
Hardware Co-simulation For Video Processing Using 
Xilinx System Generator  

T. Saidani , D. Dia, W. Elhamzi, M. Atri and R. Tourki 
 

Abstract— The use of rapid prototyping tools such as MATLAB-
Simulink and Xilinx System Generator becomes increasingly 
important because of time-to-market constraints. This paper 
presents a methodology for implementing real-time DSP 
applications on a reconfigurable logic platform using Xilinx 
System Generator (XSG) for Matlab. The methodology aims to 
improve the design verfication efficiency for such complex 
system. It presents an architecture for Color Space Conversion 
(CSC) RGBTOYCbCr for video processing using Xilinx System 
Generator. The design was implemented targeting a Spartan3 
device (3S200PQ208) then a Virtex II Pro (xc2vp7-6ff672). 
Obtained results are discussed and compared with an other 
architecture. The conversion method has been verified 
successfully with no visually perceptual errors in the transformed 
images.  
 

Index Terms—Codesign Environment, FPGA Board, Rapid 
Prototyping, Video processing, Xilinx System Generator.  

 
 

I. INTRODUCTION  
Video processing and computer vision methods become 

increasingly important not only in the industrial applications 
but also in our daily life [1]. Video processing generally 
exploits tasks with very high computational demands. Such 
tasks can be handled by the standard processors and computers 
or by computers connected to the computational networks [1]. 
However, such approach is not always suitable that’s why 
specialized hardware solutions based on digital signal 
processors (DSP) or a field programmable gate arrays (FPGA) 
are usually used in embedded systems [2, 8]. Xilinx System 
Generator allows the design of hardware system starting from a 
graphical high level Simulink environment [3, 8]. System 
Generator extends the traditional Hardware Description 
Language (HDL) design providing graphical modules, and thus 
does not require a detailed knowledge of this complex 
language. The Simulink graphical language allows an 
abstraction of the design through the use of available System 
Generator blocks and subsystems [8]. This reduces the time 
necessary between the control design derivations and hardware 
implementation. In addition, the software provides for the 
hardware simulation and hardware-in-the-loop verification, 
referred to as hardware co-simulation [2, 3], from within this 
environment. This methodology provides easier hardware 
verification and implementation compared to HDL based 
approach. The Simulink simulation and hardware-in-the loop 

Manuscript received March 23, 2009.  
Authors are with the EµE Laboratory, Faculty of Sciences, Monastir, 5000, 

Tunisia (corresponding author M. Atri:+216 73 501785; fax: :+216 73 
501785; e-mail: Mohamed.Atri@fsm.rnu.tn).  

 

approach presents a far more cost efficient solution than other 
methodologies. The ability to quickly and directly realize a 
control system design as a real-time embedded system greatly 
facilitates the design process. 

The remainder of this paper is divided into six sections. 
After introducing, a description of Design methodology for 
implementation on FPGA with Xilinx System Generator is 
presented, section 3 presents a study case which is Color Space 
Conversion Application. In Section 4, experimental results and 
software performances are detailed. Section 5 shows some  
discussion and comparison. This paper is concluded in Section 
6. 

II.  DESIGN METHODOLOGY FOR IMPLEMENTATION ON 
FPGA WITH XILINX SYSTEM GENERATOR 

Efficient rapid prototyping system requires a development 
environment  targeting the hardware design platform. The used 
tools are MATLAB R2007a with Simulink from MathWorks 
[3, 4], System Generator 10.1 for DSP and ISE 10.1 from 
Xilinx present such capabilities (figure 1). Although the Xilinx 
ISE 10.1 [2, 4] foundation software is not directly utilized, it is 
required due to the fact that it is running in the background 
when the System Generator blocks are implemented. The 
System Generator [2] environment allows for the Xilinx line of 
FPGAs to be interfaced directly with Simulink. In addition 
there are several cost effective development boards available 
on the market that can be utilized for the software design 
development phase. 

MATLAB is an interactive software for numerical 
computations that simplifies the implementation of linear 
algebra routines. Powerful operations can be performed by 
using the provided MATLAB commands. Simulink [2, 8] is an 
additional MATLAB toolbox that provides for modeling, 
simulating and analyzing dynamic systems within a graphical 
environment. The software allows for both modular and 
hierarchical models to be developed providing the advantage of 
developing a complex system design that is conceptually 
simplified. 

Xilinx System Generator is a MATLAB-Simulink based 
design tool for Xilinx’s line of FPGAs. Complex digital circuits 
have been developed using multiple Hardware Description 
Language (HDL) modules. Because of the abstraction level is 
very low within the HDL environment, the difficulty increases 
as the design becomes more complex [4]. 

