difficulties arising in the practical
application of each one of them separately [5]. More
specifically, this work aimed:
• To enhance the current state of neural networks

technology by generalising the concepts of ‘weight’ and
‘activation function’ to assume values taken from the
domain of Constructive Type Theory.

• To show the generality of this system by implementing
an existing Neural Network architecture as a special
cases of it.

• To illustrate the practical applicability of the system by
developing an application to produce solutions to
address a real world problem.

IV. THE THEORETICAL FRAMEWORK
The structure of the prototype system introduced in this

paper retains the abstract structure of a neural network as a
directed graph which was described above. However, unlike
the conventional neural architectures in which the weights
are represented, for example, as real numbers, in the
prototype they are expressed as logical implications

BA → , where A and B are datatypes. If ℜ=A and
ℜ=B , where ℜ represents the set of real numbers, then

our prototype may, for example, represent the conventional
real valued Multi-layer Perceptron (MLP). Its training
algorithm (the generalised delta rule) can be viewed as
modifying only the proof portion of the proposition/proof
pair.

In fact, in our prototype, both weights and activation
functions of the processing elements (nodes) comprising the
network are expressed as logical implications. A node with
two inputs, X and Y can then be represented as an
implication of the type CBA →→ where the weights
associated with these two inputs can be AX → and

BY → . If all the types are numerical then the
corresponding proof will represent a mathematical function
and the prototype will describe a conventional neural
network of some particular form.

()FORMATIONBA
 typea is B)(A

 typea is typea is
∧

()ELIM
Bpsnd
BAp

:
)(: ∧

()COMPbbasnd →),(

()INTRO
BAba
BbAa

∧:),(
: :

()ELIM
Bpsnd
BAp

:
)(: ∧

()COMPabafst →),(

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

The distributed nature of processing in neural networks
helps to overcome the difficulties arising in the practical
application of Constructive Type Theory, which centre
around the efficiency and the practical evaluation of the
derived algorithms.

Our implementation of the prototype is developed in the
Functional programming language Haskell [14]. The
advantage of using a functional language to realise our
neural network prototype is threefold :
1. There exists a correspondence between Type Theoretic

entities and functional programming objects
2. The expressions in a functional language preserve

referential transparency. Furthermore, once proved
correct they can be manipulated analogously to
mathematical formulas. This allows the program to be
considered a mathematical model.

3. Functional languages can be thought of as executable
formal specifications.

In addition to these, our choice of Haskell for the
implementation, which produces a compiled executable
based on the C programming language, offered us a rather
fast final program in comparison to the rather slowly
running programs functional languages have been accused
of producing

V. THE PROTOTYPE
The purpose is to use and implement the algorithms

derived in the Constructive Type Theory framework. The
derivation process is then a mechanism for modifying
definitions needed by the prototype. It is developed,
subsequently, as a hierarchy of three levels of abstraction,
which gives it the necessary flexibility to easily handle the
variety of data forms and network types usually met in real
world applications. Before presenting the definitions (in
Haskell code, which in most cases is self-explanatory) a
brief note on notation:

:: indicates a type signature - that is its left operand has
the type of its right operand -,
[A] denotes a list of objects of type A and
-> denotes a logical implication (i.e. a function type).

Finally parentheses are used to indicate either grouping of
results or clarify application of functions to a subset of their
argument set (partial application of functions).

The first level of the prototype incorporates the
definitions for the network itself and its components along
with the functions that create them. In Haskell code these are
expressed as follows:

data NeuralNet = NN {

arch :: Net_Arch,
fun :: Net_Func,
layer_nodes :: Layers}
| ENN

where
type Net_Arch = Array Edge Weight
type Weight = Maybe Weight_Function

type Weight_Function
 = Param -> Output -> Input
type Edge = (Vertex, Vertex)
type Vertex = Int
type Layers = [[Vertex]]
type Net_Func = [Node]

The above code defines a neural network to be an object

which has an architecture (Net_Arch), a list of nodes
(Net_Func), and a list of its vertices representing their
arrangement in layers (Layers) (if this is applicable to the
particular network). The architecture is represented as a 2-
dimensional array of weights (Weight) indexed by the
edges of the network.

 A Neural Net is modelled as a record type with named
fields so that each one of them can be recalled by name and
possibly updated. The architecture is described as a 2-
dimensional array with the elements representing the
weights (logical implications - functions) in the cells
corresponding to the connections of the vertices of the
network. Net_Func is a list of Node type elements that
express the functionality of the network. Layers is a list of
lists of the (Integer) name tags of the nodes arranged in a
layered configuration.

