

Abstract—Software metrics and fault data belonging to a

previous software version are used to build the software fault
prediction model for the next release of the software. Until now,
different classification algorithms have been used to build this
kind of models. However, there are cases when previous fault
data are not present; and hence, supervised learning approaches
cannot be applied. In this study, we propose a fully automated
technique which does not require an expert during the
prediction process. In addition, it is not required to identify the
number of clusters before the clustering phase, as required by
K-means clustering method. Software metrics thresholds are
used to remove the expert necessity.

Our technique first applies X-means clustering method to
cluster modules and identifies the best cluster number. After this
step, the mean vector of each cluster is checked against the
metrics thresholds vector. A cluster is predicted as fault-prone if
at least one metric of the mean vector is higher than the
threshold value of that metric. In addition to X-means
clustering-based method, we made experiments with pure
metrics thresholds method, fuzzy clustering, and K-means
clustering-based methods. Experiments reveal that
unsupervised software fault prediction can be fully automated
and effective results can be produced using X-means clustering
with software metrics thresholds. Three datasets, collected from
Turkish white-goods manufacturer developing embedded
controller software, have been used for the validation.

Index Terms— Clustering, metrics thresholds, software fault
prediction, and X-means clustering.

I. INTRODUCTION

The quality of software components should be tracked
continuously during the development of high-assurance
systems such as telecommunication infrastructures, medical
devices, and avionic systems. Quality assurance group can
improve the product quality by allocating necessary budget
and human resources to low quality modules identified with
different quality estimation models. Recent advances in

C. Catal, PhD is with The Scientific and Technological Research Council
of TURKEY, Marmara Research Center, Information Technologies Institute,
Gebze, Kocaeli, 41470, TURKEY (phone: +90 262 677 26 34; fax: +90 262
646 31 87; e-mail: cagatay.catal@bte.mam.gov.tr).

U. Sevim is with with the Department of Computer Engineering,
Bogazici University, Bebek, Istanbul, 34342 TURKEY (e-mail:
ugur.sevim@boun.edu.tr).

B. Diri, Ass. Prof. Dr. is with the Department of Computer Engineering,
Yildiz Technical University, Yildiz, Istanbul, 34349 TURKEY (e-mail:
banu@ce.yildiz.edu.tr).

This project is supported by The Scientific and Technological Research
Council of TURKEY (TUBITAK) under Grant 107E213. The findings and
opinions in this study belong solely to the authors, and are not necessarily
those of the sponsor.

software quality estimation yield building defect predictors
with a mean probability of detection of 71 percent and mean
false alarms rates of 25 percent [1]. Software quality
estimation is not only interested in reliability, but also the
other quality characteristics such as usability, efficiency,
maintainability, functionality, and portability. However, some
researchers prefer using the term software quality estimation
for the software fault prediction modeling studies [2].
Software metrics are used as independent variables and fault
data are regarded as dependent variable in software fault
prediction models.

The aim of building this kind of models is to predict the
fault labels (fault-prone or not fault-prone) of the modules for
the next release of the software. Some benefits of using fault
prediction models are [3]:

 The identification of refactoring candidate modules
(fault-prone modules),

 The selection of the best design approach from
design alternatives,

 The improvement of software testing process and
software quality,

 Reaching a highly dependable system.
A typical software fault prediction process includes two

steps, as shown in Figure 1. First, a fault prediction model is
built using previous software metrics and fault data belonging
to each software module (class or method level). After this
training phase, fault labels of program modules can be
estimated using this model [4].

Fig. 1. This shows software fault prediction process [4].

The selection of metrics type is dependent on the
programming paradigm used in the project and research
targets. Our systematic review, focusing on 74 papers
published between year 1990 and 2007, revealed that 60
percent of papers used method-level metrics [5]. Therefore,
we applied method-level metrics to build our models in this
study. A sample training dataset, including software metrics
and known fault data, is shown in Figure 2. All the metrics are
separated with commas in this figure and the last column

Software Fault Prediction of Unlabeled Program
Modules

C. Catal, U. Sevim, and B. Diri, Member, IAENG

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

presents whether this module caused fault or not during the
testing phase. This last feature (column) consists of false and
true values.

