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Abstract—The prediction of software defects has recently 
attracted the attention of software quality researchers. Many 
predictive classification systems have already been proposed, 
which aim at early discovery of software modules that are fault-
prone and versa. The proposed methods are usually assessed 
using datasets available from NASA Metrics Data repository. 
These datasets include a combination of design-level and code-
level metrics for different modules. To apply a defect predictor, 
all metrics have to be measured for any of the modules (to be 
used as the classifier inputs). The measurement of some of these 
metrics is easy and can be done straight forward. However, there 
are a number of metrics which are more difficult or time-
consuming to quantify. Moreover, many of them do not have an 
exact value; so, they may get different values when using 
different formulas or tools. In this paper, we first discuss this 
hypothesis that some strong dependencies exist among various 
features of these datasets. Based on this hypothesis, we search for 
short combinations of features from the first category (easy-to-
measure features), which can describe any of the features from 
the second category (hard-to-measure features) with a high 
accuracy. Then, we introduce a set of fuzzy modeling systems, 
each of which estimates the value of one of the second category 
features from its specified determinants. The evaluation of the 
estimation systems is carried out by computing the MSE values 
for all features. The experimental results are promising. The 
presented estimation system provides usability of the defect 
prediction system rather than its accuracy. Using this system, the 
user will not have to measure all the required mentioned metrics 
for any of the modules. All the features of the second category 
will automatically be estimated with a high accuracy. 
 

Index Terms— Software defect prediction, Fuzzy Modeling, 
Fuzzy Classification, Parameter Estimation, Approximate 
Dependencies  

I. INTRODUCTION 
  Quality of a software system is relative to the number of 
defects reported in the final product. Early discovery of 
software errors is very important and may cause significant 
cost savings, especially for large and complex systems. 
Software defect prediction is the task of classifying software 
modules into fault-prone (fp) and non-fault-prone (nfp) by 
means of metric-based classification [1, 2].  
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   Software testing is the most expensive and time consuming 
issue in the process of software development. It usually 
requires about 50% of the whole project schedule. On the 
other hand, it has been proved by experience that the majority 
of a system’s faults exist in a small fraction of modules. Thus, 
efficient prediction models are helpful for software testing. 
Accurate estimates of defective modules may help software 
developers in terms of allocating the limited resources and 
thus, decreasing testing times [3, 4]. 
   During the past decade, several classification systems have 
been proposed, which perform predictive modeling efforts for 
detection of modules that are likely to contain faults. The 
evaluation of such systems has almost been carried out using a 
set of datasets available from NASA MDP repository [5]. 
Recently, via a set of experiments on NASA datasets, 
Lessman et al. [6] concluded and reported that there is not a 
high gap between predictive accuracies of different 
classification methods. In other words, even simple classifiers 
are able to classify software modules according to code 
attributes with a good accuracy. This is maybe due to the 
nature of majority of data sets which have been observed to be 
linearly separable.  
   Each of the NASA MDP datasets is related to one of the 
NASA projects and contains several modules. Each module is 
described by a set of code-level and design-level attributes. 
All discovered faults of the system are also registered in each 
dataset, together with the number of module containing the 
fault. Hence, there are two categories of modules; the modules 
with 1 or more errors (nfp modules) and those containing no 
fault (fp modules).  
The number of module metrics in different NASA datasets 
varies from 21 to 43 metrics. To apply a defect prediction 
system to detect fp and nfp modules of a real software system, 
we have to measure all of these metrics for any of the modules 
(to be used as the classifier inputs).  
   The measurement of some of these metrics is easy and can 
be done straight forward. For instance, LOC metrics (such as 
LOC-Comments which represents the no. of code lines 
containing comments) and some other attributes can be easily 
measured. The measurement of such metrics can be handled 
manually or automatically.  
   On the other hand, some of the metrics are more difficult or 
time-consuming to measure. The main challenging metrics are 
the design metrics (e.g., complexity metrics) which require 
availability of design phase artifacts and design diagrams such 
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as DFDs, control flow graphs, Formal Description Language 
(FDL) graphs and UML diagrams, to be extracted from.  
   Moreover, some of the metrics can not be quantified easily 
and directly. Different formulas and tools have been proposed 
to estimate these features. Many of the formulas relate to some 
specific applications or processes. Some others have been 
defined to be used for some specific programming languages. 
The other challenge of this kind of metrics is that they require 
the program to be completed. Effort is an example of such 
features. This metric represents the mental effort needed to 
develop or maintain a software module. A high value for 
Effort means that the module is difficult to change. One of the 
estimations for this metric has been developed by Maurice 
Halstead [7], denoted by Halstead_Effort. Halstead_Effort is 
calculated for modules written in COBOL and PL1 using the 
following formula: 
 
