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Abstract—Software metrics and fault data belonging to a 

previous software version are used to build the software fault 
prediction model for the next release of the software. Until now, 
different classification algorithms have been used to build this 
kind of models. However, there are cases when previous fault 
data are not present; and hence, supervised learning approaches 
cannot be applied. In this study, we propose a fully automated 
technique which does not require an expert during the 
prediction process. In addition, it is not required to identify the 
number of clusters before the clustering phase, as required by
K-means clustering method. Software metrics thresholds are
used to remove the expert necessity. 

Our technique first applies X-means clustering method to 
cluster modules and identifies the best cluster number. After this 
step, the mean vector of each cluster is checked against the 
metrics thresholds vector. A cluster is predicted as fault-prone if 
at least one metric of the mean vector is higher than the 
threshold value of that metric. In addition to X-means 
clustering-based method, we made experiments with pure 
metrics thresholds method, fuzzy clustering, and K-means 
clustering-based methods. Experiments reveal that 
unsupervised software fault prediction can be fully automated 
and effective results can be produced using X-means clustering 
with software metrics thresholds. Three datasets, collected from 
Turkish white-goods manufacturer developing embedded 
controller software, have been used for the validation.

Index Terms— Clustering, metrics thresholds, software fault 
prediction, and X-means clustering. 

I. INTRODUCTION

The quality of software components should be tracked 
continuously during the development of high-assurance 
systems such as telecommunication infrastructures, medical 
devices, and avionic systems. Quality assurance group can 
improve the product quality by allocating necessary budget 
and human resources to low quality modules identified with 
different quality estimation models. Recent advances in 
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software quality estimation yield building defect predictors 
with a mean probability of detection of 71 percent and mean 
false alarms rates of 25 percent [1]. Software quality 
estimation is not only interested in reliability, but also the 
other quality characteristics such as usability, efficiency, 
maintainability, functionality, and portability. However, some 
researchers prefer using the term software quality estimation
for the software fault prediction modeling studies [2].
Software metrics are used as independent variables and fault 
data are regarded as dependent variable in software fault 
prediction models. 

The aim of building this kind of models is to predict the 
fault labels (fault-prone or not fault-prone) of the modules for 
the next release of the software. Some benefits of using fault 
prediction models are [3]:

 The identification of refactoring candidate modules 
(fault-prone modules),

 The selection of the best design approach from 
design alternatives,

 The improvement of software testing process and 
software quality,

 Reaching a highly dependable system.
A typical software fault prediction process includes two 

steps, as shown in Figure 1. First, a fault prediction model is 
built using previous software metrics and fault data belonging 
to each software module (class or method level). After this 
training phase, fault labels of program modules can be 
estimated using this model [4].

Fig. 1. This shows software fault prediction process [4].

The selection of metrics type is dependent on the 
programming paradigm used in the project and research 
targets. Our systematic review, focusing on 74 papers 
published between year 1990 and 2007, revealed that 60 
percent of papers used method-level metrics [5]. Therefore, 
we applied method-level metrics to build our models in this 
study. A sample training dataset, including software metrics 
and known fault data, is shown in Figure 2. All the metrics are 
separated with commas in this figure and the last column 
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presents whether this module caused fault or not during the 
testing phase. This last feature (column) consists of false and 
true values.

Fig. 2. This shows a sample fault prediction dataset.

From machine learning perspective, Figure 1 is a 
supervised learning approach because the modeling phase
uses class labels represented as known fault data in the figure.
Most of the software fault prediction studies focused on 
developing fault predictors using previous fault data.

However, there are cases when previous fault data are not 
available. For example, a software company might start to 
work on a new project domain or might plan building fault
predictors for the first time in their development cycle. In 
addition, current software version’s fault data might not be 
collected and therefore, there might not exist in any previous 
fault data for the next release of the software. In these cases, 
supervised learning approaches can not be developed because 
of the absence of class labels. Figure 3 depicts this 
challenging problem and unsupervised learning approaches 
can be applied in these cases.

Fig. 3. This shows no fault data problem [4].

There are a few studies that have tried to build a fault 
prediction model when the fault labels for modules are 
unavailable. Zhong et al. [6] used K-means and Neural-Gas 
clustering methods to cluster modules, and then an expert who 
is 15 years experienced engineer, labeled each cluster as 
fault-prone or not fault-prone by examining not only the 
representative of each cluster, but also some statistical data 
such as global mean, minimum, maximum, median, 75 
percentile, and 90 percentile of each metric.