Fig. 2. This shows a sample fault prediction dataset.

From machine learning perspective, Figure 1 is a
supervised learning approach because the modeling phase
uses class labels represented as known fault data in the figure.
Most of the software fault prediction studies focused on
developing fault predictors using previous fault data.

However, there are cases when previous fault data are not
available. For example, a software company might start to
work on a new project domain or might plan building fault
predictors for the first time in their development cycle. In
addition, current software version’s fault data might not be
collected and therefore, there might not exist in any previous
fault data for the next release of the software. In these cases,
supervised learning approaches can not be developed because
of the absence of class labels. Figure 3 depicts this
challenging problem and unsupervised learning approaches
can be applied in these cases.

Fig. 3. This shows no fault data problem [4].

There are a few studies that have tried to build a fault
prediction model when the fault labels for modules are
unavailable. Zhong et al. [6] used K-means and Neural-Gas
clustering methods to cluster modules, and then an expert who
is 15 years experienced engineer, labeled each cluster as
fault-prone or not fault-prone by examining not only the
representative of each cluster, but also some statistical data
such as global mean, minimum, maximum, median, 75
percentile, and 90 percentile of each metric.

To remove the obligation of an expert assistance, we
developed a prediction model in our previous work [7] and
validated it on three datasets, collected from Turkish
white-goods manufacturer developing embedded controller
software. Metrics thresholds were used to embed the expert
knowledge into our model and subjective human interaction
was eliminated [7]. First, K-means clustering method is
applied and the mean vector of each cluster is checked against
the metrics thresholds vector. A cluster is predicted as
fault-prone if at least one metric of the mean vector is higher
than the threshold value of that metric [7]. The main

contribution of that study is the usage of metrics thresholds
with or without clustering methods and the removing the
obligation of an expert assistance.

However, there is one drawback of our previous study [7].
Because K-means clustering method is used in the first stage,
K number should be selected heuristically and this number
may affect the overall performance of the model. Therefore,
we aimed to build a fully automated fault prediction model
which can be applied when there is no previous fault data. In
this new study, we propose a new fault prediction model
which does not require the selection of K number
heuristically. Instead, K number is automatically calculated
with X-means clustering algorithm. After the identification of
K number and the clusters, metrics thresholds are again used
as done in our previous study.

The main contribution of this paper is the development of
an automated way of assigning fault-proneness labels to the
modules and the removing the subjective expert opinion.
Subjective human interaction directly affects the quality of the
software fault prediction model and adds unnecessary
complexity.

We explored our new approach on three datasets, collected
from Turkish white-goods manufacturer developing
embedded controller software for washing machines, dish
washers, and refrigerators. These datasets, AR3, AR4, and
AR5 are available at http://promisedata.org . They include 29
metrics, but we used only 6 metrics during modeling because
we know only their industrial thresholds. Even though we
validated our approach on datasets collected from Turkish
company, neither our model nor the metrics thresholds are
dependent on this company. In this analysis, a module is a
method because procedural programming was used. The
results of this study show that the application of X-means
clustering method with metrics thresholds provides better
performance compared to pure thresholds and fuzzy
clustering-based approaches.

6 method-level metrics including the primitive Halstead
and McCabe metrics were used for the development of this
model. The metrics used in our experiments are lines of code,
cyclomatic complexity, unique operator, unique operand,
total operand, and total operator. Threshold vector [LoC, CC,
UOp, UOpnd, TOp, and TOpnd] was chosen as [65, 10, 25,
40, 125, and 70]. We started the analysis with the metrics
thresholds proposed by Integrated Software Metrics, Inc.
(ISM). Later, values were calibrated according to our
experiments in order to achieve high-performance prediction
models. We used same thresholds values as in our previous
study [7].

The rest of the paper is organized as follows. Section 2
presents related work and Section 3 introduces clustering
methods. Section 4 presents an empirical case study using
real-world data from embedded controller software
developed in Turkey. Section 5 explains conclusion and
future works.

