
Effective Estimation of Modules’ Metrics in
Software Defect Prediction

S.M. Fakhrahmad, A.Sami

Abstract—The prediction of software defects has recently
attracted the attention of software quality researchers. Many
predictive classification systems have already been proposed,
which aim at early discovery of software modules that are fault-
prone and versa. The proposed methods are usually assessed
using datasets available from NASA Metrics Data repository.
These datasets include a combination of design-level and code-
level metrics for different modules. To apply a defect predictor,
all metrics have to be measured for any of the modules (to be
used as the classifier inputs). The measurement of some of these
metrics is easy and can be done straight forward. However, there
are a number of metrics which are more difficult or time-
consuming to quantify. Moreover, many of them do not have an
exact value; so, they may get different values when using
different formulas or tools. In this paper, we first discuss this
hypothesis that some strong dependencies exist among various
features of these datasets. Based on this hypothesis, we search for
short combinations of features from the first category (easy-to-
measure features), which can describe any of the features from
the second category (hard-to-measure features) with a high
accuracy. Then, we introduce a set of fuzzy modeling systems,
each of which estimates the value of one of the second category
features from its specified determinants. The evaluation of the
estimation systems is carried out by computing the MSE values
for all features. The experimental results are promising. The
presented estimation system provides usability of the defect
prediction system rather than its accuracy. Using this system, the
user will not have to measure all the required mentioned metrics
for any of the modules. All the features of the second category
will automatically be estimated with a high accuracy.

Index Terms— Software defect prediction, Fuzzy Modeling,
Fuzzy Classification, Parameter Estimation, Approximate
Dependencies

I. INTRODUCTION
 Quality of a software system is relative to the number of
defects reported in the final product. Early discovery of
software errors is very important and may cause significant
cost savings, especially for large and complex systems.
Software defect prediction is the task of classifying software
modules into fault-prone (fp) and non-fault-prone (nfp) by
means of metric-based classification [1, 2].

S. M. Fakhrahmad is Faculty member in the department of computer

engineering, Islamic Azad University of Shiraz, and phD student in Shiraz
University, Iran; e-mail: mfakhrahmad@ cse.shirazu.ac.ir.

A. Sami is Assistant Professor in the department of computer science and
engineering, Shiraz University, Iran; e-mail: asami@ieee.org.

 Software testing is the most expensive and time consuming
issue in the process of software development. It usually
requires about 50% of the whole project schedule. On the
other hand, it has been proved by experience that the majority
of a system’s faults exist in a small fraction of modules. Thus,
efficient prediction models are helpful for software testing.
Accurate estimates of defective modules may help software
developers in terms of allocating the limited resources and
thus, decreasing testing times [3, 4].
 During the past decade, several classification systems have
been proposed, which perform predictive modeling efforts for
detection of modules that are likely to contain faults. The
evaluation of such systems has almost been carried out using a
set of datasets available from NASA MDP repository [5].
Recently, via a set of experiments on NASA datasets,
Lessman et al. [6] concluded and reported that there is not a
high gap between predictive accuracies of different
classification methods. In other words, even simple classifiers
are able to classify software modules according to code
attributes with a good accuracy. This is maybe due to the
nature of majority of data sets which have been observed to be
linearly separable.
 Each of the NASA MDP datasets is related to one of the
NASA projects and contains several modules. Each module is
described by a set of code-level and design-level attributes.
All discovered faults of the system are also registered in each
dataset, together with the number of module containing the
fault. Hence, there are two categories of modules; the modules
with 1 or more errors (nfp modules) and those containing no
fault (fp modules).
The number of module metrics in different NASA datasets
varies from 21 to 43 metrics. To apply a defect prediction
system to detect fp and nfp modules of a real software system,
we have to measure all of these metrics for any of the modules
(to be used as the classifier inputs).
 The measurement of some of these metrics is easy and can
be done straight forward. For instance, LOC metrics (such as
LOC-Comments which represents the no. of code lines
containing comments) and some other attributes can be easily
measured. The measurement of such metrics can be handled
manually or automatically.
 On the other hand, some of the metrics are more difficult or
time-consuming to measure. The main challenging metrics are
the design metrics (e.g., complexity metrics) which require
availability of design phase artifacts and design diagrams such

