
A Fuzzified Approach for the Prediction of Fault 
Proneness and Defect Density

Sunint K. Khalsa

Abstract – The requirement to improve software 
productivity has promoted the research on software metrics 
technology. Object Oriented paradigm is the technology being 
used to build fault free and stupendous softwares; and to make 
them fault free object oriented metrics are being used. These 
metrics are used to identify high risk components early in the 
design phase and hence help us to reduce the rework and 
improve the software productivity.  CK metrics can be used to 
obtain the fault proneness and MOOD metrics can be used to 
obtain the defect density in the modules. An algorithm using 
fuzzy logic toolbox has been proposed to measure fault 
proneness and defect density, and the results are shown. This 
process can be used to discover faults and defects in the early 
phases of the software development process and hence can be 
used to minimize rework.  

Index Terms – CK Metrics suite, Fuzzy inference system, 
Mamdani inference model, MOOD Metrics, Sugeno inference 
model.

I. INTRODUCTION

The Object Oriented Metrics are used to predict the 
quality of the object oriented software products. Various 
attributes, which determine the quality of the software, 
include maintainability, defect density, fault proneness, 
normalized rework, understandability etc. The requirement 
today is to relate the quality attributes with the metrics.

After the design phase, faults propagate and amplify as 
we move on to the subsequent phases. This can be greatly 
reduced if the quality attributes are predicted in the initial 
phases. If all these attributes are predicted before the class is 
actually developed then this can control the rework 
performed by the developers to the great extent. Predicting 
the quality attributes will help us to control the class 
complexity to the minimum possible level and the chances 
of dropping the developed modules can be reduced to a 
great extent. 

II. QUALITY ATTRIBUTES FOR IDENTIFYING HIGH 
RISK COMPONENTS

Testing of large systems is a resource and time 
consuming activity. Applying equal testing and verification 
effort to all parts of a software system has become cost-
prohibitive [4]. Therefore, one needs to be able to identify 
high-risk modules so that testing/verification effort can be 
concentrated on these modules and classes. So, we need to 
have appropriate product attributes to characterize error 
prone modules.

Fault- Proneness is an external quality attribute which can 
be used to predict the fault- prone modules. Fault Proneness 
is defined as a probability of detecting a fault in the class. 

So in order to study external quality attribute we have to 
concentrate on an attribute, which can be measured easily 
and objectively, and which is least affected by variability. 
The best example of the same could be Fault Proneness and 
defect density, as in [2].

Defect Density is a software quality attribute, which gives 
the reliability measure of the software product. Defect 
Density is given as defects found per KLOC. This helps us 
to find the high-risk prone modules as per the Pareto 
principle that greater defects lie in the 20% of the modules 
and hence work on them

       III. BASICS OF FUZZY SYSTEM

In conventional environment only accurate computations 
were made and fuzziness and uncertainty was ignored. But 
now those uncertain factors are also taken into 
consideration. 

A. Fuzzy Inference Systems

Fuzzy inference is the process of formulating the 
mapping from a given input to an output using fuzzy logic. 
The mapping then provides a basis for decision-making. The 
process of fuzzy inference involves all of the pieces like 
membership functions, fuzzy logic operators, and if-then 
rules. There are two types of fuzzy inference systems that 
can be implemented in the Matlab Fuzzy Logic Toolbox: 
Mamdani-type and Sugeno-type. 

Mamdani’s fuzzy inference method is the most 
commonly seen fuzzy methodology. It expects the output 
membership functions to be fuzzy sets. After the 
aggregation process, there is a fuzzy set for each output 
variable that needs defuzzification. It’s possible, and in 
many cases much more efficient, to use a single spike as the 
output membership functions rather than a distributed fuzzy 
set. It enhances the efficiency of the defuzzification process 
because it greatly simplifies the computation required by the 
more general Mamdani method. 

Sugeno Fuzzy inference method, on the other hand, 
integrates across the two-dimensional function to find the 
centroid and uses weighted average of a few data points for 
the defuzzification process. In general, Sugeno-type systems 
can be used to model any inference system in which the 
output membership functions are either linear or constant.