II. RELATED WORK

There are a few software fault prediction studies which do
not use prior fault data for modeling. Zhong et al. [6] used
K-means and Neural-Gas algorithms to cluster modules and

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

http://promisedata.org/

an expert explored several statistical data within each cluster
to label each cluster as fault-prone or not fault-prone.
However, this approach is dependent on the capability of the
expert who should be specialized in machine learning and
software engineering areas. Furthermore, the selection of the
cluster number, K, is done heuristically when k-means
clustering method is chosen and this process can affect the
model’s performance drastically. Seliya et al. [8] proposed a
constraint-based semi-supervised clustering scheme that uses
K-means clustering method as the underlying clustering
algorithm for this problem. They showed that this approach
works better than their previous unsupervised learning based
prediction approach. However, the selection of the cluster
number is still a critical issue in this model and their approach
uses an expert’s domain knowledge to iteratively label
clusters as fault-prone or not. Therefore, this model is also
dependent on the capability of the expert. Catal et al. [7]
proposed a clustering and metrics thresholds based software
fault prediction approach and explored it on three datasets.
The main contribution of their paper is the usage of metrics
thresholds with or without clustering methods and the
removing of the obligation of an expert assistance. However,
the selection of the cluster number is done heuristically in this
clustering based model too. In this study, we use x-means
clustering method and our model does not require the
selection of cluster number. Instead of an exact cluster
number, an interval is provided to the x-means algorithm.

III. CLUSTERING METHODS

A. Clustering

Clustering is an unsupervised learning approach. It locates
in indirect data mining group and classification area locates
in direct data mining group. While classification uses class
labels for training, clustering does not use class labels and
tries to discover relationships between the features [9].
Clustering methods can be used to group the modules having
similar metrics by using similarity measures or distances.
After the clustering phase, the mean values of each metric
within cluster can be checked against industrial metrics
thresholds. If the limits are exceeded, the cluster can be
labeled as fault-prone. Cluster analysis has four basic steps
[10]:

 Feature Selection: We used 6 method-level
metrics including the primitive Halstead and
McCabe metrics because we know the thresholds
of these metrics.

 Clustering Algorithm Selection: X-means
clustering algorithm was selected because it does
not require the selection of cluster number, K,
prior to execution of the algorithms.

 Cluster Validation: Any clustering algorithm can
generate several clusters, but they may not reflect
the existence of the patterns locating in the
dataset. Therefore, evaluation parameters are
required to judge the effectiveness of the
algorithm. After the clustering phase, the mean
vector of each cluster is checked against the

metrics thresholds vector. Evaluation parameters
are used after this phase and they evaluate the
overall performance of our approach. False
positive rate (fpr), false negative rate (fnr), and the
error values were calculated by using confusion
matrix during our experiments.

 Results Interpretation: We compared our model’s
performance with pure thresholds based
approach. Because the performance of our
two-phase model improves, we suggest this
approach. The overall interpretation was realized
with this comparison.

The classification of clustering algorithms is not easy, but a
categorization was created by Berkhin [11] and we provide
this list as follows:

 Hierarchical Methods
o Agglomerative Algorithms
o Divisive Algorithms

 Partitioning Methods
o Relocation Algorithms
o Probabilistic Clustering
o K-medoids Methods
o K-means Methods
o Density-Based Algorithms

 Connectivity Clustering
 Density Functions Clustering

 Grid-Based Methods
 Methods using Co-occurrence of Categorical Data
 Constraint-based Clustering
 Clustering Algorithms used in Machine Learning

o Gradient Descent and Neural Networks
o Evolutionary Methods

 Scalable Clustering Algorithms
 Algorithms for High Dimensional Data

o Subspace Clustering
o Projection Techniques
o Co-clustering Techniques

These groups may overlap and other researchers may
create different categorizations. Another categorization is
shown as follows [9]:

 Fuzzy clustering
 Hard clustering

o Partitional
 K-means and derivatives
 Locality-sensitive hashing
 Graph-theoretic methods

o Hierarchical
 Divisive
 Agglomerative

 Graph methods
 Geometric methods

X-means is under K-means and derivatives group.