To remove the obligation of an expert assistance, we 
developed a prediction model in our previous work [7] and 
validated it on three datasets, collected from Turkish 
white-goods manufacturer developing embedded controller 
software. Metrics thresholds were used to embed the expert 
knowledge into our model and subjective human interaction 
was eliminated [7]. First, K-means clustering method is
applied and the mean vector of each cluster is checked against 
the metrics thresholds vector. A cluster is predicted as 
fault-prone if at least one metric of the mean vector is higher 
than the threshold value of that metric [7]. The main 

contribution of that study is the usage of metrics thresholds 
with or without clustering methods and the removing the 
obligation of an expert assistance.

However, there is one drawback of our previous study [7]. 
Because K-means clustering method is used in the first stage, 
K number should be selected heuristically and this number 
may affect the overall performance of the model. Therefore, 
we aimed to build a fully automated fault prediction model 
which can be applied when there is no previous fault data. In 
this new study, we propose a new fault prediction model 
which does not require the selection of K number 
heuristically. Instead, K number is automatically calculated 
with X-means clustering algorithm. After the identification of 
K number and the clusters, metrics thresholds are again used 
as done in our previous study.

The main contribution of this paper is the development of 
an automated way of assigning fault-proneness labels to the 
modules and the removing the subjective expert opinion. 
Subjective human interaction directly affects the quality of the 
software fault prediction model and adds unnecessary 
complexity.

We explored our new approach on three datasets, collected 
from Turkish white-goods manufacturer developing 
embedded controller software for washing machines, dish 
washers, and refrigerators. These datasets, AR3, AR4, and 
AR5 are available at http://promisedata.org . They include 29 
metrics, but we used only 6 metrics during modeling because 
we know only their industrial thresholds. Even though we 
validated our approach on datasets collected from Turkish 
company, neither our model nor the metrics thresholds are 
dependent on this company. In this analysis, a module is a 
method because procedural programming was used. The 
results of this study show that the application of X-means 
clustering method with metrics thresholds provides better 
performance compared to pure thresholds and fuzzy 
clustering-based approaches.

6 method-level metrics including the primitive Halstead 
and McCabe metrics were used for the development of this 
model. The metrics used in our experiments are lines of code, 
cyclomatic complexity, unique operator, unique operand, 
total operand, and total operator. Threshold vector [LoC, CC, 
UOp, UOpnd, TOp, and TOpnd] was chosen as [65, 10, 25, 
40, 125, and 70]. We started the analysis with the metrics 
thresholds proposed by Integrated Software Metrics, Inc. 
(ISM). Later, values were calibrated according to our 
experiments in order to achieve high-performance prediction 
models. We used same thresholds values as in our previous 
study [7].

The rest of the paper is organized as follows. Section 2 
presents related work and Section 3 introduces clustering 
methods. Section 4 presents an empirical case study using 
real-world data from embedded controller software 
developed in Turkey.  Section 5 explains conclusion and 
future works.

II. RELATED WORK

There are a few software fault prediction studies which do 
not use prior fault data for modeling. Zhong et al. [6] used 
K-means and Neural-Gas algorithms to cluster modules and 
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an expert explored several statistical data within each cluster 
to label each cluster as fault-prone or not fault-prone.
However, this approach is dependent on the capability of the 
expert who should be specialized in machine learning and 
software engineering areas. Furthermore, the selection of the 
cluster number, K, is done heuristically when k-means 
clustering method is chosen and this process can affect the
model’s performance drastically. Seliya et al. [8] proposed a 
constraint-based semi-supervised clustering scheme that uses 
K-means clustering method as the underlying clustering 
algorithm for this problem. They showed that this approach 
works better than their previous unsupervised learning based 
prediction approach. However, the selection of the cluster 
number is still a critical issue in this model and their approach 
uses an expert’s domain knowledge to iteratively label 
clusters as fault-prone or not. Therefore, this model is also 
dependent on the capability of the expert. Catal et al. [7] 
proposed a clustering and metrics thresholds based software 
fault prediction approach and explored it on three datasets. 
The main contribution of their paper is the usage of metrics 
thresholds with or without clustering methods and the 
removing of the obligation of an expert assistance. However, 
the selection of the cluster number is done heuristically in this 
clustering based model too.  In this study, we use x-means 
clustering method and our model does not require the 
selection of cluster number. Instead of an exact cluster 
number, an interval is provided to the x-means algorithm. 