The fuzzy model contains following four modules as 
shown in Fig 1. 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



Fuzzification Module (FM) 
Inference Engine (IE) 
Knowledge Base (KB) 
Defuzzification Module (DM) 

Fig 1. Fuzzy System Model

The Fuzzification module transforms the crisp inputs into 
fuzzy values. Then these values are processed in the fuzzy 
domain by Inference Engine, which, is based on the rule 
base provided by the Knowledge base (KB). Here some 
appropriate fuzzy operators are also applied, implication 
processes are done and outputs are aggregated. Finally at 
last stage, the Defuzzification Module (DM) maps the 
fuzzified domain values into corresponding defuzzified 
domain crisp values.

   IV. PROPOSED SCHEME

A Fuzzy System Model is proposed for finding fault 
proneness using CK metrics and defect density using 
MOOD Metrics. The Fuzzification module transforms the 
crisp inputs into fuzzy values. After this these values are 
processed in the fuzzy domain by inference engine based on 
the rule base. Finally at last stage, the defuzzification 
module maps the fuzzified domain values into 
corresponding defuzzified domain crisp values. 

    A. The Mamdani Fuzzy Inference model

This has been used to find the fault proneness in software 
using the CK Metrics suite. For finding the fault proneness 
three inputs are considered: Coupling between objects 
(CBO), Response for a class (RFC), and Weighted Method 
per class (WMC). The impact on the fault proneness is 
decided on the basis of rule base. CBO, RFC and WMC are 
shown to be very good predictors of fault proneness as 
empirically proved by Briand et al. [2]. The fault proneness 
then gives the value as how much probability is there that 
class will contain a fault. This value of fault proneness will 
help us to concentrate on the fault prone modules and thus 
will help to narrow down the search and work on them.

B. Sugeno fuzzy inference model

It is used to find defect density in software using the MOOD 
metrics. For finding the defect density all the six metrics of 

the MOOD suite are taken as input and output comes out to 
be the defect density in the system in the form of defects per 
KLOC. Some of the factors are shown to be positively 
correlated with the defect density and some are shown to be 
negatively correlated which will be discussed in detail in the 
coming sections as in [1]. 

V. PROPOSED ALGORITHM FOR DETERMINING THE 
FAULT PRONENESS (FP)

An algorithm consisting of various steps have been 
proposed for predicting the fault proneness as under:

  A. Input Parameters

The input parameters involve the computation of CK 
Metrics. CK suite consists of six metrics but three out of the 
six metrics are good predictors of fault proneness as shown 
by Briand et al. in [2]. Following are the metrics, which are 
related to the fault proneness of the systems.

Weighted Method per Class

WMC measures the complexity of an individual class 
based on [3]. If the complexity of each class is taken to be 
zero then the WMC comes out to be equal to the number of 
methods in a class. The weights can also be assigned by the 
cyclomatic complexity given by McCabe. The assumption 
behind this metric is that a class with significantly more 
member functions and hence more WMC is more complex 
and fault-prone. [4]

Response for a class

This is the number of methods that can potentially be 
executed in response to a message received by an object of 
that class. RFC is the number of functions directly invoked 
by member functions of a class. The fact here is that the 
larger the response set of a class, the higher the complexity 
of the class, and the more fault-prone and difficult to 
modify. [4]

Coupling between Objects 

A class is coupled to another one if it uses its member 
functions and/or instance variables. CBO provides the 
number of classes to which a given class is coupled [4]. A 
class with high import coupling relies on many externally 
provided services. Understanding such a class requires 
knowledge of all these services. The more external services 
a class relies on, the larger the likelihood to misunderstand 
or misuse some of these services. Therefore, the class is 
more difficult to understand and develop, and thus likely to 
be more fault-prone. [2]

The metrics in CK suite, which are not related to the fault 
proneness in the system as, proved by Briand et al. in [2], 
are LCOM and inheritance measures. As far as cohesion is 
concerned, it is very likely not a very good fault-proneness
indicator. This stems mainly from the current difficulty to 