B. Clustering Algorithms Used in Experiments

K-means: One of the simplest clustering algorithms is
K-means clustering method. The pseudo code of this
algorithm is given as follows [9]:
“Require: Dataset D, number of clusters k, Dimension d:

{ Ci is the ith cluster }

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

{ 1. Initialization Phase}
1: (C1, C2, …, Ck} = Initial partition of D.
 { 2. Iteration Phase}

 2: repeat
 3: dij = distance between case i and cluster j;
 4: ni = argmin dij;
 5: Assign case i to cluster ni;
 6: Recompute the cluster means of any changed clusters;
 7: until no further changes of cluster membership occur
 8: Output results” [9].
In the initialization phase, clusters are initialized with random
instances and in the iteration phase, instances are assigned to
clusters according to the distances, computed between the
centroid of the cluster and the instance. This iteration phase
goes on until no changes occur in the clusters.

X-means: One drawback of k-means algorithm is the
selection of the number of clusters, k, as an input parameter.
Pelleg and Moore [12] developed an algorithm to solve this
problem and used the Bayesian Information Criterion (BIC)
or the Akaike Information Criterion (AIC) measure for
optimization [9]. Rather than choosing the specific number of
clusters, k, x-means needs kmin and kmax values. The algorithm
starts with kmin value and adds centroids if needed. The BIC or
Schwarz criterion is applied to split some centroids into two
and hence new centroids are created [9]. Final centroid set is
the one that has the best score.
Given n objects in a dataset D = {x1, x2, ..., xn} in a
d-dimensional space and a set of alternative models Mj = {C1,
C2, …, Ck}, scoring of these alternative models, identified
with different k values, is done by using the posterior
probabilities P(Mj | D) [9]. The Schwarz criterion is shown in
Equation 1.

n
p

DIMBIC j
jj log

2
)()(


(1)

)(DI j


is the loglikelihood of the jth model and Mj’s number

of parameters are represented with pj. The largest score
reflects the true model and it is selected as the final model [9].
The maximum likelihood estimate of variance is calculated
using the Equation 2 under the identical spherical Gaussian
distribution and μi is the centroid which is closest to the object
xi [9].

̂ 2 =
kn 

1  



n

i

iix
1

 2 (2)

The point probabilities are calculated using the Equation 3
[9].

 ixP̂ = 





  2

2ˆ2

1
exp

ˆ2

1
ii

d

i
x

n

C



(3)

The loglikelihood of the data is calculated using the Equation
4. “The Schwarz criterion is used in X-means globally to
choose the best model it encounters and locally to guide all
centroid splits.” [9].

l(D)=


n

i

ixP
1

)(














n

i

i
ii

d n

C
x

1

2

2
log

ˆ2

1

ˆ2

1
log 


 (4)

Fuzzy C-means: Fuzzy c-means clustering method was
developed by Bezdek [13]. Each instance can belong to every
cluster with a different membership grades between 0 and 1
for this algorithm. A dissimilarity function, shown in
Equation 5, is minimized and centroids which minimize this
function are identified. The general steps of this algorithm are
shown as follows [14], [15]:

I. Initialize the membership function randomly according
to the Equation 5.

II. Calculate centroids according to the Equation 7.
III. Calculate dissimilarity value according to the Equation

6. Stop, if the improvement compared to previous
iteration is below a threshold level.

IV. Calculate a new u according to the Equation 8. Go to
step 2.





c

i

ij nju
1

,...,1,1 (5)

  
 


c

i

ij

n

j

ij

c

i

ic duJcccUJ m

1 11

21
2,...,,, (6)







n

j
ij

n

j
jij

i
m

m

u

xu
c

1

1
(7)