III. CLUSTERING METHODS

A. Clustering

Clustering is an unsupervised learning approach. It locates 
in indirect data mining group and classification area locates 
in direct data mining group. While classification uses class 
labels for training, clustering does not use class labels and 
tries to discover relationships between the features [9].
Clustering methods can be used to group the modules having 
similar metrics by using similarity measures or distances.
After the clustering phase, the mean values of each metric 
within cluster can be checked against industrial metrics 
thresholds. If the limits are exceeded, the cluster can be 
labeled as fault-prone. Cluster analysis has four basic steps
[10]: 

 Feature Selection: We used 6 method-level 
metrics including the primitive Halstead and 
McCabe metrics because we know the thresholds 
of these metrics.

 Clustering Algorithm Selection: X-means 
clustering algorithm was selected because it does 
not require the selection of cluster number, K, 
prior to execution of the algorithms.

 Cluster Validation: Any clustering algorithm can 
generate several clusters, but they may not reflect 
the existence of the patterns locating in the 
dataset. Therefore, evaluation parameters are 
required to judge the effectiveness of the 
algorithm. After the clustering phase, the mean 
vector of each cluster is checked against the 

metrics thresholds vector. Evaluation parameters 
are used after this phase and they evaluate the 
overall performance of our approach. False 
positive rate (fpr), false negative rate (fnr), and the 
error values were calculated by using confusion 
matrix during our experiments.

 Results Interpretation: We compared our model’s 
performance with pure thresholds based 
approach. Because the performance of our 
two-phase model improves, we suggest this 
approach. The overall interpretation was realized 
with this comparison.

The classification of clustering algorithms is not easy, but a 
categorization was created by Berkhin [11] and we provide 
this list as follows:

 Hierarchical Methods
o Agglomerative Algorithms
o Divisive Algorithms

 Partitioning Methods
o Relocation Algorithms
o Probabilistic Clustering
o K-medoids Methods
o K-means Methods
o Density-Based Algorithms

 Connectivity Clustering
 Density Functions Clustering

 Grid-Based Methods
 Methods using Co-occurrence of Categorical Data
 Constraint-based Clustering
 Clustering Algorithms used in Machine Learning

o Gradient Descent and Neural Networks
o Evolutionary Methods

 Scalable Clustering Algorithms
 Algorithms for High Dimensional Data

o Subspace Clustering
o Projection Techniques
o Co-clustering Techniques

These groups may overlap and other researchers may 
create different categorizations. Another categorization is 
shown as follows [9]:

 Fuzzy clustering
 Hard clustering

o Partitional
 K-means and derivatives
 Locality-sensitive hashing
 Graph-theoretic methods

o Hierarchical
 Divisive
 Agglomerative

 Graph methods
 Geometric methods

X-means is under K-means and derivatives group.

B. Clustering Algorithms Used in Experiments

K-means: One of the simplest clustering algorithms is 
K-means clustering method. The pseudo code of this 
algorithm is given as follows [9]:
“Require: Dataset D, number of clusters k, Dimension d:

{ Ci is the ith cluster }
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{ 1. Initialization Phase}
1: (C1, C2, …, Ck} = Initial partition of D.
     { 2. Iteration Phase}

    2:  repeat
    3: dij = distance between case i and cluster j;
    4:     ni = argmin dij;
    5:    Assign case i to cluster ni;
    6:     Recompute the cluster means of any changed clusters;
    7: until no further changes of cluster membership occur
    8: Output results” [9].
In the initialization phase, clusters are initialized with random 
instances and in the iteration phase, instances are assigned to 
clusters according to the distances, computed between the 
centroid of the cluster and the instance. This iteration phase
goes on until no changes occur in the clusters.

X-means: One drawback of k-means algorithm is the 
selection of the number of clusters, k, as an input parameter. 
Pelleg and Moore [12] developed an algorithm to solve this 
problem and used the Bayesian Information Criterion (BIC) 
or the Akaike Information Criterion (AIC) measure for 
optimization [9]. Rather than choosing the specific number of 
clusters, k, x-means needs kmin and kmax values. The algorithm 
starts with kmin value and adds centroids if needed. The BIC or 
Schwarz criterion is applied to split some centroids into two 
and hence new centroids are created [9]. Final centroid set is 
the one that has the best score.
Given n objects in a dataset D = {x1, x2, ..., xn} in a 
d-dimensional space and a set of alternative models Mj = {C1, 
C2, …, Ck}, scoring of these alternative models, identified 
with different k values, is done by using the posterior 
probabilities P(Mj | D) [9]. The Schwarz criterion is shown in 
Equation 1.