E = D * V                      (1)        (1) 

   In this formula, D stands for Difficulty and is calculated as  
D = (n1 / 2) * (N2 / n2),         (2) 

Where n1 is the number of distinct operators 
, n2 is the number of distinct operands and N2 is the whole 
number of operands.  

   The second parameter, V, stands for Volume and is 
calculated as  

V = N * (LOG2 n)                      (3) 

Where n is the module vocabulary size and is calculated as n 
= n1 + n2 and N is the module length calculated as N = N1 + 
N2. 

 
   During the past years, many researchers have attempted to 
evaluate different methods and several defect prediction 
systems have been proposed. The results of these systems are 
given in terms of classification accuracy, precision, 
performance, etc. However, these factors do not really show 
the goodness of the model. 
   In this paper, we will introduce an accurate software defect 
prediction system which aims to provide high usability beside 
good accuracy. In other words, the user will not have to 
measure all the above mentioned metrics for any of the 
modules. 
   The rest of the paper is organized as follows. In Section 2, 
we describe our approach and introduce different parts of the 
system in detail. The experimental results of any part of the 
system are also given in this section. Finally, Section 3 
concludes the paper. 
 

II. THE PROPOSED SYSTEM  
  As mentioned in Section 1, the main goal of this paper is to 
develop a defect prediction system which brings about a high 
degree of usability. If we can discover some probable hidden 
relations among different metrics, we will be able to develop 
an estimation system to estimate some metrics’ values from a 

combination of others. So, the user will be required to provide 
just a few metric values. For this purpose, we first divide the 
set of metrics into two categories. The first category denoted 
as Type-1-Faeatures  includes the set of metrics which are 
easily quantifiable. The second category denoted as Type-1-
Faeatures  represents design and Halstead metrics which have 
some problems to be measured, as discussed in the previous 
section. Table 1 indicates an example this categorization for 
the metrics belonging to KC1, which is one of the NASA 
MDP datasets. This example will be used in the next 
subsections to illustrate the experimental results. 
 
Table I. Categorization of KC1 dataset metrics according 

to ease of measurement 
 

Type-1-Features Type-2-Features 

Loc_Blank 

Branch_Count 

Loc_Code_And_Comment 

Loc_Comments 

Loc_Executable 

Num_Operands 

Num_Operators 

Num_Unique_Operands 

Num_Unique_Operators 

Loc_Total 

Cyclomatic_complexity 

Design_Complexity 

Essential_Complexity 

Halstead_Content 

Halstead_difficulty 

Halstead_Effort 

Halstead_Error-Est 

Halstead_Length 

Halstead_Level 

Halstead_ProgTime 

Halstead_Volume 

 
    The proposed defect prediction system is composed of three 
major components, namely the approximate dependency 
miner, the estimation part and the fuzzy rule-based classifier. 
A high-level view of the system is shown in Fig. 1. 
 