The Xilinx Integrated Software Environment (ISE) is a 
powerful design environment that is working in the background 
when implementing System Generator blocks. The ISE 
environment consists of a set of program modules, written in 
HDL, that are utilized to create, capture, simulate and 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



Figure 1: Design methodology with Xilinx System Generator 

 

implement digital designs in a FPGA or CPLD target device 
[1,2]. The synthesis of these modules creates netlist files which 
serve as the input to the implementation module. After 
generating these files, the logic design is converted into a 
physical file that can be downloaded on the target device. 

III.  STUDY CASE: COLOR SPACE CONVERSION RGB TO 
YCBCR  

A.  Overwiew 
Color Space Conversion (CSC) [5, 6] is an important 

application in image and video processing systems. CSC has 
been implemented in software and various kinds of hardware. 
Hardware implementations can achieve a higher performance 
compared to software-only solutions. Application specific 
integrated circuits (ASICs) are efficient and have good 
performance. However, they lack the programmability of 
devices such as field programmable gate arrays (FPGAs) [7, 8]. 

Many video applications require converting video and 
image content from one color space to another [10, 13, 14]. 
Images and motion images (video) have utilized a wide variety 
of color spaces including: RGB, YCrCb, HSI, and other 
formats to represent the colors within the image [15]. Each of 
these color space representations has its own set of advantages 
and disadvantages. For example, RGB is often used for the 

most demanding applications where ultimate color fidelity 
must be maintained. Any given color that the human eye can 
see may be represented by a combination of the primary colors 
(Red –R, Blue –B, and Green –G). The human eye doesn’t 
actually see equally well in the different color bands with our 
human-vision [11, 14] system optimized for the red, green 
bands but not quite as sensitive to changes in blues. Scientist 
and engineers looking for was to reduce the bandwidth and/or 
bit rate of a video system have created other color spaces (and 
sampling spaces) that reduce the amount of blue information in 
a system while maintaining a subjectively high picture quality. 
Furthermore, human vision is more highly tuned to changes in 
brightness (black and white or gray-scale changes) than it is to 
changes in hue (changes from one color or another with the 
same brightness). Therefore, many video systems sub-sample 
the color information [14] (chrominance) while transmitting the 
black and white (luminance) in full resolution. This sub-
sampling is often applied to luminance-chrominance color 
space systems such as YCrCb where Y represents the 
luminance information and Cr and Cb are color difference 
signals that represent the chrominance information. In these 
systems all of the Y samples are used but every other color 
sample is dropped. These systems are referred to as 4:2:2 
sampling. The 4:2:2 nomenclatures signify that for every 4 Y 
samples only 2 Cr and 2 Cb samples are saved. Owing to the 
bandwidth saving benefits of these different image formats 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



different video equipment will adopt different color space 
encodings. Interoperability between such equipment often 
requires a device to convert the output of one video device in a 
given color space to the color space needed as input for the 
down stream device. Some examples of color space conversion 
are the converting of the RGB video output from a computer 
VGA card to YCrCb input on a TV monitor [5, 15]. The 
opposite conversion path is also common where a video device 
such as a DVD player outputs YCrCb and the video needs to 
be converted to RGB to drive a monitor [15]. 

B.  YCbCr Color Model 
YCbCr color model also belongs to the family of television 

transmission color models. In this color model, the luminance 
component is separated from the color components. 
Component (Y) represents luminance, and chrominance 
information is stored as two color-difference components. 
Color component Cb represent the difference between the blue 
component and a reference value and the color component Cr 
represents the difference between the red component and a 
reference value. The following conversion is used to segment 
the RGB image into Y, Cb and Cr components: The conversion 
matrix can be expressed as in equation (1) [15]. 

   =     *       +     

Among all the color models found, YCbCr seems to be better 
for skin detection since the Colors in YCbCr are specified in 
terms of luminance (Y channel) and chrominance (Cb and Cr 
channels). The main advantage of converting the image from 
RGB color model to the YCbCr color model is the influence of 
luminance can be removed during our video processing. Figure 
2 shows the conversion of a RGB color model in to a YCbCr 
color model implemented with the function rgb2ycbcr from 
Matlab. 

IV. IMPLEMENTATION RESULTS, SIMULATION AND 
COMPARISONS 

A.  Hardware Co-simulation 
Figure 3 shows the model that uses the top level HDL module 
and its Xilinx blokset for RGB to Y component. This model 
can be used for co-simulation. Once the design is verified, a 
hardware co-simulation block can be generated. and then will 
be used to program the FPGA for the CSC design 
implementation. Figure 4 shows the model with the hardware 
co-simulation block. The bitstream download step is performed 
using a JTAG cable. 

