

A-MISC: The Arabic Medium Instruction Set
Computer Architecture Design

Asbahiya A. Abu-Samra

Abstract —The design and development of 16-bit Medium
Instruction Set Computer (A-MISC) covering the
performance of Complex Instruction Set Computers (CISC)
and Reduced Instruction Set Computers (RISC) is proposed
here. The instruction set of the proposed A-MISC computer
includes Memory Reference Instructions with direct,
indirect and immediate addressing features, Register
Reference instructions dealing operations within the
registers of the CPU, IO reference instructions concerning
the peripherals, Stack instructions controlling the stack and
some other miscellaneous instructions. To have a reduced
complexity for the hardware the data word size is set as a
standard of 16 bits. The lengths of instructions are of either
one word or 2 words depending upon the category of
instructions. The address of the memory is denoted by 24
bits resulting in physical memory capacity of 16M words
for the computer. Most essential flags available in the CISC
computers are included in the A-MISC. The control unit is
designed on hardwired concept. For the time being the
programs for A-MISC are written in symbolic assembly
program. The Assembler package for this computer is
developed with Borland C and it would run two passes.
Sample programs are run on the computer and the
performance of the computer is estimated.

Index Terms—A-MISC, Computer Architecture, Control

unit, Assembler .

1. INTRODUCTION
 Complex Instruction Set Computers (CISC) are

being widely used in practice and in several instances
Reduced Instruction Set Computers (RISC) are also
employed. Although the objectives are nearly same the
application ranges and realization aspects are bit different
amongst these computers. Some applications in modeling
and simulation areas could be handled effectively in
computers which have drawn the advantages of CISC and
RISC computers. In designing such computers several
architectures were adapted in the past and varieties of
computers were developed and used in practice. CISC
computers such as PCs and work stations developed
using processors like Pentium are the most extensively
used computers in practice. Owing to its high speed of
operation Reduced Instruction Set Computers are being
used for some specific applications. Combining the
features of RISC and CISC a special architecture is being
proposed here. As the size of the instruction set is in
between the CISC and the RISC the proposed architecture
is named as A-MISC.

Asbahiya A. Abu-Samra is a lecturer at College of computer and

information sciences, King saud university, Saudi Arabia (phone: +
966-502-444360 ; e-mail: asbahiya@hotmail.com;
aabusamra@ksu.edu.sa).

2. REGISTER STRUCTURE
 In the architecture of the A-MISC, in addition to the

conventional registers such as PC(Program Counter),
AR(Address Register) and SP(Stack Pointer) of 24-bits
size, the register structure includes user accessible
registers of 16-bits word-size named as A, B, C and D.
The data word-size for processing is uniformly kept as 16-
bits and therefore the registers holding the data are of 16-
bits size. The address holding registers such as PC,SP and
AR hold the full address of the memory and registers like
instruction pointers and index registers are not included
here. Therefore the register structure is simplified in A-
MISC as compared to RISC computers and even the
CISCs.

3. INSTRUCTION SET

 The instruction set of the proposed A-MISC
computer includes Memory Reference Instructions with
direct, indirect and immediate addressing features,
Register Reference instructions dealing operations within
the registers of the CPU, IO reference instructions dealing
the peripherals, Stack instructions controlling the stack
and some other miscellaneous instructions.

Instruction Format
 The instruction word is of one word of 16 bits or

two 16-bits words and the data word size is always 16
bits. Memory reference and immediate addressing
instructions are 2 words of length. Table 1 gives the types
of instructions used in A-MISC. The type of the
instructions is represented by the most significant three
bits denoted as III. The instruction format for some type
of instructions are shown in Fig.1.