Out

Knowledge Base

Fuzzy 
Module

Inference 
Engine

Defuzzif
i-cation 
Module

In 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



define clearly the concept and measure it. One illustration of 
this problem is that two distinct dimensions are captured by 
existing cohesion measures normalized versus non-
normalized cohesion measures. As opposed to the various 
coupling dimensions, these do not look like components of a 
vector characterizing class cohesion, but rather as two 
fundamentally different ways of looking at cohesion. 
Similarly, inheritance measures appear not to be consistent 
indicators of class fault-proneness. Their significance as 
indicators strongly depends on the experience of the system 
developers and the inheritance strategy in use on the project. 

B. Design of Fuzzification Module

Linguistic variables are then assigned to the input 
parameters based on their values. The assignment of the 
linguistic variables depends on the range of the input 
measurement.

Linguistic Variables of WMC

Values to the linguistic variables are assigned in terms of 
number of weighted methods in a class. WMC is assigned 
four linguistic variables VLOW, LOW, MID and HIGH.
Range and plot is same for rest of linguistic variables.
[Input1]
Name='WMC'
Range= [0 100]
NumMFs=4
MF1='vlow':'trimf',[0 0 33]
MF2='low':'trimf',[0 33 66]
MF3='mid':'trimf',[33 66 100]
MF4='high':'trimf',[66 100 100]

Linguistic Variables of RFC
Values to the linguistic variables are assigned in terms of 

the number of functions directly invoked by member 
functions or operators of a class. RFC is assigned four 
linguistic variables VLOW, LOW, MID and HIGH

Linguistic Variables of CBO

Values to the linguistic variables are assigned in terms of 
to how many classes a given class is coupled. CBO is 
assigned four linguistic variables VLOW, LOW, MID and 
HIGH.

Linguistic Variables of Fault Proneness

The output to the above system measures the fault 
proneness. It consists of six linguistic variables they are 
LOW, ABOVE_LOW, MID, ABOVE_MID, HIGH, and 
ABOVE_HIGH. The value of fault proneness is obtained 
after defuzzification using the centroid method. The range 
of FP is shown as under:.
[Output1]
Name='FaultProneness'
Range= [0 100]
NumMFs=6

MF1='low':'trapmf',[0 0 14.2 28.2]
MF2='med':'trimf',[27.5 44 58.1]
MF3='above_high':'trapmf',[73.1 86.4 100 100]
MF4='above_low':'trimf',[14.2 28.4 44.6]
MF5='high':'trimf',[58.8 73.1 86.1]
MF6='above_med':'trimf',[44.6 58.1 73.1]

C.Design of Knowledge Base

The knowledge base is then designed. It is a collection of 
rulebase, which is formed, with the help of if-then rules. In 
the rules logical operators like ‘or’ or ‘and’ are used. As 
there are three inputs and four membership functions each 
so after all the possible combinations the size of the rule 
base comes out to be 4*4*4= 64. e.g. the first rule is 

If (WMC is VLOW) and (RFC is VLOW) and (CBO is 
VLOW) then (FaultProneness is LOW) 

If (WMC is VLOW) and (RFC is VLOW) and (CBO is 
LOW) then (FaultProneness is LOW)   And so forth.

D. Defuzzification 

The input to the defuzzification process is the rule base 
and the output is the crisp values given after performing the 
defuzzification using the centroid method. After the 
defuzzification process the value obtained means probability 
that the module is fault prone.

VI. EXPERIMENTAL RESULTS

All the three input parameters WMC, RFC and CBO are 
directly proportional to fault proneness i.e. more the WMC, 
RFC and CBO more will be fault proneness. After creating 
the rule base to depict the true picture following results were 
obtained as shown in the form of graphs in Fig 2, 3 & 4.