 












c

k

m

kj

ij

ij

d

d
u

1

)1/(2

1
(8)

ci is ith cluster’s centroid, u is between 0 and 1, dij is the
Euclidean distance between centroid and the data point, m is a
weighting exponent which is between 1 and  [14]. Because
the first step of the algorithm uses random assignments, it may
not converge to an optimal solution and the performance is
dependent on the initial centroids [14]. One approach to solve
this problem is using a defined procedure to identify initial
centroids such as calculating the means of all data points [14].
We used Fuzzy C-means clustering implementation
locating in MATLAB. However, X-means implementation
was accessed from WEKA open source machine learning
tool. K-means implementation exists in both MATLAB and
WEKA tool, but we used MATLAB implementation because
we had developed some MATLAB programs to evaluate the
overall performance of these algorithms. Evaluation
parameters will be introduced in the next chapter.

IV. EMPIRICAL CASE STUDY

A. Evaluation Parameters

Up to now, different evaluation parameters were used for
imbalanced datasets, specifically for software quality
classification problem. Some of these parameters are shown
as follows:

 Area under ROC Curve (AUC) [16]

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

 PD (probability of detection), PF (probability of
false alarm), balance [1]

 G-mean1, G-mean2, F-measure [17]
 Sensitivity, specificity, J-coefficient [18]
 Correctness, completeness [19]
 FPR (false positive rate), FNR (false negative rate),

error [20]

In this study, we used FPR, FNR and error parameters to
evaluate the models we developed. Error is the percentage of
mislabeled modules, false positive rate (FPR) is the
percentage of not faulty modules labeled as fault-prone by the
model, and false negative rate (FNR) is the percentage of
faulty modules labeled as not fault-prone [6]. Confusion
matrix used to calculate evaluation parameters is shown in
Table 1. Equations 8, 9, and 10 calculate FPR, FNR and error
values respectively.

Table 1. Confusion matrix
Actual Labels

YES NO

YES True-Positive
(TP)

False-Positive
(FP)

P
re

d
ic

te
d

 L
ab

el
s

NO False-Negative
(FN)

True-Negative
(TN)

TNFP

FP
FPR


 (8)

TPFN

FN
FNR


 (9)

TNFNFPTP

FPFN
Error




 (10)

All of these evaluation parameters must be minimized, but
there is a trade-off between FPR and FNR values. FNR value
is much more critical than FPR value because high FNR value
means that a large amount of fault-prone modules can not be
detected prior to the system testing or operation.

B. Results and Analysis

We used four different types of unsupervised software fault
predictors and three of them are based on clustering methods.
Because k-means clustering and fuzzy C-means clustering
methods require the selection of number of clusters, we first
used X-means clustering method in three datasets and
calculated the k values for each of these datasets. As
explained in previous chapter, X-means algorithm requires an
interval to calculate the best k value. We chose the minimum k
value as 2 and maximum k value as the number of data points
in that dataset. X-means algorithm identified k value as 2 for
AR5 and calculated k value as 3 for AR3 and AR4 datasets.
Experimental results are shown in Table 2.

In order to evaluate the performance of our fully automated
approach which is based on X-means clustering method, we
compared it with our metrics thresholds based approach [7].
Table 2 shows that FPR values decreased for AR3 (from
43,63 to 34,55) and AR5 datasets (from 32,14 to 14,29) when
X-means based approach is used. Even though FPR value

increased for AR4 dataset, its FNR value decreased from 20
to 5. As explained in Evaluation Parameters section, FNR
value is much more critical for our models.

While our pure metrics thresholds based approach
(Threshold) detects fault-prone modules according to the
metrics thresholds, X-means based approach first calculates
the best k value, divides data points into k clusters and then
the mean vector of each cluster is checked against the metrics
thresholds vector. Same approach is used for fuzzy c-means
and k-means based fault predictors. Therefore, our clustering
based approaches have two stages and second step of them is
similar to pure metrics thresholds based approach.

 According to our pure metrics thresholds based approach,
a module is predicted as fault-prone if at least one metric of
the module is higher than the specified value of that metric.
According to our clustering based approaches, a cluster is
predicted as fault-prone if at least one metric of the mean
vector is higher than the specified threshold value of that
metric. Datasets include class labels, but we ignored this
column for modeling because our purpose was to develop
models for software fault prediction without priori fault data.
Class labels were used to calculate the evaluation parameters.