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

as DFDs, control flow graphs, Formal Description Language
(FDL) graphs and UML diagrams, to be extracted from.
 Moreover, some of the metrics can not be quantified easily
and directly. Different formulas and tools have been proposed
to estimate these features. Many of the formulas relate to some
specific applications or processes. Some others have been
defined to be used for some specific programming languages.
The other challenge of this kind of metrics is that they require
the program to be completed. Effort is an example of such
features. This metric represents the mental effort needed to
develop or maintain a software module. A high value for
Effort means that the module is difficult to change. One of the
estimations for this metric has been developed by Maurice
Halstead [7], denoted by Halstead_Effort. Halstead_Effort is
calculated for modules written in COBOL and PL1 using the
following formula:

E = D * V (1) (1)

 In this formula, D stands for Difficulty and is calculated as
D = (n1 / 2) * (N2 / n2), (2)

Where n1 is the number of distinct operators
, n2 is the number of distinct operands and N2 is the whole
number of operands.

 The second parameter, V, stands for Volume and is
calculated as

V = N * (LOG2 n) (3)

Where n is the module vocabulary size and is calculated as n
= n1 + n2 and N is the module length calculated as N = N1 +
N2.

 During the past years, many researchers have attempted to
evaluate different methods and several defect prediction
systems have been proposed. The results of these systems are
given in terms of classification accuracy, precision,
performance, etc. However, these factors do not really show
the goodness of the model.
 In this paper, we will introduce an accurate software defect
prediction system which aims to provide high usability beside
good accuracy. In other words, the user will not have to
measure all the above mentioned metrics for any of the
modules.
 The rest of the paper is organized as follows. In Section 2,
we describe our approach and introduce different parts of the
system in detail. The experimental results of any part of the
system are also given in this section. Finally, Section 3
concludes the paper.

II. THE PROPOSED SYSTEM
 As mentioned in Section 1, the main goal of this paper is to
develop a defect prediction system which brings about a high
degree of usability. If we can discover some probable hidden
relations among different metrics, we will be able to develop
an estimation system to estimate some metrics’ values from a

combination of others. So, the user will be required to provide
just a few metric values. For this purpose, we first divide the
set of metrics into two categories. The first category denoted
as Type-1-Faeatures includes the set of metrics which are
easily quantifiable. The second category denoted as Type-1-
Faeatures represents design and Halstead metrics which have
some problems to be measured, as discussed in the previous
section. Table 1 indicates an example this categorization for
the metrics belonging to KC1, which is one of the NASA
MDP datasets. This example will be used in the next
subsections to illustrate the experimental results.

Table I. Categorization of KC1 dataset metrics according

to ease of measurement

Type-1-Features Type-2-Features

Loc_Blank

Branch_Count

Loc_Code_And_Comment

Loc_Comments

Loc_Executable

Num_Operands

Num_Operators

Num_Unique_Operands

Num_Unique_Operators

Loc_Total

Cyclomatic_complexity

Design_Complexity

Essential_Complexity

Halstead_Content

Halstead_difficulty

Halstead_Effort

Halstead_Error-Est

Halstead_Length

Halstead_Level

Halstead_ProgTime

Halstead_Volume

 The proposed defect prediction system is composed of three
major components, namely the approximate dependency
miner, the estimation part and the fuzzy rule-based classifier.
A high-level view of the system is shown in Fig. 1.

A. Approximate Dependency Miner
 Functional dependencies (FDs) are defined as relationships
between attributes of a relational scheme R, and are presented
in expressions of the form X → A. In this expression X
(referred to as the Left-Hand Side (LHS) of the dependency) is
a subset of attributes belonging to R and A (referred to as the
Right-Hand Side (RHS) of the dependency) is an attribute of
R. A functional dependency is said to be valid in a given
relation r over R , if for all pairs of tuples t, u belonging to r,
we have

 (t[Xi] = u[Xi] , for all Xi in X) ⇒ t[A] = u[A] (4)

, where t[x] is the value assigned to the attribute x of the tuple
t.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Fig. 1. The high-level architectural view of the proposed defect prediction system