Memory Reference Instructions
 Table 2. gives different memory reference

instructions used in A-MISC. Incidentally, the assembly
instruction for adding the contents of memory to A
register is denoted by ADD addr where it occupies least
significant 24 bits in the instruction code. The most
significant three bits (III) of the instruction code of the
first word denote the type of instruction and the first code
000 specifies the memory reference instruction with direct
addressing. The next 5 most significant bits specify the
opcode doing the type of arithmetic or logic operation
concerning the memory reference instruction.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Table 1. Instruction Types and Codes
 Code Bits

I I I
Instruction selected No. of Words

0 0 0 Mem Ref- direct addressing 2
0 0 1 Mem Ref-Indirect addr (Ms 8-bits of addr are same) 2
0 1 0 Register Ref-Instruction. 1
0 1 1 I/O Ref-Instruction. 1
1 0 0 Stack Instruction. 1
1 0 1 Immediate Addressing 2
1 1 0 Vector Processing (Future) 2
1 1 1 Future

 a. Memory Reference Instruction

 b. Register reference instruction c. I/O Reference Instruction
 Fig.1. Instruction Word Format

 Table 2. Memory Reference Instructions

Direct Indirect
Symbol Hex code Hex code Description

ADD addr 0 0 x x x x x x 2 0 x x x x x x A A + mem
ADC addr 0 1 x x x x x x 2 1 x x x x x x Add mem word to addr with carry
SUB addr 0 2 x x x x x x 2 2 x x x x x x A A – mem
SBB addr 0 3 x x x x x x 2 3 x x x x x x sub mem word from addr with brow
AND addr 0 4 x x x x x x 2 4 x x x x x x A. AND .addr
XOR addr 0 5 x x x x x x 2 5 x x x x x x A. XOR .add
OR addr 0 6 x x x x x x 2 6 x x x x x x A. OR .add
MAM addr 0 7 x x x x x x 2 7 x x x x x x A M
MBM addr 0 8 x x x x x x 2 8 x x x x x x B M
MCM addr 0 9 x x x x x x 2 9 x x x x x x C M
MDM addr 0 A x x x x x x 2 A x x x x x x D M
MMA addr 0 B x x x x x x 2 B x x x x x x M A
MMB addr 0 C x x x x x x 2 C x x x x x x M B
MMC addr 0 D x x x x x x 2 D x x x x x x M C
MMD addr 0 E x x x x x x 2 E x x x x x x M D
CALL addr 0 F x x x x x x 2 F x x x x x x Call address
JMP addr 1 0 x x x x x x 3 0 x x x x x x Jump address
JC addr 1 1 x x x x x x 3 1 x x x x x x Jump if Carry
JZ addr 1 2 x x x x x x 3 2 x x x x x x Jump if Zero
JPE addr 1 3 x x x x x x 3 3 x x x x x x Jump party Even
JM addr 1 4 x x x x x x 3 4 x x x x x x Jump party Minus
ISZ addr 1 5 x x x x x x 3 5 x x x x x x Increment and skip if it is Zero
MUL addr 1 6 x x x x x x 3 6 x x x x x x D A A X mem
DIV addr 1 7 x x x x x x 3 7 x x x x x x D A / mem Q=A, R=D
 1 8 x x x x x x 3 8 x x x x x x Future
 1 9 x x x x x x 3 9 x x x x x x Future
 1 A x x x x x x 3 A x x x x x x Future
 1 B x x x x x x 3 B x x x x x x Future
 1 C x x x x x x 3 C x x x x x x Future
 1 D x x x x x x 3 D x x x x x x Future
 1 E x x x x x x 3 E x x x x x x Future

8 bits 8 bits

 Opcode

16 bits
15 0

 Address Address

31 24 23 16

I I I X X X X X Address

LS addrMS addr

010 0 0 0 0 0 DD SS

8 - bits

011 x x x x x a a a a a a a a

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Start
SC 0

AR PC

IR1 M[AR], PC PC + 1, AR AR + 1

IR 2 M[AR]

1word
2words

Mem.Ref.
Inst.Direct

Decode D0… D31 ,I(D31, D30
,D29),Inst(D28, D27, D26, D25, D24),

address(D23,……… D0), AR IR 1, IR2

Mem.Ref.
Inst.inDirect

AR M [AR], PC PC +1

Direct

idle.

Executing Mem.Ref.Inst

Immediate
addressing.

Inst.

IR 2 M[AR]

Decode D0… D31 I(D31, D30 ,D29
),Inst (D28, D27, D26, D25, D24),

Executing
Immediate addr.Inst.

Vector Processing Reg.Ref.
Inst.

Decode D0…… D31 , I(D31, D30 ,D29
),Inst(D28, D27, D26, D25, D24),

address(D23,……D16) , SS (D1, D0)
If 00 = A , 01 = B , 10 = C , 11 = D

Executing Mem.Ref.Inst

I/O.Ref.
Inst.

