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Abstract- The hypercube parallel architecture is one of the 

most popular interconnection networks due to many of its 

attractive properties and its suitability for general purpose 

parallel processing.  An attractive version of the hypercube is 

the crossed cube.  It preserves the important properties of the 

hypercube and most importantly reduces the diameter by a 

factor of two.  In this paper, we show the ability of the crossed 

cube as a versatile architecture to simulate other 

interconnection networks efficiently. We present new schemes 

to embed complete binary trees, complete quad trees, and 

cycles into crossed cubes.  

 

Index Terms- binary trees, cycles, dilation, embedding, 

expansion, hypercubes, crossed cubes. 

 

I. NTRODUCTION 

Hypercube architectures are loosely coupled parallel 

processors based on the binary cube network.  Parallel 

computers based on the hypercube topology have gained 

widespread acceptance in parallel computing.  Recently, 

many machines based on the hypercube have been 

designed and made commercially available.  The 

hypercube offers a rich interconnection topology with large 

bandwidth, logarithmic diameter, simple routing and 

broadcasting of data,  recursive structure that is naturally 

suited to divide and conquer applications, and the ability to 

simulate other interconnection networks with minimum 

overhead [2, 11, 14, 15, 20, 21]. Due to the popularity of 

the hypercube, many variations of the hypercube topology 

have been proposed to improve on its properties and 

computational power. El-Amaway and Latifi [7] proposed 

the folded hypercube to reduce the diameter and the traffic 

congestion with little hardware overhead. Preparata and 

Vuillemin [18] introduced the cube-connected cycles in 

which the degree of the diameter was reduced to 3. Efe [6] 

proposed an attractive version of the hypercube called the 

crossed cube, where preliminary studies proved that the 

crossed cube preserves many of the attractive properties of 

the hypercube and more importantly reduces the diameter 

by a factor of two [1, 4, 6, 8, 9, 22]. This implies that the 

crossed cube has an advantage over the hypercube when 

data communication is of major concern.  It is well known 

that for parallel architectures, data communication cost 

dominates computation cost. Therefore, it is worthwhile to 

make comparative studies on crossed cubes and other 

interconnection networks, and explore the advantages 

provided by them. The problem of embedding one 

interconnection network into another is very important in 

the area of parallel computing for portability of algorithms 

across various architectures, layout of circuits in VLSI, and 

mapping logical data structures into computer memories. 
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     The importance of binary trees comes from the fact that 

this class of structures is useful in the solution of banded 

and sparse systems, by direct elimination, and captures the 

essence of divide and conquers algorithms. Embedding 

binary trees into other interconnection networks attracted 

the attention of many researchers. Barasch et al. have 

considered embedding complete binary trees into 

generalized hypercubes [2], while Dingle and Sudborough 

considered simulation of binary trees and X-trees on 

pyramid networks [5].  

     Quad trees are becoming an important technique in the 

domain of image processing, computer graphics, robotics, 

computational geometry, and geographic information 

systems [3, 17, 19].  This hierarchical structure is based on 

the principle of recursive decomposition, which is similar 

to divide and conquer methods. Mapping quad trees into 

other interconnection networks attracted the attention of 

many researchers [14].  

     The problem of embedding rings or cycles into other 

interconnection networks has been studied by many 

researchers. It is well known that rings can be embedded 

into hypercubes using cyclic Gray codes [20].  Latifi and 

Zheng [12] generalized the cyclic Gray code method to 

embed rings into twisted cubes. On the other hand, other 

researchers addressed the problem of embedding rings into 

fault-free and faulty topologies [9, 12, 13, 14, 16, 20] or 

the Hamiltonicity of such structures in fault-free and faulty 

environments [1, 8, 10, 11].   

     The remainder of this paper is organized as follows. In 

section 2, we establish a few preliminary definitions and 

notations. Section 3 explains a scheme to embed complete 

binary trees into crossed cubes. Section 4 presents a 

recursive technique to embed complete quad trees. In 

section 5, we extend the Gray code scheme to embed 

cycles into crossed cubes.  Finally, section 6 concludes the 

paper and discusses some future possible work. 