 Classical Functional dependencies are used in relational
schema design in order to normalize relations to be free of
redundancy and update anomalies. These dependencies do not
allow for exceptions and are sensitive to noisy data.
Approximate Dependencies (ADs) are dependencies which do
not hold over a fraction of data and thus have a higher
flexibility for exceptions and noisy data.
In dependency mining part of the system, we use AD-Miner
which was proposed in [8] as an incremental mining
algorithm. This algorithm uses logical operations on binary
strings to find the set of minimal approximate dependencies
(having an acceptable accuracy) between attributes. Most of
other dependency mining approaches already proposed are not
incremental and so have to re-scan all data and repeat the
whole computations when a number of records are added to
the database [9-13].
 In this part of the system, we are interested in discovery of
any existing dependency between the values of type-1 and
type-2 features. In other words, we look for any short
combination of Type-1-Features which can describe one or
more features of Type-2. Since the algorithm requires discrete
or nominal data, as a preprocessing step, we discretized all
features into equi-size partitions. To decrease the dependence
on the no. of partitions, the algorithm was run frequently,
using 3 to 7 partitions for discritization. Finally, for any of
Type-2-Features, the best combination of Type-1-Features
(having the highest value of dependency in average) was
selected as its determinant. In other words, the most accurate
dependencies between a Type-2-Feature and a combination of
Type-1-Features were extracted. The results of this phase over
KC1 dataset features are shown in Table2. Determinant
features found for Type-2-Features will then be used in the
estimation part of the system.

Table II. The results of the Dependency Miner part: short-
length dependencies between Type-1 and Type-2 Features

Approximate Dependency Accuracy

(%)

Branch_Count → Cylomatic_Complexity

Branch_Count , Num_Operands → Design_Complexity

Branch_Count , Loc_Blank → Essential_Complexity

Num_Unique_Operands , Loc_Executable → Halstead_content

Branch_Count , Loc_Blank → Halstead_difficulty

Branch_Count , Loc_Total → Halstead_Effort

Num_Operands , Loc_Executable → Halstead_Error-Est

Num_ Operands, Num_ Operators → Halstead_Length

Branch_Count , Loc_Blank → Halstead_Level

Num_Unique_Operands , Branch_Count → Halstead_ProgTime

Num_ Operands, Num_ Operators → Halstead_Volume

98.9

98.2

95.6

88.7

93.4

96.5

96.2

93.6

91.8

93.3

95.7

B. Fuzzy Estimation part
 In this part of the system, we follow the Wang and Mendel’s
fuzzy rule learning method [14] and develop a set of fuzzy
modeling systems with similar structures. Each of these fuzzy
modeling systems is constructed to estimate the value of a
Type-2-Feature using a combination of Type-1-features as its
determinants (discovered in the previous section).
 Unlike the Dependency Mining part, this part of the system
will be used online, when the user will give a set of metric
values for a module to the prediction system to be classified.
At this time, the user will present just the values of Type-1-
Features. As shown in Fig. 1, the values of Type-2-Features
will be automatically estimated and forwarded to the
classification system.
For each dataset, we used 90% of whole data to train the
system and 10% for the test. For example, 1900 (out of 2107)
modules contained in KC1 were used as train data and the
remaining were left for test. In order to evaluate the

Dependency Miner Estimation part

Fuzzy Classifier

Values of Type-1-Features

Classification rate

Determinants of all
Type-2-Features

Values of Type-2-Features

Dataset

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

performance of the estimation part, the MSE values were
computed on both train and test data for every Type-2-Feature.
Table3 shows the evaluation results of this part of the system
for KC1 dataset.

 Fig. 2 visualizes the behavior of the estimation system in
mapping the Branch-Count metric to Cyclomatic-Complexity.

Fig. 2.(a) shows the existing relation (dependency) between
these two metrics through 2107 modules included in KC1. Fig.
2.(b) indicates the approximated function generated by the
estimation part which maps any value of Branch-Count to
Cyclomatic-Complexity.
 The approximated functions for other metrics (all having 2
determinants) are shown in Fig. 3.

Table III. Evaluation results of estimation system in terms of MSE and error significance

Estimation MSE on Train Data MSE on Test Data
Branch_Count → Cylomatic_Complexity

Branch_Count , Num_Operands → Design_Complexity

Branch_Count , Loc_Blank → Essential_Complexity

Num_Unique_Operands , Loc_Executable → Halstead_content

Branch_Count , Loc_Blank → Halstead_difficulty

Branch_Count , Loc_Total → Halstead_Effort

Num_Operands , Loc_Executable → Halstead_Error-Est

Num_ Operands, Num_ Operators → Halstead_Length

Branch_Count , Loc_Blank → Halstead_Level

Num_Unique_Operands , Branch_Count → Halstead_ProgTime

Num_ Operands, Num_ Operators → Halstead_Volume

0.05

0.07

0.04

0.81

0.35

4.82

0.009

1.24

0.02

3.5

2.88

0.09

0.1

0.04

0.93

0.38

6.03

0.01

1.11

0.08

5.13

3.43

Fig. 2. (a) Branch-Count Vs Cyclomatic-Complexity for KC1 dataset; (b) The approximated function which maps Branch-