Decode D0…… D31 , I(D31, D30 ,D29
),Inst(D28, D27, D26, D25, D24), Port-
address (D23, ….,D16) , AR

IR1, EIO I/M' 1

Executing
I/O.Ref.Inst

Decode D0… D31 ,
I(D31, D30 ,D29

),Inst(D28, D27, D26,
D25, D24),

Stack Instruction

Executing
Stack Instruction

Decode D0… D31 ,
I(D31, D30 ,D29

),Inst(D28, D27, D26,

D25, D24),

T0

T1

T2 T2 T2T2T2T2

T3 T3 T3 T3 T3

T4T4T4

T5

2words 1word

yes yes

No

yes

NoNo No

yes yes

No

yes No

Fig.2. Instruction Cycle Flow of the A-MISC

 The rest 8-bits of the first word denote the most

significant 8-bits of the 24-bit address. The second word
of the instruction code gives the least significant 16 bits of
the address. The second code 001 for III denotes the
memory reference instruction with indirect addressing
feature. In organizing the indirect address the most
significant 8-bits of the indirect address is kept same as
the most significant 8-bits of the direct address. The least
significant 16-bit word is different for direct address and
the indirect address.

Register Reference Instructions
 For a register reference instruction adding a register

R (A,B,C or D) with A register with Carry flag is
denoted by ADC R. In the instruction code of 16 bits the
least significant two bits give the code of the register R
used. The instruction category for register reference
instructions for logical operations include AND R, OR R,
XOR R and COM R. For arithmetic operations of register
reference category we have CLR R, INC R, DEC R,
ADD R, ADC R, SUB R, SBB R, CMP R, MUL R, and
DIV R. Shifting and rotating instructions are SHL R, SHR
R, ROR R, ROL R. Movement of data from one register
to another comes under the category of MOV R,R. In the
instruction code the least significant two bits give code for
the source register and the next two bits denote the code
of destination register.

 Other register reference instructions are those
affecting flags such as CLC (Clearing Carry), STC
(setting Carry), CLZ (Clear Zero), STZ(Set Zero), CMC
(Complement Carry), Skip instructions like SPA (Skip
next instruction if A is positive), SNA (Skip next
instruction if A is negative), SZA(Skip next instruction if
A is zero), and those relating to decimal arithmetic
DAA(Decimal adjust), CWD(Convert word to double

word) and HLT. The DAA instruction will be used for
decimal arithmetic operations. Division operations could
use CWD instruction.

I/O Reference Instructions and Others
 The I/O reference instructions include INP and OUT

instructions. While all the I/O reference instructions have
the III code as 011, INP instruction has the 5 bits opcode
as 00000and he OUT instruction has the opcode 00001.
The word length of the port address in either case is 8 bits
only. These 8 bits are accommodated in the least
significant 8 bits of the instruction word. The software
interrupt INT instructions are included in this group and
there are 8 such instructions available. The instructions
affecting the interrupt flag namely STI setting the
interrupt flag and CLI clearing it are parts of this group.

 Stack instructions are regular PUSH and POP
instructions. SP the Stack pointer of 24-its word length
always keep the top of the stack. While PUSH instruction
decrements the SP by one step he POP instruction
increments by one.

 By immediate addressing instruction one could load
the immediate data word into any register.

Instruction Cycle
 The instruction cycle doing all operations undergoes

fetch, decode and execute phases in sequence. Fetch and
decode operations are first two phases in all types of
instructions. After this, by decoding the III bits the
instruction category are identified and the execution phase
is carried out accordingly. Fig.2 shows the phases of
operation performed in an instruction cycle. The second
instruction word is handled accordingly.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Fig.3. Simplified Schematic of the Control Unit

Completeness of Instruction set
 The architecture of the A-MISC includes all

necessary instructions required for a computer for solving
general purpose problem. It has instructions performing
unconditional jumps and conditional jumps. Conditional
jumps are based on the flags set currently. Essential flags
such as Carry, Zero, Parity even, Sign, auxiliary Carry,
Interrupt, Trap and Overflow are available here.