A. Approximate Dependency Miner 
    Functional dependencies (FDs) are defined as relationships 
between attributes of a relational scheme R, and are presented 
in expressions of the form X  →  A. In this expression X 
(referred to as the Left-Hand Side (LHS) of the dependency) is 
a subset of attributes belonging to R and A (referred to as the 
Right-Hand Side (RHS) of the dependency) is an attribute of 
R. A functional dependency is said to be valid in a given 
relation r over R , if for all pairs of tuples  t, u belonging to r, 
we have  
 
 (t[Xi] = u[Xi] ,   for all Xi in X)       ⇒      t[A] = u[A]        (4) 

 
, where t[x] is the value assigned to the attribute x of the tuple 
t.   
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Fig. 1. The high-level architectural view of the proposed defect prediction system 

 
 
 
   Classical Functional dependencies are used in relational 
schema design in order to normalize relations to be free of 
redundancy and update anomalies. These dependencies do not 
allow for exceptions and are sensitive to noisy data. 
Approximate Dependencies (ADs) are dependencies which do 
not hold over a fraction of data and thus have a higher 
flexibility for exceptions and noisy data. 
In dependency mining part of the system, we use AD-Miner 
which was proposed in [8] as an incremental mining 
algorithm. This algorithm uses logical operations on binary 
strings to find the set of minimal approximate dependencies 
(having an acceptable accuracy) between attributes. Most of 
other dependency mining approaches already proposed are not 
incremental and so have to re-scan all data and repeat the 
whole computations when a number of records are added to 
the database [9-13].  
   In this part of the system, we are interested in discovery of 
any existing dependency between the values of type-1 and 
type-2 features. In other words, we look for any short 
combination of Type-1-Features which can describe one or 
more features of Type-2. Since the algorithm requires discrete 
or nominal data, as a preprocessing step, we discretized all 
features into equi-size partitions. To decrease the dependence 
on the no. of partitions, the algorithm was run frequently, 
using 3 to 7 partitions for discritization. Finally, for any of 
Type-2-Features, the best combination of Type-1-Features 
(having the highest value of dependency in average) was 
selected as its determinant. In other words, the most accurate 
dependencies between a Type-2-Feature and a combination of 
Type-1-Features were extracted. The results of this phase over 
KC1 dataset features are shown in Table2. Determinant 
features found for Type-2-Features will then be used in the 
estimation part of the system.  
 
 

 
 
 

Table II. The results of the Dependency Miner part: short-
length dependencies between Type-1 and Type-2 Features 

 
Approximate Dependency Accuracy 

(%) 

Branch_Count → Cylomatic_Complexity 

Branch_Count , Num_Operands → Design_Complexity 

Branch_Count , Loc_Blank → Essential_Complexity 

Num_Unique_Operands , Loc_Executable → Halstead_content 

Branch_Count , Loc_Blank  → Halstead_difficulty 

Branch_Count , Loc_Total → Halstead_Effort 

Num_Operands , Loc_Executable → Halstead_Error-Est 

Num_ Operands, Num_ Operators → Halstead_Length 

Branch_Count , Loc_Blank  → Halstead_Level 

Num_Unique_Operands , Branch_Count → Halstead_ProgTime 

Num_ Operands, Num_ Operators → Halstead_Volume 

98.9 

98.2 

95.6 

88.7 

93.4 

96.5 

96.2 

93.6 

91.8 

93.3 

95.7 

 

B. Fuzzy Estimation part 
   In this part of the system, we follow the Wang and Mendel’s 
fuzzy rule learning method [14] and develop a set of fuzzy 
modeling systems with similar structures. Each of these fuzzy 
modeling systems is constructed to estimate the value of a 
Type-2-Feature using a combination of Type-1-features as its 
determinants (discovered in the previous section).  
   Unlike the Dependency Mining part, this part of the system 
will be used online, when the user will give a set of metric 
values for a module to the prediction system to be classified. 
At this time, the user will present just the values of Type-1-
Features. As shown in Fig. 1, the values of Type-2-Features 
will be automatically estimated and forwarded to the 
classification system. 
For each dataset, we used 90% of whole data to train the 
system and 10% for the test. For example, 1900 (out of 2107) 
modules contained in KC1 were used as train data and the 
remaining were left for test. In order to evaluate the 