A node is defined as an object consisting of inputs
(Input), output (Output), activation function (a logical
implication from Input to Output), parameters associated
with each one of its inputs, and error (Delta) to use during

the training. The corresponding code reads as shown below.
The second level of the abstraction implements functions

which handle and update the network components. This
level includes a general description of the learning process
from the examples provided incorporating functions which
define how to:
1. propagate “inputs” into a particular

“neural_net”, given a set of associated
“parameters”, and produce the corresponding
outputs,

2. evaluate the produced outputs with respect to
“targets”, if required by the particular ANN model
implemented, and

3. update the parameters of the node given a
“learning_rate”.

data Node = Nd {
 inp :: Inputs,
 outp :: Output,

par :: Params,
activation_function ::
 Inputs -> Output,

 error :: Delta}

type Input = [Data]
type Inputs = [Input]
type Output = [Data]
type Param = [Data]
type Params = [Param]
type Delta = [Data]

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Training may now be defined as the composition (denoted
by “.”) of the three functions (“propagate”,
“evaluate” and “update”):

type Target = [Data]
train ::LParam -> [Input] -> [Target]

-> [[Param]] -> NeuralNet ->
NeuralNet

train learning_rate inputs targets
weights neural_net

= ((update learning_rate) .
(evaluate targets) .
(propagate inputs

parameters)) neural_net

The definition of the update function, which is used below
to define two different ANN models, may be given by:-

type Lparam = [Data]

update :: LParam -> NeuralNet ->
NeuralNet

update lr nn = nn {fun = set_params
nn ps}

where “lr” (of type “Lparam”) is the learning rate while
“nn” indicates the current state of the neural network. Note
that by implementing the neural network as a record type
with named fields, the update operation is simplified. The
right hand side of the equality in the “update” function
definition in effect means that we replace the networks
element called “fun” using a function “set_params” which
replaces the old parameter values stored in the network’s
“nn” nodes with the new ones “ps”. These are calculated
using the given learning parameter and the possibly the old
weights’ values. In the following we will see that by
appropriately defining “ps”- the list of the new (updated)
parameters-we are able to implement a variety of ANN
models with our prototype.

The third and final level of the prototype’s hierarchy
comprises of the functions that form the operators on the
various value types (e.g. Binary or Integer values). As soon
as appropriate operators are defined at this level for any type
of data, the prototype can be recompiled to produce an
executable in order to process this kind of data. Thus, a 2-
dimensional array of binary values representing a black and
white image can be thought of as a single input to an input
node and the parameters of the weight function associated
with the network’s connections may themselves be
multidimensional arrays. All that is needed is to define the
appropriate function at the lower level of the hierarchy for
the operations on these arrays.

Note that up to the second level of abstraction there is no
requirement for any assumption about the specific type of
the values that the data (“Data”) can take. To retain the
flexibility of easily handling the variety of data forms and
network types met in areas where integration with an
existing system is needed, we chose to use a polymorphic
datatype [14] defined in Haskell code as follows:

data Maybe A = Just A | Nothing

where A is a free variable representing any datatype. This in
effect means that for any particular datatype “A” (e.g.
Integer), which might be appropriate for a specific
application, “Data” will either carry the information
represented by it, taking a value of “Just A”, or carry no
information at all, assuming the “Nothing” value. In the
examples we present below, we chose “Data” to be
“Maybe Float”, as the sensory device outputs, forming
out sample data, are represented by real numbers. Then the
“Data” associated with the input and output of every node
in the network and the target values, if required in training,
are defined as follows:

type Data = Maybe Float

This definition of the “Data” type offers itself to on-line
(and hence possibly hardware) implementations because
invalid sensory device output can be represented by the
“Nothing” value so they would not convey any information
(as indeed is the truth). We call this approach to data type
definitions “domain restriction” because it can be used to
restrict the domain of functions operating on the
corresponding data types to the set of valid data values only.

VI. A FEEDFORWARD NEURAL NETWORK
The first task in the derivation of a new network

implementation algorithm is to use the rules of Constructive
Type Theory to derive an algorithm which the programmer
believes is a good approximation to the desired result. This
is equivalent to a first prototype in a traditional Software
Engineering task. The derivation of such an algorithm
involves the application of the rules of Constructive Type
Theory and a detailed description of the process is lengthy.
Many examples are given in [6] and [13].