Interrupts
 We have software interrupts performed by the 8

numbers of INT instructions. The memory area for
service procedure of these interrupts are reserved. It can
go to a maximum of 256 words. The starting address of
the procedure for INT n instruction is given by 000n00.
Therefore INT 5 instruction has its starting address at Hex
000500 and the ending address would be Hex 0005FF.

Hardware Interrupts
 Two hardware interrupts INTR1 and INTR2 are

allowed in the system. When INTR1 occurs the system
runs automatically the INT 0 instruction and when INTR2
occurs it runs INT 1 instruction. Therefore these two INT
instructions are reserved for the hardware interrupts and
not available for the user.

4. CONTROL UNIT OF THE A-MISC

 The control unit of the CPU is designed on
hardwired concept and the hardware of the whole control
unit has been developed. The two instruction registers IR1

and IR2 receive the instruction codes during instruction
fetch phase and the decoders attached to that registers
identify the micro operations to be carried out for entering
into the next phase of operation. One word instructions
just get the code shifted to IR1 register only. Fig.3 shows
the simplified schematic of control unit designed on
hardwired approach. All control logic gates performing
various operations are designed and implemented.

 The data is moved between the registers and the
memory through common bus. Therefore transfer of data
are performed in a shorter time. Fig.4 shows its simplified
schematic of common bus. The selection codes for
various registers are also indicated and designed
accordingly. There are two parts of ALU designed for A-
MISC. ALU x performs all arithmetic and logic
operations except multiplication and division operation.
Multiplication and division operations are done in ALU%.
Whenever division instruction occurs it selects this ALU
to divide the word at D and A register with DR register
and put he quotient and remainder in A and D register
respectively. The MUL instruction multiplies the contents
of A register with that of the DR register and loads the 32-
bit result in D and A registers.

 A-MISC includes all important flags needed for a
high performance CPU. Arithmetic and logic instructions
affect most flags (Carry, Auxiliary Carry, Zero, Sign,
parity, Overflow, Interrupt and Trap) and when such
instructions occur the flag register is updated accordingly.

A R

I R 2
01 52 32 8 2 7 2 6 2 5 2 4

5 - T o - 1 - o f - 3 2 D e c o d e r
D 3 1 D 3 D 2 9 D 2 8 D 2 7 D 2 6 D 2 5 D 2 4 D 2 3 D 2 2 D 2 1 D 2 0 D 1 9 D 1 8 D 1 7 D 1 6 D 1 5 D 1 4 D 1 3 D 1 2 D 1 1 D 1 0 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

1 6
I R 1

3 1 3 0 2 9

2 - t o -
1 - o f - 4
D e c o

d e r

2 - t o -
1 - o f - 4
D e c o

d e r

I 1 I 2 I 3 X X X X X D 3 D 2 D 1 D 0

D 0
D 1

D 2D 3

3 - t o - 1 - o f - 8
D e c o d e r

M e m . R e f . I n s . D i r e c t
M e m . R e f . I n s i n d i r e c t

R e g . R e f . I n s
I / o . R e f . I n s

S t a c k . I n s
I m m e d i a t a d d r e s s . I n s

V e c t o r p r o c e s s i n g. I n s

4 B i t s S t a t e G e n e r a t o r
I N C

C L R
C l o c k

4 - T o - 1 - o f - 1 6
D e c o d e r

T 0

T 1

T 1 6

T 1 5

T 2
T 3

T 4

C o n t r o l
L o g i c
g a t e s

C o n t r o l l i n g

O u t p u t

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

C IN

C
OUT

ALU
X

ADR

AD

ALU
%

DA DR

R Q

D A

Memory Unit
16 Mb word X 16-bit per word

Write Read

DR

LD INR CLR

SP

LD INR CLRDEC

A

LD INR CLRDEC

B

LD INR CLRDEC

PC

LD INR CLR

D

LD INR CLRDEC

IR 1

LD

IR 2

LD

TR

LD INR CLR

LD INR CLRDEC

C

AR

LD INR CLR

BUS

S3
S2
S1
S0

Clock

16-bit Common Bus

6

7

8

9

10

11

1

2

3

4

5

12

 Fig.4. Common Bus and Selection Codes

register. Flags are changed by the user by respective
instructions and also by PUSH flags and POP flags
instructions.