Count to Cyclomatic-Complexity

0
5

10
15
20
25

30
35
40
45
50

0 20 40 60 80 100

Branch-Count

C
yc

lo
m

at
ic

-C
om

pl
ex

ity

(a)

(b)

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Fig. 3. The surface viewer of approximated functions mapping easy-to-measure metrics into hard-to-measure ones

III. CONCLUSION
 In this paper, we introduced a highly usable software defect
prediction system. The system was assessed using NASA
which is a widely used benchmark dataset. In the mining part
of the system, a set of dependencies among hard-to-measure
features of the dataset and easy-to-measure ones were
discovered. Then, we developed a set of fuzzy modeling
systems, each of which estimates the value of one of the hard-
to-obtain features from its specified determinants. In this part
of the system, we followed the Wang and Mendel’s fuzzy rule
learning method. The evaluation of the estimation systems was
accomplished by computing the MSE values for all features.
The results showed the high ability of the system in terms of
approximation. Using this system, the user will not have to
measure all the required mentioned metrics for any of the
modules. All of the hard-to-measure features will
automatically be estimated with a high accuracy. As a future
task, we are going to develop a fuzzy classification system
using NASA datasets. The classifier accuracy will be verified

in two ways. First, we use the actual values of all features
from test data. The accuracy value obtained for this case will
then be compared to the similar case, where just the first
category features are fed into the classifier and the other
features are automatically estimated (using the system
proposed in this paper) and used. The very low difference
between these two classification rates can be promising and
will be another evidence for successfulness of the fuzzy
estimation part proposed in this paper.

REFERENCES
[1] L.C. Briand, W.L. Melo, and J. Wu¨ st, (2002). Assessing the

Applicability of Fault-Proneness Models Across Object-
Oriented Software Projects,” IEEE Trans. Software Eng., 28
(7), pp. 706-720.

[2] J. Dem_sar, (2006). Statistical Comparisons of Classifiers over
Multiple Data Sets. Machine Learning Research, 7, pp. 1-30.

[3] N. Nagappan, T. Ball, B. Murphy, Using Historical Data and
Product Metrics for Early Estimation of Software Failures, In
Proc. ISSRE 2006, Raleigh, NC, 2006.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

[4] L. Briand, Measurement and Modeling in Software
Engineering, presented at Foundations of Empirical Software
Engineering Workshop—The Legacy of Victor Basili,
International Conference Software Engineering, 2005.

[5] M. Chapman, P. Callis, and W. Jackson, “Metrics Data
Program,” NASA IV and V Facility, http://mdp.ivv.nasa.gov/,
2004.

[6] Stefan Lessmann, (2008). Benchmarking Classification Models
for Software Defect Prediction: A Proposed Framework and
Novel Findings, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 34 (4), pp. 485-496.

[7] M.H. Halstead, (1977). Elements of Software Science.
Elsevier.

[8] S.M. Fakhrahmad, M.H. sadreddini, M. Zolghadri jahromi,
(2008). AD − Miner: A new incremental method for discovery
of minimal approximate dependencies using logical operations,
Intelligent Data Analysis 12, pp. 1–13.

[9] P. A. Flach and I. Savnik. (1999). Database dependency
discovery: a machine learning approach, AI communications,
12 (3). pp. 139–160.

[10] Y. Huhtala, J. Kärkkäinen, P. Porkka and H. Toivonen. (1999)
TANE: An Efficient Algorithm for Discovering Functional and
Approximate Dependencies. The Computer Journal. 42(2). pp.
100–111.

[11] Y. Huhtala , J. Kärkkäinen , P. Porkka and H. Toivonen,
Efficient Discovery of Functional and Approximate
Dependencies Using Partitions, In: Proc. the Fourteenth
International Conference on Data Engineering, (February
1998), pp. 392 - 401.

[12] S. Lopes , J.M. Petit , L. Lakhal, Efficient Discovery of
Functional Dependencies and Armstrong Relations, in: Proc.
ICDT 2000, the 7th International Conference on Extending
Database Technology: Advances in Database Technology, vol
1777, pp. 350 – 364, 2000.

[13] S.L. Wang, J.S. Tsai, B.C. Chang, "Mining Approximate
Dependencies using partitions on Similarity-Relation-based
Fuzzy databases", in : Proc. IEEE SMC'99, Vol. 6, pp. 871–
875, 1999.

[14] Wang L-X, Mendel JM (1992) Fuzzy basis functions, universal
approximation, and orthogonal least squares learning. IEEE
Trans. Neural Network 3, 807–814.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