 

II. DIFINITIONS AND NOTATIONS 

In this paper, we use undirected graphs to model 

interconnection networks. Each vertex represents a 

processor and each edge a communication link between 

processors. The embedding of a guest graph G = (VG, EG) 

into a host graph H = (VH, EH) is an injective mapping f 

from VG to VH, where VG, EG and VH, EH are the vertex 

and edge sets of G and H, respectively, and where 

VH≥VG. We consider a complete binary tree of 

height n-1, a complete quad tree of height n-1, and a cycle 

of size n, denoted CBn, CQn, and Cn, respectively, as guest 

graphs and a crossed cube of dimension n, denoted XQn, as 

a host graph. Two cost functions, dilation and expansion 

often measure the quality of an embedding.  If u and v are 

two nodes in G, then the distance from u to v, d = (u, v), is 

the length of the shortest path from u to v.  The dilation D 

is the maximum distance in H between the images of 
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adjacent vertices of G, D = max {d(f(u), f(v)), where u−v 
∈ EG}.  The expansion E is the ratio of the cardinality of 

the host vertex set to the cardinality of the guest vertex set, 

E = VH / VG. Minimizing each of these 

measurements has a direct implication on the quality of the 

simulation of the guest network by the corresponding host 

network.  The dilation of an embedding measures how far 

apart neighboring guest processors are placed in the host 

network.  Clearly, if adjacent guest processors are placed 

far apart in the host network, then there will be a 

significant degradation in simulation due to the long length 

of the communication path between them.  The expansion 

of an embedding measures how much larger is the host 

network than the guest network during the simulation.  We 

want to minimize expansion, as we want to use the 

smallest possible host network that has at least as many 

processors as in the guest network. In reality, we usually 

have a fixed size host network and we may have to 

consider many-to-one embedding for larger guest 

networks.  When the size of the guest network is not equal 

to the size of the host network in terms of the number of 

processors, then we try to find the smallest host network 

that has at least as many processors as the guest network.  

Such a host network is referred to as the optimal host 

network.  

     A hypercube of dimension n, denoted by Qn, is an 

undirected graph consisting of 2
n
 vertices labeled from 0 to 

2
n
-1 and such that there is an edge between any two 

vertices if and only if the binary representation of their 

labels differs in exactly one bit position.  A complete 

binary tree of height n-1, denoted by CBn, is an undirected 

graph consisting of 2
n
-1 vertices and such that every vertex 

of depth less than n-1 has exactly two sons and every 

vertex of depth n-1 is a leaf. A complete quad tree of 

height n-1, denoted by CQn, is an undirected graph 

consisting of (4
n
-1)/3 vertices and such that every vertex of 

depth less than n-1 has exactly four sons and every vertex 

of depth n-1 is a leaf. A cycle of size n, denoted Cn, is an 

undirected graph consisting of n vertices labeled from v1 to 

vn, such that node vi is a neighbor with node v(i+1)mod n, 1 ≤  
i ≤ n. A path (vo, v1, v2, …, vn-1) is a sequence of nodes 

such that each two consecutive nodes are adjacent. A cycle 

or a circuit is called a Hamiltonian circuit if it traverses 

every node of G exactly once. 

      The crossed cube is defined recursively as follows. Let 

G be any undirected labeled graph, then G
b
 is obtained 

from G by prefixing every vertex label with b. Two binary 

strings x = x1x0 and y = y1y0, each of length two, are pair-

related if and only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), 

(11, 01)}. Now, we define a crossed cube of dimension n, 

denoted XQn, as an undirected graph consisting of 2
n 

vertices labeled from 0 to 2n-1 and defined recursively as 

following: 

1. XQ
1
 is the complete graph on two vertices with labels 0 

and 1. 

2.  For n > 1, XQn consists of two copies of XQn-1 one 

prefixed by 0, XQ0
n-1, and the other by 1, XQ1

n-1. Two 

vertices u = 0un-2...u0 ∈XQ0
n-1 and v = 1vn-2...v0 

∈XQ1
n-1 are adjacent, if and only if: 

a. un-2 = vn-2, if n is even, and 

b. For 0 ≤ i ≤ (n-1)/2, u2i+1 u2i and v2i+1 v2i are pair-
related. 

Figure 1 shows crossed cubes of dimension 3. XQn is 

constructed recursively based on the construction of XQn-1 

by pasting together a copy of XQ
0
n-1 and the mirror image 

of XQ
1
n-1, then adding the appropriate links between the 

two copies according to the pair-related relationship.  For 

clarity, we view the crossed cube XQn as a [2
 
x 2

n-1
] grid.  

If the grid is partitioned horizontally into two equal parts, 

then all nodes above the horizontal line have a 0 as a 

prefix, while all nodes below the horizontal line have a 1 

as a prefix. 