Table 2. Experimental results on three datasets
Data Prm. Thres

hold
X-

means
Fuzzy

c
K-

means
FPR 43,63 34,55 12,73 34,27
FNR 25 25 25 25
Error 41,27 33,33 14,29 33,09

AR3

cluster N/A 3 3 3
FPR 32,14 14,29 14,29 14,28
FNR 12,5 12,5 12,5 12,5
Error 27,77 13,89 13,89 13,88

AR5

cluster N/A 2 2 2
FPR 35 44,83 4,6 4,6
FNR 20 5 45 45
Error 32,71 37,38 12,15 12,14

AR4

cluster N/A 3 3 3

Because fuzzy c-means and k-means clustering based
approaches did not improve the performance compared to
x-means based approaches when the same k values are used,
we suggest using x-means based prediction model.

If previous fault data exist for projects, normally
supervised learning algorithms such as Naïve Bayes and
Random Forests can be applied. However, our research focus
was to build fault prediction models that can be used when the
fault labels for modules are unavailable. Experiments reveal
that unsupervised software fault prediction can be fully
automated and effective results can be produced using
X-means clustering with software metrics thresholds.

C. External Validity

In order to generalize the results of an empirical study
outside the experimental setting, threats to the external
validity should be discussed. Datasets used in this study were
collected from an industrial environment in Turkey; systems
were developed by professional developer groups, and these
systems are real industry projects. These features satisfy the
requirements explained in Khoshgoftaar et al.’s study [21].
However, development practices and project domain of this

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Turkish software company may be different than the other
software companies that plan using this prediction model.
Software development model of this company is not
process-oriented as in NASA and projects were developed by
centrally-controlled top-down management teams. Therefore,
open source projects are different than these kinds of projects
used here.

Another important point for our models is the effect of
noisy instances. Because we calculate the mean vector of each
cluster, noisy instances can change the mean vector
drastically and hence the performance of our models may be
affected negatively. Because projects used in these
experiments are middle-sized ones and the dataset collection
process is done carefully, we assume that there is no noisy
instances. However, the prediction of a dataset consisting of
many noisy instances may not provide acceptable results.

V. CONCLUSION AND FUTURE WORK

This study proposed an unsupervised software fault
prediction approach. Experiments revealed that unsupervised
software fault prediction can be fully automated and effective
results can be produced by using X-means clustering with
software metrics thresholds. The main contribution of this
paper is the development of an automated way of assigning
fault-proneness labels to the modules and the removing the
subjective expert opinion. There is no heuristic step in our
model as needed in k-means clustering based fault prediction
approaches.

We studied on three public datasets which locate in
PROMISE repository. Results are promising and our model
can be used when there is no priori fault data. Our metrics
thresholds vector was created by using the thresholds
proposed by Integrated Software Metrics, Inc. (ISM) and
these threshold values were calibrated in our previous study
[7]. Even though ISM focused on NASA datasets to calculate
these threshold values, we could apply similar threshold
values for our datasets, collected from Turkish white-goods
manufacturer developing embedded controller software. Our
models are not dependent on this vector and each company
can identify its threshold vector with different approaches.

Future work will consider evaluating our model for datasets
which have noisy instances such as JM1 dataset in PROMISE
repository. A pre-processing step is necessary to remove
noisy instances before our prediction model is applied or we
need to develop a new unsupervised fault prediction model
which is insensitive to noisy instances.

REFERENCES

[1] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors”, IEEE Transactions on Software
Engineering, vol. 32, no.1, 2007, pp. 2-13.

[2] N. Seliya, T. M. Khoshgoftaar, “Software quality estimation with
limited fault data: a semi-supervised learning perspective”, Software
Quality Journal, vol. 15, no. 3, 2007, pp. 327-344.