 

Dependency Miner Estimation part 

Fuzzy Classifier 

Values of Type-1-Features 

Classification rate 

Determinants of all 
Type-2-Features 

Values of Type-2-Features 

Dataset 
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performance of the estimation part, the MSE values were 
computed on both train and test data for every Type-2-Feature. 
Table3 shows the evaluation results of this part of the system 
for KC1 dataset.  
 
    Fig. 2 visualizes the behavior of the estimation system in 
mapping the Branch-Count metric to Cyclomatic-Complexity. 

Fig. 2.(a) shows the existing relation (dependency) between 
these two metrics through 2107 modules included in KC1. Fig. 
2.(b) indicates the approximated function generated by the 
estimation part which maps any value of Branch-Count to 
Cyclomatic-Complexity. 
    The approximated functions for other metrics (all having 2 
determinants) are shown in Fig. 3. 

 
 

Table III. Evaluation results of estimation system in terms of MSE and error significance 
 

Estimation MSE on Train Data MSE on Test Data 
Branch_Count → Cylomatic_Complexity 

Branch_Count , Num_Operands → Design_Complexity 

Branch_Count , Loc_Blank → Essential_Complexity 

Num_Unique_Operands , Loc_Executable → Halstead_content 

Branch_Count , Loc_Blank  → Halstead_difficulty 

Branch_Count , Loc_Total → Halstead_Effort 

Num_Operands , Loc_Executable → Halstead_Error-Est 

Num_ Operands, Num_ Operators → Halstead_Length 

Branch_Count , Loc_Blank  → Halstead_Level 

Num_Unique_Operands , Branch_Count → Halstead_ProgTime 

Num_ Operands, Num_ Operators → Halstead_Volume 

0.05 

0.07 

0.04 

0.81 

0.35 

4.82 

0.009 

1.24 

0.02 

3.5 

2.88 

0.09 

0.1 

0.04 

0.93 

0.38 

6.03 

0.01 

1.11 

0.08 

5.13 

3.43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. (a) Branch-Count Vs Cyclomatic-Complexity for KC1 dataset; (b) The approximated function which maps Branch-

Count to Cyclomatic-Complexity 
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Fig. 3. The surface viewer of approximated functions mapping easy-to-measure metrics into hard-to-measure ones 
 
 
 

III. CONCLUSION 
   In this paper, we introduced a highly usable software defect 
prediction system. The system was assessed using NASA 
which is a widely used benchmark dataset. In the mining part 
of the system, a set of dependencies among hard-to-measure 
features of the dataset and easy-to-measure ones were 
discovered. Then, we developed a set of fuzzy modeling 
systems, each of which estimates the value of one of the hard-
to-obtain features from its specified determinants. In this part 
of the system, we followed the Wang and Mendel’s fuzzy rule 
learning method. The evaluation of the estimation systems was 
accomplished by computing the MSE values for all features. 
The results showed the high ability of the system in terms of 
approximation. Using this system, the user will not have to 
measure all the required mentioned metrics for any of the 
modules. All of the hard-to-measure features will 
automatically be estimated with a high accuracy. As a future 
task, we are going to develop a fuzzy classification system 
using NASA datasets. The classifier accuracy will be verified 

in two ways. First, we use the actual values of all features 
from test data. The accuracy value obtained for this case will 
then be compared to the similar case, where just the first 
category features are fed into the classifier and the other 
features are automatically estimated (using the system 
proposed in this paper) and used. The very low difference 
between these two classification rates can be promising and 
will be another evidence for successfulness of the fuzzy 
estimation part proposed in this paper.  
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