5. ASSEMBLER FOR A-MISC
 The assembler of the A-MISC has been developed in
Borland C. It is an emulator and It has two passes. The
symbolic assembly program written for A-MISC is first

given to the first pass as a data file. This generates the
address symbol table saving the address symbols used in
the program together with the location counter. For the
sake of simplicity the first pass is not described
elaborately. The second pass program having many tables
as data files accepts the symbolic assembly program and
the address symbol table constructed by pass1 as to
construct the object file and save it in memory. The
groups of bits required for constituting the instruction code
are obtained from different resources such as tables and the
instruction code is assembled. Fig.5 shows the sequence of
operation done by second pass. For instance if the current
assembly instruction is a register reference instruction, say
MOV A,B, which moves the contents of A register to B
register, the code for MOV, register codes A and B, III
code and opcode are taken from the tables and the
instruction code is constructed. For memory reference
instruction it needs address for the address symbol used
and it is taken from the address symbol table created by the
first Pass. Also depending upon the presence of I in the
assembly instruction III code is taken and used. In order to
distinguish the address symbol from the immediate data
and the register symbols, the address symbol used in the
A-MISC should start from the letter G onwards. The
location counter LC responsible for generating the address
for the object code is incremented after assembling each
instruction. Syntax error , if any, present in the assembly
instruction is identified and indicated accordingly.

Fig.5. Sequence of Operations in Pass2

S t a r t
L C 0

S c a n t h e n e x t l in e o f c o d e

P e s u d o - In s tN o y e s
O R G E N D

S e t L C

N o

y e s

N o

y e s

C o n v e r t
o p e r a n d

t o b i n a r y
a n d s t o r e

in
l o c a t i o n
g iv e n b y

L C

D o n e

P a s s 2

E x e c u t e d
v e c t o r i a l -

i n s t
i n t e r n a l l y

G e t o p e r a t io n
c o d e a n d s e t

b i t s 1 5 - 8

S e a r c h a d d r e s s
s y m b o l t a b l e f o r

b i n a r y
e q u i v a l e n t o f

s y m b o l i c a d d r e s s
a n d s e t b i t s 1 - 0

G e t o p e r a t io n
c o d e a n d s e t

b i t s 3 1 - 2 4

S e a r c h a d d r e s s
s y m b o l t a b l e f o r

b i n a r y
e q u i v a l e n t o f

s y m b o l i c a d d r e s s
a n d s e t b i t s 2 3 - 0

M R I

IR I 1

IR I 2

y e s

N o

N o

y e s

y e s N o

V R Iy e s N o

y e s
R R I 1 N o

R R I 2
y e s

G e t o p e r a t io n
c o d e a n d s e t

b i t s 1 5 - 8

S e a r c h a d d r e s s
s y m b o l t a b l e f o r

b i n a r y
e q u i v a l e n t o f

s y m b o l i c a d d r e s s
a n d s e t b i t s 3 - 0

N o

G e t o p e r a t i o n c o d e a n d s e t b i t s 1 5 - 8

S e a r c h a d d r e s s s y m b o l t a b l e f o r b i n a r y e q u i v a l e n t o f
s y m b o l i c a d d r e s s a n d s e t b i t s 7 - 0

In c r e m e n t L C

R R I 3 N o O R I 1 O R I 2 O R I 3

S R I

N o N o N o

y e sy e s y e s y e s

y e s
N o

E r r o r in l in e c o d eS t o r e b i n a r y e q u i v a l e n t o f i n s t r u c t i o n g i v e n b y L C

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Also an emulator platform is developed for A-MISC to
enter assembly program in PC which uses the A-MISC
assembler to develop object program and run it in PC.
In the emulator package it opens window for entering the
assembly instructions for A-MISC, call the assembler,
execute the instructions and see the results in memory
and registers. Other windows appearing in the menu are
for registers, flags and memory. In this package the
assembly programs saved in discs could also be uploaded
and assembled accordingly.