In order that this paper emphasises the way such a derived
prototype may be merged with the paradigm of Artificial
Neural Networks, we here assume that the derivation of a
traditional Neural Network Architecture has been
performed. We are not seeking to say that the derivation is
trivial, but that such a derivation, once performed, may be
used as the basis of an automated system capable of
removing errors in the algorithm by means of given
examples of the problem. In other words, the traditional
testing and debugging phases of algorithm construction have
been automated and, since the algorithm is expressed in a
formal logical system, are amenable to formal mathematical
analysis. The system may also be used to amend existing
algorithms by “training” them in new example data.

The derivation of the network leads to the definition of
the various functions required by the prototype. The first
example is a simulation of a standard Multi-layer Perceptron
(MLP). Firstly the node activation functions and the weight
functions are derived so that they reflect the specific
functional forms required by the model:

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

act_f :: NeuralNet -> Vertex ->
(Inputs -> Output)

act_f nn = \i -> fnn_node_activ_func
nn i

where “nn” is the neural network in its current state, “i” is
a vertex number corresponding to the node whose activation
function we define, and “x” is an input to this node. Then
we have to derive “fnn_node_activ_func” to assign to
each node a specific, for example if the node is in the hidden
layer the appropriate function could be data_tanh (where
tanh denotes the well known hyperbolic tangent function)
defined as follows:

data_tanh Nothing = Nothing
data_tanh (Just y) = Just (tanh(y))

where y is an appropriate combination of the inputs of the
node. Next we can define suitable weights (recall that the
weights in our prototype are logical implications). The
corresponding code is:

weight :: Weight_Function
weight = \par -> fnn_weight par

fnn_weight :: [Data] -> [Data] ->

[Data]
fnn_weight = zipWith data_mult

where “zipWith f” is a function which when applied to two
lists of objects, recursively applies “f” to the corresponding
elements of the lists and returns the list of the results.

The final step is to set up an “update” function suitable
for the model in hand. Recall that:

update lr nn = nn {
fun = set_params nn ps}

and:
ps = learning_law lr nodes_2_update nn

where “ps” is the list of the new network parameters being
updated according to a particular “learning_law”, “lr”
is the learning rate, “nodes_2_update” is the list of
nodes whose parameters should be updated, and “nn” as
usual is the neural network in its current (pre-updated) state.
Then the last thing we need to define is the
“nodes_2_update” list to be the list of all the non-input
nodes in the network. Our FNN prototype is now completed.
Below, we present one of the real world tasks on which this
prototype has been employed

A. Forecasting the Dover Tides
The real world problem used to demonstrate the system

arises from collaboration with the Dover Harbour Board.
The Dover Harbour Board have been seeking a means to
evaluate data relating to the current flows and tidal levels
present within the harbour. Their main problem revolves
around the complexity of the system comprising of the tides
and the current flow mechanism which have proved difficult

to model and forecast. Conventional techniques have proved
rather ineffective to date at producing satisfactory results
and hence the application of neural networks has been
considered.

The task presented here is to produce predictions of the
tidal levels using a series of past measurements collected via
a set of sensory devices within the harbour. The data set
used consisted of hourly measurements of six variables
considered affecting the tide dynamics. These variables are
the tide level, the air and sea temperatures, the atmospheric
pressure and wind speed and direction.The neural network
used in this case had six one-dimensional input nodes (one
for each one of the predictor variables), two hidden nodes
and one output node. The activation functions selected for
the hidden nodes are sigmoid nonlinearities (in particular the
tanh function which has a range of (-1,1)). For the input
and output nodes,the identity function was chosen.

The input variables were normalised to correspond to the
effective range of the hidden nodes’ activation functions,
while the weights were initialised for the training phase to
random values uniformly destributed in (0,1). The training
algorithm employed was the standard on-line version of
Backpropagation of Errors [11]; here derived in the
Constructive Type Theory framework.

Figure 1: Air temperature measurements for November 1997.

The trained network was used to produce one-step-ahead

predictions out-of-sample. That is a data set of the same
configuration from a different month’s sample, namely
November 1997, was used as inputs for our predictions.
Figure 1 presents the 740 data points from this set for the air
temperature measurements. Observe that between
observations 280 to 400 the variable assumes values not
consistent with the rest of the data set. In fact, these values
represent a failure of the sensory system during the
corresponding time period (can be thought of as corrupted
data in general), a common problem in a practical real world
environment.

Figure 2 illustrates the behaviour of the network
implemented within our framework in comparison to one
implemented in a conventional manner (for example using
an imperative language like C). From this Figure, note that,

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

on the one hand, our implementation and the conventional
network present errors with no significant differences for the
time periods with no corrupted data (indices 230-280, and
400-430), and on the other hand, their performances
deteriorate in a very similar way when data which contains
corrupted measurements (indices 280-330) is presented to
them.