B. Simulation 
After the co-simulation step the VHDL codes were 
automatically generated from the System Generator block sets. 
Behavioral and post simulation are supported by Mentor 
Graphics ModelSim tool (Figure 5).   
 

RGB Color YCbCr Color  
Figure 2: Matlab implementation for rgb2ycbcr 

 

 
Figure 3: System Generator project for simulation 

 

 
Figure 4: System Generator project for hardware-in-the-loop testing. 

 

 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 

 

 
Figure5. Simulation results of the VHDL RGB to YCbCR conversion 

 
 
 
The VHDL codes were then synthesized using Xilinx ISE 
10.1i and targeted for Xilinx Spartan3 and Virtex II Pro family 
[2]. The optimization setting is for maximum clock speed. 
Table 1 details the resource requirements of the design. Note 
that in practice, additional blocks are needed for input/output 
interfaces, and synchronization. 
The HDL-based circuit design flow is completed with the 
Xilinx ISE tool to perform synthesis, implementation, place & 
route and device programming for the whole design. For the 
arithmetic units, unsigned pipeline integer divider with both 
quotient and remainder output are parameterized and 
generated by Xilinx Core Generator tool [4, 8]. Multiplication 
uses the embedded multiplier in the hardware. The target 
FPGA chip is Xilinx Virtex II Pro xc2vp7-6ff672 and Spartan 
3 xc3s200-5 ft256. During the Simulink-to-FPGA design flow, 
circuit modeling is built up with Simulink basic blocks and 
Xilinx specified blocks. Input and output data are combined 
with Matlab workspace, which is convenient to convert 
number format and debug. Figure 6 shows the software and 
hardware simulation for the CSC design for the input image. 
 
 

V. DISCUSSION 
To provide a proper performance evaluation, the implemented 
CSC architecture using low cost available Spartan-II 
development system with Xilinx chip 2S200PQ208. The 
properties of other designs along with ours are listed in Table 
2. As seen from this table, the design of the CSC proposed by 
[7] requires 380 CLB on the basis clock rate of 55.159 MHz.  
On the other hand, our resulting architecture spent about 323 
CLB with a working frequency up to 83.271 MHz. Obviously, 
our proposed architecture has lower complexity and improved 
efficiency in area, thus providing a good choice in terms of 
low-cost hardware. 

 
From the development of FPGA technology, the methodology 
challenges the update of various EDA tools [13]. Based on the 
standard development flow, initial efforts have been 
transferred to high-level design and synthesis. There are many 
conversion tools such as C-to-FPGA, Stateflow diagram to 
VHDL Matlab-to-FPGA. The features of Simulink/Xilinx 
System Generator-to-FPGA [2, 3] flow can be discussed as 
follows. 

• Fast time-to-market for DSP development. With the 
assistance of specified DSP blocks for FPGA, the 
Simulink/Xilinx System generator-to-FPGA flow can 
greatly shorten the development cycle from algorithm 
to hardware [4]. 

• Friendly graphics interface. Although the schematic 
entry is also a GUI interface, the Simulink is easier to 
organize input data and much convenient to observe 
output in many ways [8]. 

• Flexible modeling and simulation. The design can be 
well organized into hierarchical modules and easy to be 
combined with other entry method for design decision 
and convenient to debug and simulation. 

VI. CONCLUSION AND FUTUR WORK 
Xilinx system generator is a very useful tool for developing 
computer vision algorithms. It could be described as a timely, 
advantageous option for developing in a much more 
comfortable way than that permitted by VHDL or Verilog 
hardware description languages (HDLs). The purpose of this 
paper was to demonstrate the use of System Generator to 
design a system RGB to YCbCr conversion (CSC) for video 
processing. This design is implemented in the device Spartan 3 
(xc3s200-5ft256) and Virtex II Pro (Virtex 2 Pro xc2vp7-
6ff672). The implemented CSC architecture using low cost 
available Spartan-II development system with Xilinx chip 
2S200PQ208 has 83.271 MHz maximum frequency and uses 
323 CLB slices with 13% utilization. 
Future works include the use of the Xilinx System Generator 
development tools for the implementation of other blocks used 
in video processing like wavelet transform, motion estimation 
and arithmetic coding on Xilinx Programmable Gate Arrays 
(FPGA).  