[3] C. Catal, B. Diri, “Investigating the effect of dataset size, metrics set,
and feature selection techniques on software fault prediction problem”,
Information Sciences, vol. 179, no. 8, pp. 1040-1058, 2009.

[4] N. Seliya, “Software quality analysis with limited prior knowledge of
faults”, Graduate Seminar, Wayne State University, Department of
Computer Science, 2006, Webpage:
www.cs.wayne.edu/graduateseminars/gradsem_f06/Slides/seliya_ws
u_talk.ppt

[5] C. Catal, B. Diri, “A systematic review of software fault predictions
studies”, Expert Systems with Applications, vol. 36, no.4, pp.
7346-7354, 2009.

[6] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Unsupervised learning
for expert-based software quality estimation”, Proc. of the 8th Intl.
Symp. On High Assurance Systems Eng., Tampa, FL, 2004, pp.
149-155.

[7] C. Catal, U. Sevim, B. Diri, “Clustering and metrics thresholds based
software fault prediction of unlabeled program modules”, 6th Int’l.
Conference on Information Technology: New Generations, IEEE
Computer Society, Las Vegas, Nevada, 2009.

[8] N. Seliya, T. M. Khoshgoftaar, “Software quality analysis of unlabeled
program modules with semi-supervised clustering”, IEEE
Transactions on Systems, Man and Cybernetics-Part A: Systems and
Humans, vol. 37, no. 2, 2007, pp. 201-211.

[9] G. Gan, C. Ma, J. Wu, “Data clustering: theory, algorithms, and
applications”, Society for Industrial and Applied Mathematics,
Philadelphia, 2007.

[10] R. Xu, D. Wunsch, “Survey of clustering algorithms”, IEEE
Transactions on Neural Networks, vol. 16, no. 3, 2005, pp. 645-678.

[11] P. Berkhin, “Survey of clustering data mining techniques”, Technical
Report, Accrue Software, San Jose, California, 2002,
www.ee.ucr.edu/~barth/EE242/clustering_survey.pdf

[12] D. Pelleg, A. Moore, “X-means: extending k-means with efficient
estimation of the number of clusters”, Proceedings of the 17th
International Conference on Machine Learning, pp. 727-734, 2000,
Stanford University, Stanford, CA, USA.

[13] J. C. Bezdek, “Pattern recognition with fuzzy objective function
algorithms”, Plenum Press, New York, 1981.

[14] S. Albayrak, F. Amasyalı, “Fuzzy c-means clustering on medical
diagnostic systems”, International 12. Turkish Symposium on
Artificial Intelligence and Neural Networks, Turkey, 2003.

[15] J. S. R. Jang, C. T. Sun, E. Mizutani, “Neuro-fuzzy and soft
computing”, Prentice Hall, pp. 426-427, 1997.

[16] J. Van Hulse, T. M. Khoshgoftaar, A. Napolitano, “Experimental
perspectives on learning from imbalanced data”, 24th Int’l. Conference
on Machine Learning, Corvalis, Oregon, pp. 935-942, 2007.

[17] Y. Ma, L. Guo, B. Cukic, “A statistical framework for the prediction of
fault-proneness”, Advances in Machine Learning Application in
Software Engineering, Idea Group Inc., pp. 237-265, 2006.

[18] K. El-Emam, W. Melo, J. C. Machado, “The prediction of faulty
classes using object-oriented design metrics”, Journal of Systems and
Software, vol. 56, no. 1, pp. 63-75, 2001.

[19] Y. Zhou, H. Leung, “Empirical analysis of object-oriented design
metrics for predicting high and low severity faults”, IEEE
Transactions on Software Eng., vol. 32, no. 10, pp. 771-789, 2006.

[20] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Analyzing software
measurement data with clustering techniques”, IEEE Intelligent
Systems, vol. 19, no. 2, pp. 20-27, 2004.

[21] T. M. Khoshgoftaar, N. Seliya, N. Sundaresh, “An empirical study of
predicting software faults with case-based reasoning”, Software
Quality Journal, vol. 14, no. 2, pp. 85-111, 2006.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