Fig 2. Graph for FP vs. CBO

Fig 3. Graph for FP vs. RFC

Fig 4. Graph for FP vs. WMC

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



The surface view of fault proneness and other three input 
parameters WMC, RFC and CBO is obtained after the 
implication of the rules from the rule base. The 
monotonicity of the surface depends on the rule base. For 
better results the surface should be monotonous and 
symmetrical as obtained in the Fig 5 and 6.

Fig 5. Surface view of FP, RFC and WMC

Fig 6. Surface View of FP, WMC and CBO

VII. TESTING OF THE PROPOSED FAULT 
PRONENESS PREDICTION SYSTEM

The testing of the algorithm is done by viewing rules on a 
rule viewer crisp value as input is given to the three input 
parameters and the output is obtained. Let us consider a 
class whose value for WMC is 17, value for RFC is 24 and 
Value for CBO is 7. To determine how much fault prone the 
class is these values are fed to the rule viewer and the role 
viewer will appear to be like as shown in Fig 7. The fault 
proneness of the class is 0.203 i.e. there is 0.2 probability 
that fault will be found in the class. This value has been 
obtained after firing the rule base and after Defuzzification.

                                Fig 7. Rule Viewer

VIII. PROPOSED ALGORITHM FOR DETERMINING 
THE DEFECT DENSITY (DD)

The predictive model used here to predict the defect 
density is given by Abreu et al. in [1]. That predictive model 
is further implemented with the help of Fuzzy Tool Box 
using Matlab Software. As per the above-mentioned model 
DD is given by:
DD = DD +MHF MHF + AHF AHF + MIF MIF + AIF

AIF+ POF POF +COF COF + DD

Where   MOOD metrics = independent variables
                                 DD = outcome variables
                                     = response coefficient. 
                                     = intercept parameter

    DD = random error (taken to be zero) 
The value of these parameters according to Abreu et al. is 
shown in table 1

Table 1: Response Coefficients and Intercept Parameter
Metrics 

MHF 10.958

AHF -0.649

MIF 2.194

AIF -7.564

POF -24.194

COF 29.959

 2.643
The above mentioned formula has been used to predict the 
defect density of the software module using fuzzy logic. An 
algorithm consisting of various steps have been proposed as 
shown in the next section.

A. Input Parameters

The input parameters involve the computation of MOOD 
Metrics. As explained earlier the MOOD Metrics consists of 
six metrics. The metrics of the MOOD suite are Method 
Inheritance Factor, Attribute Inheritance Factor, Method 
Hiding Factor, Attribute Hiding Factor, Polymorphism 
Factor and Coupling Factor. These metrics are related to the 
defect density as shown in Eq given by Abreu et al. in [1]. 
The response of the factors to defect density has also been 
shown in table 1

B. Design of Fuzzification Module

Linguistic variables are then assigned to the input 
parameters based on their values. The assignment of the 
linguistic variables depends on the range of the input 
measurement.

Linguistic Variables for input variables

As there are six input variables namely MHF, AHF, MIF, 
AIF, POF and COF. All the input variables are assigned 
three linguistic variables which are low, mid and high. The 
range of all the linguistic variables in all the inputs is the 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



same and is shown as under. Consider an example of 
membership plot of MHF. Rests of the five membership 
plots are of the same type.
[Input1]
Name='MHF'
Range=[0 1]
NumMFs=3
MF1='low':'trimf',[0 0 0.4]
MF2='mid':'trimf',[0.1 0.5 0.9]
MF3='high':'trimf',[0.6 1 1]

Linguistic Variables for Defect Density

The main difference which lies between the Mamdani and 
Sugeno model is the output membership function. The 
output membership function for Sugeno model is only linear 
and constant. Here in defect density we are using linear 
membership function for low, mid and high values. Low is
linear membership function with the values which are 
assigned to it. The range which is assigned to the linguistic 
variables is shown under.
[Output1]
Name='Defect__Density'
Range=[0 1]
NumMFs=3
MF1='low':'linear',[10.958 -0.649 2.194 -7.564 -24.194 
29.959 2.643]
MF2='mid':'linear',[10.958 -0.649 2.194 -7.564 -24.194 
29.959 2.643]
MF3='high':'linear',[10.958 -0.649 2.194 -7.564 -24.194 
29.959 2.643]

C. Design of Knowledge Base

      The knowledge base is designed in the same way as it is 
designed earlier to find fault proneness. 