Figure 6: Outputs from different implementations            

Software Y component 

Lena (512*512) RGB test image 

Hardware Y component 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



  

 

Table 1: FPGA resources used in the implementation for the CSC 

Spartan 3  xc3s200-5ft256 Virtex 2 Pro xc2vp7-6ff672  
Used Available Utilization Used Available Utilization 

Number of Slices 307 1920 15% 307 4928 6% 
Number of Slice Flip Flop 443 3840 11% 446 9856 4% 
Number of 4 input LUTs 545 3840 14% 541 9856 5% 
Number of Bonded IOBs 75 173 43% 75 396 18% 

Number of GCLKS 1 8 12% 1 16 6% 
Maximum Frequency 129.721MHz 155.063MHz 

Table 2: Performance comparison 

Our Design Design [7]  
Used Available Utilization Used Available Utilization 

Number of Slices 323 2352 13% 380 2352 16% 
Number of Slice Flip Flop 453 4704 9% 339 4704 7% 
Number of Bonded IOBs 75 140 53% 51 144 35% 

Number of GCLKS 1 4 25% 1 4 25% 
Maximum Frequency 83.271MHz 55.159MHz 

 

REFERENCES 
 

[1] P. Zemcik, “Hardware Acceleration of Graphics and Imaging 
Algorithms Using FPGAs,” in SCCG ’02: Proceedings of the 18th 
Spring Conference On Computer Graphics, (New York, NY, USA), pp. 
25–32, ACM Press, 2002. 

[2]  Xilinx System Generator User's Guide, www. Xilinx.com.  
[3] Inc., T. M.: Embedded Matlab Language User Guide. The MathWorks 

Inc., 2007. 
[4] Ownby, M.; Mahmoud, W.H. “A Design Methodology for 

Implementing DSP with Xilin System Generator for Matlab", in IEEE 
International Symposium on System Theory, 2003,pp. 404- 408. 

[5] D. Han, “A cost effective color gamut mapping architecture for digital tv 
color reproduction enhancement,” IEEE Transactions on Consumer 
Electronics, vol. 51, no. 1, pp. 168–174, 2005.  

[6] M. Bilal and S. Masud, “Efficient color space conversion using custom 
instruction in a risc processor,” in IEEE International Symposium on 
Circuits and Systems, 2007,pp. 1109 1112. 

[7] Sapkal, A.M.; Munot, M.; Joshi, M.A. “R' G'B' to Y'CbCr Color Space 
Conversion Using FPGA” Wireless, Mobile and Multimedia Networks, 
2008. IET International Conference on Digital Object Identifier  Volume 
, Issue , 11-12 Jan. 2008 Page(s):255 – 258 

[8] J.C.Moctezuma, S.Sanchez, R.Alvarez, A. Sánchez “ Architecture for 
filtering images using Xilinx system generator” World Scientific 
Advanced Series In Electrical And Computer Engineering, Proceedings 
of the 2nd WSEAS International Conference on Computer Engineering 
and Applications. pages 284-289.2008. 

 

 
 
[9] L. V. Agostini, I. S. Silva, and S. Bampi, “Parallel color space 

converters for JPEG image compression,” Microelectronics Reliability, 
vol. 44, no. 4, pp. 697–703, April 2004. 

[10] M. Sima, S. Vassiliadis, S. Cotofana, and J. T. J. van Eijndhoven, “Color 
space conversion for MPEG decoding on FPGA-augmented trimedia 
processor,” in Proceedings. IEEE International Conference on 
Application-Specific Systems, Architectures, and Processors, Jun. 2003, 
pp. 250–259. 

[11]  P. Kuchi, P. Gabbur, P. S. Bhat, and S. David, “Human face detection 
and tracking using skin color modelling and connected component 
operators,” The IETE Journal of Research, Special issue on Visual 
Media Processing, May 2002. 

[12] M. Bilal and S. Masud, “Efficient color space conversion using custom 
instruction in a risc processor,” in IEEE International Symposium on 
Circuits and Systems, 2007,pp. 1109 1112. 

[13] D. Han, “Real-time color gamut mapping method for digital tv display 
quality enhancement,” IEEE Transactions on Consumer Electronics, vol. 
50, no. 2, pp. 691– 698, 2004. A. Albiol, L. Torres, and E. J. Delp, “An 
unsupervised color image segmentation algorithm for face detection 
applications,” in Proceedings. 2001 International Conference on Image 
Processing, vol. 2, 2001, pp. 681–684 vol.2. 

[14] A. Albiol, L. Torres, and E. J. Delp, “An unsupervised color image 
segmentation algorithm for face detection applications,” in Proceedings. 
2001 International Conference on Image Processing, vol. 2, 2001, pp. 
681–684 vol.2. 

[15] F. Bensaali, A. Amira and A. Bouridane “Accelerating matrix product 
on reconfigurable hardware for image processing applications” IEE 
Proc.-Circuits Devices Syst., Vol. 152, No. 3, June 2005 

 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009