n
p
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
is the loglikelihood of the jth model and Mj’s number 

of parameters are represented with pj. The largest score 
reflects the true model and it is selected as the final model [9]. 
The maximum likelihood estimate of variance is calculated 
using the Equation 2 under the identical spherical Gaussian 
distribution and μi is the centroid which is closest to the object 
xi [9].
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The loglikelihood of the data is calculated using the Equation 
4. “The Schwarz criterion is used in X-means globally to 
choose the best model it encounters and locally to guide all 
centroid splits.” [9].
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Fuzzy C-means: Fuzzy c-means clustering method was 
developed by Bezdek [13]. Each instance can belong to every 
cluster with a different membership grades between 0 and 1 
for this algorithm. A dissimilarity function, shown in 
Equation 5, is minimized and centroids which minimize this 
function are identified. The general steps of this algorithm are 
shown as follows [14], [15]:

I. Initialize the membership function randomly according 
to the Equation 5.

II. Calculate centroids according to the Equation 7.
III. Calculate dissimilarity value according to the Equation 

6. Stop, if the improvement compared to previous 
iteration is below a threshold level.

IV. Calculate a new u according to the Equation 8. Go to 
step 2.
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ci is ith cluster’s centroid, u is between 0 and 1, dij is the 
Euclidean distance between centroid and the data point, m is a 
weighting exponent which is between 1 and  [14]. Because 
the first step of the algorithm uses random assignments, it may 
not converge to an optimal solution and the performance is 
dependent on the initial centroids [14]. One approach to solve 
this problem is using a defined procedure to identify initial 
centroids such as calculating the means of all data points [14].
We used Fuzzy C-means clustering implementation 
locating in MATLAB. However, X-means implementation 
was accessed from WEKA open source machine learning 
tool. K-means implementation exists in both MATLAB and 
WEKA tool, but we used MATLAB implementation because 
we had developed some MATLAB programs to evaluate the 
overall performance of these algorithms. Evaluation
parameters will be introduced in the next chapter.

IV. EMPIRICAL CASE STUDY

A. Evaluation Parameters

Up to now, different evaluation parameters were used for 
imbalanced datasets, specifically for software quality
classification problem. Some of these parameters are shown 
as follows:

 Area under ROC Curve (AUC) [16]
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 PD (probability of detection), PF (probability of 
false alarm), balance [1]

 G-mean1, G-mean2, F-measure [17]
 Sensitivity, specificity, J-coefficient [18]
 Correctness, completeness [19]
 FPR (false positive rate), FNR (false negative rate), 

error [20]

In this study, we used FPR, FNR and error parameters to 
evaluate the models we developed. Error is the percentage of 
mislabeled modules, false positive rate (FPR) is the 
percentage of not faulty modules labeled as fault-prone by the 
model, and false negative rate (FNR) is the percentage of 
faulty modules labeled as not fault-prone [6]. Confusion 
matrix used to calculate evaluation parameters is shown in 
Table 1. Equations 8, 9, and 10 calculate FPR, FNR and error 
values respectively.

Table 1. Confusion matrix
Actual Labels

YES NO

YES True-Positive 
(TP)

False-Positive 
(FP)

P
re

d
ic

te
d

 L
ab

el
s

NO False-Negative 
(FN)

True-Negative 
(TN)

TNFP

FP
FPR


 (8)

TPFN

FN
FNR


 (9)

TNFNFPTP

FPFN
Error




  (10)

All of these evaluation parameters must be minimized, but 
there is a trade-off between FPR and FNR values. FNR value 
is much more critical than FPR value because high FNR value 
means that a large amount of fault-prone modules can not be 
detected prior to the system testing or operation.

B. Results and Analysis

We used four different types of unsupervised software fault 
predictors and three of them are based on clustering methods.
Because k-means clustering and fuzzy C-means clustering 
methods require the selection of number of clusters, we first 
used X-means clustering method in three datasets and 
calculated the k values for each of these datasets. As 
explained in previous chapter, X-means algorithm requires an 
interval to calculate the best k value. We chose the minimum k
value as 2 and maximum k value as the number of data points 
in that dataset. X-means algorithm identified k value as 2 for 
AR5 and calculated k value as 3 for AR3 and AR4 datasets.
Experimental results are shown in Table 2.

In order to evaluate the performance of our fully automated 
approach which is based on X-means clustering method, we 
compared it with our metrics thresholds based approach [7]. 
Table 2 shows that FPR values decreased for AR3 (from 
43,63 to 34,55) and AR5 datasets (from 32,14 to 14,29) when 
X-means based approach is used. Even though FPR value 

increased for AR4 dataset, its FNR value decreased from 20 
to 5. As explained in Evaluation Parameters section, FNR 
value is much more critical for our models.