6. RESULTS AND DISCUSSION
Owing to the space limitations, the report for the project
is presented concisely giving information very briefly.
The complete hardware for the computer has been
developed with hardwired control operation. The design
of logic gates controlling various registers, memory, flip
flops and common bus are supported with the design
chart (not discussed here) conceding the control
expressions and the operations performed. As the next
phase of the development for the processor, vector
processing instructions are being included in the
instruction set and is being conceived in the hardware. A
co-processor attached with 64K memory of its own
would take care of vector processing operations. Most
popular vector instructions such as vector addition,
matrix inversion and matrix multiplication are proposed
to be included. Whenever vector instruction is
encountered the A-MISC would transfer the instruction
to the coprocessor. Also, the vector table from main
memory is transferred into the local memory of the
coprocessor through DMA.. After transferring the data
the coprocessor does its job independently and when
completed it would inform the A-MISC by interrupt.
Subsequently, the processed data stream is transferred to
main memory of the A-MISC by DMA.

 Peripherals like keyboard and printer are provided
with appropriate interfaces extended to the CPU through
the I/O ports. Since the port address is of 8-bits word
length we can design up to 256 I/O ports and this would
meet most peripheral hardware needs. As the design of
ports are well known they are not explained here. For
extended hardware peripheral interface requirements, if
further ports are required then it could be realized using
memory mapped I/O configuration.

 With the extensive use of instructions in the
instruction set several programs processing the arrays
and also the procedures for different purposes have been
developed, assembled and run with A-MISC. For several
software requirements direct instructions are mostly
available in the instruction set and wherever not found
they are realized indirectly by using more than one
instructions. For instance multi-precision arithmetic,
although not available as exclusive instructions in the
instruction set, it is achieved indirectly by using few data
words for each operand and use the appropriate
instructions to meet the needed arithmetic operation. For
a standard application program the object program size is
compared with that of the other processors and found
that it is comparable and simpler in some instances. The
processing time is evaluated in terms of clock cycles and
again found lower compared to that of several

processors. In some special instances such as multi-
precision arithmetic, there may not be much saving in
time compared to CISC computers due to the usage of
multiple instructions for the same task. A simulation
program has been developed to estimate the correctness,
completeness and efficiency of the hardware employed
in the A-MISC. The minor errors encountered in the
hardware design were detected by the simulation
program and have been corrected accordingly. The clock
frequency to be applied to the CPU depends on the
electronic technology used and if the CPU chip is
developed according to the latest technology available it
is feasible to use the frequency as 2.5GHz.

7. CONCLUSION
 The instruction code has only two possible sizes of 16
bits accommodated in one word or 32-bits realized with
two 16 bit words. Compared to most CISCs this has a
simplified hardware configuration. Furthermore,
standard word length of 16 bits for the processor data
makes the hardware processing aspects simplified
further. As the space provided for the opcode in the
instruction codes are only partially utilized the
instruction set has scope for expansion with inclusion of
additional possible instructions in different categories.
The compilers for few high level languages are being
worked out and hope to be completed in the near future.

 The design principle put forth in this paper could
easily be extended to conceive large word size processors
such as 32-bit processors with address word size
extending more than 32 bits. Several modeling and
simulation programs perform a great deal analytical tasks
and the A-MISC instruction set affords to accommodate
most such deals.

ACKNOWLEDGMENT
 The author acknowledges with thanks all necessary
support extended by the Department.

REFERENCES
[1] Morris Mano, Computer System Architecture, PHI (2004).
[2] William Stallings, Computer Organization and Architecture, PHI

(2002).
[3] Rafiquzzaman, Microprocessor and Microcomputer based design,

Univ Book Stall (2004).
[4] D.Hall, Microprocessors and Interfacing 8086, 80386, 80486,

McGraw Hill (2004).
[5] B.Bray, The Intel Microprocessors 8086, 80186, 80286, 80386
[6] and 80486 and Pentium, Prentice Hall (2003).
[7] http://en.wikipedia.org/wiki/Complex_instruction_set computer

(May 2006).
[8] http://acorn.riscos.com/ (May 2006).
[9] http://en.wikipedia.org/wiki/RISC (May 2006).
[10] http://www.risc-inc.com/ (May 2006).
[11] http://www.geocities.com/SiliconValley/Chip/5014/ (May 2006).
[12] http://www.arm.com/ (May 2006).
[13] RISC Processor, The Columbia Encyclopedia, Sixth Edition (2001-

05).

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