D. Defuzzification

    The input to the defuzzification process is the rule base 
and the output is the crisp values given after performing the 
defuzzification using the “wtaver” method. Here after the 
defuzzification process the value obtained is the Defect 
Density, which means number of defects per KSLOC.
     

IX. EXPERIMENTAL RESULTS

Among all the six input parameters some have shown to be 
directly proportional and some inversely proportional to 
defect density. After creating the rule base to depict the true 
picture following results were obtained shown in the form of 
graphs in Fig 8,9,10,11,12,13..

  

   

       

The surface view of Defect Density and other six input 
parameters MHF, AHF, MIF, AIF, POF, and COF is 
obtained after the implication of the rules from the rule base 
as shown in Fig 14, 15, 16, 17, 18. 
      

Fig 10 Graph showing DD Vs COF

Fig 11 Graph showing DD Vs MIF

Fig 8 Graph showing DD Vs AIF

Fig 9 Graph showing DD Vs POF

Fig 12 Graph showing DD Vs MHF

Fig 13 Graph showing DD Vs AHF

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



         

  

  

                

  
                                            

The monotonicity of the surface depends on the rule base. 
Here the top of the surface has come out to be geometrically 
straight because the output linguistic variable is a linear 
function. For better results the surface should be 

monotonous and symmetrical as obtained in the figures 
above.

X. TESTING OF THE PROPOSED DEFECT DENSITY 
PREDICTION SYSTEM

The testing of the algorithm is done by viewing rules on a 
rule viewer crisp value as input is given to the three input 
parameters and the output is obtained. Let us consider a 
class whose value for MHF is 36.4%, AHF is 95.7%, MIF is 
38.2%, AIF is 22.4%. POF is 6% and COF is 2.3%. These 
values are fed to the rule viewer and the output is obtained 
in terms of defect density i.e. defects per KSLOC. As shown 
in the Fig 19 the defect density of the system is 4.38. The 
value which is shown here is the same as the values 
obtained by Abreu et al. in [1]. This value has been obtained 
after firing the rule base and after defuzzification.
So in this way fuzzy logic can be used to find the Defect 
Density of the system using MOOD Metrics. The prediction 
of the defect density can hence be used to concentrate on the 
module which has got more defects as per the Pareto 
principle

Fig 19   Rule Viewer for Defect Density

                       ACKNOWLEDGMENT

S. K. Khalsa thanks the Dept. of Comp. Sc. & Engg. of 
Guru Nanak Dev Engineering College, Ludhiana (Punjab, 
India) for providing the necessary resources for carrying out 
the research work

REFERENCES
[1]  Fernando Brito e Abreu and Walcelio Melo.” Evaluating the impact of 

Object Oriented Design on Software Quality.” Proceedings of IEEE 
(METRICS’96)

[2] Lionel C. Briand, Jurgen Wust, Hakim Lounis,  “Investigating Quality 
Factors in Object Oriented Design: An industrial case Study”. Proc 
Int’l Conf. Software Eng. pp 345-354, 1999.

[3] Lionel C. Briand, Jurgen Wust, Hakim Lounis, “Using Coupling 
Measurement for Impact Analysis in Object-Oriented Systems.”

[4] Victor R. Basili, Lionel Briand, “A Validation of Object Oriented 
Design Metrics as Quality Indicators” IEEE Trans. Software 
Engg.,vol.22,pp.751-761, 1996.

Fig 14 Surface View of DD, MIF and AHF

Fig 17 Surface View of DD, MIF & COF

Fig 18 Surface View of DD, AHF & COF

Fig 15. Surface View of DD, MHF & MIF

Figure 16 Surface View of DD, MHF & AIF

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009