While our pure metrics thresholds based approach 
(Threshold) detects fault-prone modules according to the 
metrics thresholds, X-means based approach first calculates 
the best k value, divides data points into k clusters and then 
the mean vector of each cluster is checked against the metrics 
thresholds vector. Same approach is used for fuzzy c-means 
and k-means based fault predictors. Therefore, our clustering 
based approaches have two stages and second step of them is 
similar to pure metrics thresholds based approach.

 According to our pure metrics thresholds based approach, 
a module is predicted as fault-prone if at least one metric of 
the module is higher than the specified value of that metric. 
According to our clustering based approaches, a cluster is 
predicted as fault-prone if at least one metric of the mean 
vector is higher than the specified threshold value of that 
metric. Datasets include class labels, but we ignored this 
column for modeling because our purpose was to develop 
models for software fault prediction without priori fault data. 
Class labels were used to calculate the evaluation parameters.

Table 2. Experimental results on three datasets
Data Prm. Thres

hold
X-

means
Fuzzy 

c
K-

means
FPR 43,63 34,55 12,73 34,27
FNR 25 25 25 25
Error 41,27 33,33 14,29 33,09

AR3

# cluster N/A 3 3 3
FPR 32,14 14,29 14,29 14,28
FNR 12,5 12,5 12,5 12,5
Error 27,77 13,89 13,89 13,88

AR5

# cluster N/A 2 2 2
FPR 35 44,83 4,6 4,6
FNR 20 5 45 45
Error 32,71 37,38 12,15 12,14

AR4

# cluster N/A 3 3 3

Because fuzzy c-means and k-means clustering based 
approaches did not improve the performance compared to 
x-means based approaches when the same k values are used, 
we suggest using x-means based prediction model. 

If previous fault data exist for projects, normally 
supervised learning algorithms such as Naïve Bayes and 
Random Forests can be applied. However, our research focus 
was to build fault prediction models that can be used when the 
fault labels for modules are unavailable. Experiments reveal 
that unsupervised software fault prediction can be fully 
automated and effective results can be produced using 
X-means clustering with software metrics thresholds. 

C. External Validity

In order to generalize the results of an empirical study 
outside the experimental setting, threats to the external 
validity should be discussed.  Datasets used in this study were 
collected from an industrial environment in Turkey; systems 
were developed by professional developer groups, and these 
systems are real industry projects. These features satisfy the 
requirements explained in Khoshgoftaar et al.’s study [21].
However, development practices and project domain of this 
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Turkish software company may be different than the other 
software companies that plan using this prediction model. 
Software development model of this company is not 
process-oriented as in NASA and projects were developed by 
centrally-controlled top-down management teams. Therefore, 
open source projects are different than these kinds of projects 
used here. 

Another important point for our models is the effect of
noisy instances. Because we calculate the mean vector of each 
cluster, noisy instances can change the mean vector 
drastically and hence the performance of our models may be 
affected negatively. Because projects used in these 
experiments are middle-sized ones and the dataset collection 
process is done carefully, we assume that there is no noisy 
instances. However, the prediction of a dataset consisting of 
many noisy instances may not provide acceptable results.

V. CONCLUSION AND FUTURE WORK

This study proposed an unsupervised software fault 
prediction approach. Experiments revealed that unsupervised 
software fault prediction can be fully automated and effective 
results can be produced by using X-means clustering with 
software metrics thresholds. The main contribution of this 
paper is the development of an automated way of assigning 
fault-proneness labels to the modules and the removing the 
subjective expert opinion. There is no heuristic step in our 
model as needed in k-means clustering based fault prediction 
approaches.

We studied on three public datasets which locate in 
PROMISE repository. Results are promising and our model 
can be used when there is no priori fault data. Our metrics 
thresholds vector was created by using the thresholds 
proposed by Integrated Software Metrics, Inc. (ISM) and 
these threshold values were calibrated in our previous study 
[7]. Even though ISM focused on NASA datasets to calculate 
these threshold values, we could apply similar threshold
values for our datasets, collected from Turkish white-goods 
manufacturer developing embedded controller software. Our 
models are not dependent on this vector and each company 
can identify its threshold vector with different approaches.

Future work will consider evaluating our model for datasets 
which have noisy instances such as JM1 dataset in PROMISE 
repository.  A pre-processing step is necessary to remove 
noisy instances before our prediction model is applied or we 
need to develop a new unsupervised fault prediction model 
which is insensitive to noisy instances.
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