0

0.05

0.1

0.15

0.2

0.25

250 300 350 400

M
SE

(i)
 -

M
ea

n
Sq

ua
re

 E
rr

or
 fo

r p
re

di
ct

io
n

i

i - Index of Prediction at time i

i
ii

Figure 2: Prediction error; i) implementation of a MLP within our
framework, without domain restriction, and using a training set with no
corrupted air temperature values; ii) conventional implementation of MLP
using the same training parameters and input data as in case i above

Conventionally, there are a number of ways to address the

issue of corrupted data. We chose one of the most often used
in practice to compare with our proposal of employing the
“domain restriction” approach (see section V above) to
tackle the problem.

Figure 3, shows the mean square error of the predictions
produced using each of the above approaches for a period
which contains both correct (indices 230-280) and corrupted
data (indices 280-330). In order to have a basis for our
comparisons we replot here (line with squares) the
corresponding prediction error curve of the conventionally
implemented MLP. The comparative advantage offered by
our Prototype through the application of the “domain
restriction” (line with diamonds in the Figure) can be easily
verified.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

240 260 280 300 320

M
SE

(i)
 -

M
ea

n
Sq

ua
re

 E
rr

or
 fo

r p
re

di
ct

io
n

i

i - Index of Prediction at time i

i
ii

iii

Figure 3: Prediction error; i) network using 6 inputs and domain restriction
during the prediction phase and using a training set with no corrupted air
temperature values; ii) network using 6 inputs without domain restriction
but using a training set which includes corrupted data; iii) conventional

implementation of MLP using the same training parameters and input data
as in case i above.

VII. CONCLUSION
A mechanism has been introduced to illustrate the

benefits of merging the areas of formal mathematics and
artificial neural network. Such a technique is useful for
problem domains which present difficulties in engineering
an accurate solution but nevertheless possess a number of
examples of valid results which may be employed as
training data. This is a significant result in integrating formal
logic with the field of Software Engineering.

ACKNOWLEDGMENT
This research was supported by EPSRC grant No.

GR/L78338. The authors wish to thank the Dover Harbour
Board Hydrographic Service.

REFERENCES
[1] M.E Azoff, "Neural Network Time Series Forecasting of

Financial Markets", John Wiley & Sons, 1994
[2] C.M. Bishop, "Neural Networks for pattern recognition"

Claredon Press, Oxford, 1995
[3] G Dorffner, H Wiklicky and E Prem, "Formal neural network

specification and its implications for standardisation",
Computer Standards & Interfaces, 1994, 16, pp. 205-219

[4] G. Howells, M.C. Fairhurst and F. Rahman, "An Exploration
of a New Paradigm for Weightless RAM-based Neural
Networks", Connection Science: Vol. 12 No. 1.March 2000.

[5] G. Howells, K.Sirlantzis, "Improving Robotic System
Robustness via a Generalised Formal Artificial Neural
System" in Proc. ECSIS Symposium on Learning and
Adaptive Behaviour in Robotic Systems (LAB-RS 2008)
Edinburgh, 2008.

[6] P Martin-Lof, "Constructive mathematics and computer
programming". In C.A.R. Hoare (ed.) Mathematical Logic and
Programming Languages, Prentice-Hall, 1985.

[7] A Moran, D Sands and M Carlsson , "Erratic Fudgets: a
semantic theory for an embedded coordination language",
Science of Computer Programming 46 (1-2): 99-135 Jan-Feb
2003

[8] Q.H. Nguyen, C Kirchner C and H Kirchner, "External
rewriting for skeptical proof assistants", Journal of
Automated Reasoning 29 (3-4): 309-336, 2002

[9] M.L. Padgett, W.J. Karplus, S. Deiss and R. Shelton,
"Computational Intelligence standards: Motivation, current
activities, and progress”, Computer Standards & Interfaces,
1994, 16, pp. 185-203

[10] A.F.R. Rahman, G. Howells and M.C. Fairhurst "A Multi-
Expert Framework for Character Recognition: A Novel
Application of Clifford Networks", IEEE Transactions on
Neural Networks: Vol. 12 No.1 January 2001

[11] D.E. Rumelhart, G.E. Hinton and R.J. Williams, "Learning
Representations by Back-Propagating Errors" , Nature, 1986)
323, pp. 533

[12] L. Smith, "A framework for neural net specification”, IEEE
Trans. Soft. Eng., 1992, 18, pp. 601-612

[13] S. Thompson, "Type theory and functional programming"
Addison-Wesley, 1991.

[14] S. Thompson, "Haskell, the craft of functional programming"
Addison-Wesley, 1999.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