 

 

 

 

 

 

Figure 1: The crossed cube XQ3. 

 

III. EMBEDDING COMPLETE BINARY TREES 

This section describes our scheme to embed a complete 

binary tree CBn into a crossed cube XQn with dilation two 

and unit expansion. Our scheme is based on the inorder 

labeling to embed CBn into XQn in a straight forward way. 

The inorder embedding is constructed by Algorithm 

Embedding Complete Binary Tree (ECBT). 

 

Algorithm ECBT 

Begin 

Label the nodes of the complete binary tree based on 

the inorder traversal using binary representation.  

Map each node of the complete binary tree to the node 

in the crossed cube with the corresponding binary 

representation. 

End 

 

Theorem 1: For all n, the inorder labeling of the complete 

binary tree embeds CBn within the crossed cube XQn with 

dilation two. 

Proof: Let βk be the binary string of length k with 1 in all 

positions.  For n  3, the inorder embedding is shown in 

Figure 2.  For n > 3, we prove the theorem by induction on 

the height of the binary tree.  Our induction basis is CB3, a 

dilation two embedding of CB3 into XQ3 is shown in 

Figure 2. Assume the theorem is true for an embedding of 

CBn-1 into XQn-1.  We now prove that the theorem is true 

for the embedding of CBn into XQn.  In XQn, consider the 

two subcubes XQ
0
n-1 and XQ

1
n-1.  By induction hypothesis, 

we can embed CBn-1 into XQ
0
n-1 and XQ

1
n-1, with dilation 

two.  Since the number of nodes in CBn-1 is less than the 

number of nodes in XQn-1 by one, then XQ
0
n-1 and XQ

1
n-1 

contain two extra-unused nodes located at addresses 01βn-2 

and 11βn-2, respectively.  We can use the extra-unused 

node in XQ
0
n-1, the CBn-1 of XQ

0
n-1, and the CBn-1 of XQ

1
n-1 

to construct the complete binary tree CBn with 2
n
-1 nodes. 

Next, we prove that the dilation of this embedding is two.  

We again use the routing algorithm of [12] to show that the 

length of the shortest path from the root of CBn to any of 

its children is of length two.  Let r∼lr be the shortest path 
from the root r of CBn to the root lr of the left complete 

100 110 

101 

111 

000  010 

001 011 
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binary subtree LCBn-1 and r∼rr be the shortest path from the 

root r of CBn to the root rr of the right complete binary 

subtree RCBn-1. r will appear at address 01βn-2, lr at address 

00βn-2, and rr at address 10βn-2.  Notice that r, lr, and rr are 

identical except for the left most two bits.  By using the 

routing algorithm, the shortest paths from 01βn-2 to 00βn-2 

and from 01βn-2  to 10βn-2 are of length two. So, the dilation 

of this embedding is two. 
 
     As an illustration to the resulted embedding, in the 

lowest level, each edge from a left child to its parent is 

mapped to the corresponding crossed cube edge between 

the images of the two nodes, while the edge between a 

right child to its parent is mapped to a path of length two, 

from the right child to the left child and from the left child 

to the parent.  In the higher level, each edge from a left 

child, or a right child, to its parent is mapped to the 

corresponding crossed cube edge between the images of 

the two nodes.  In all higher levels, each edge from a left 

child, or a right child, to its parent is mapped to a path of 

length two. Notice that the inorder embedding is very 

simple and straight forward. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The inorder embedding of CB3 into XQ3. 

 

IV. EMBEDDING QUAD TREES 

This section describes our recursive scheme to embed a 

complete quad tree CQ
n
 into its optimal crossed cube XQ

2n-

1
 with dilation two and unit expansion. We proceed in four 

steps. In the first step, CQ
n
 is decomposed into a four 

complete quad sub trees; a left complete quad sub tree 

ACQ
n-1

 with root a, a left middle complete quad sub tree 

BCQ
n-1

 with root b, a right middle complete quad sub tree 

CCQ
n-1

 with root c, a right complete quad sub tree DCQ
n-1
 

with root d, and a root r. In the second step, XQ
2n-1

 is 

decomposed into four sub cubes XQ
00

2n-3
, XQ

01

2n-3
, XQ

11

2n-

3
, and XQ

10

2n-3
.  In the third step, ACQ

n-1
 is embedded into 

XQ
00

2n-3
, BCQ

n-1
 is embedded into XQ

01

2n-3
, CCQ

n-1
 is 

embedded into XQ
11

2n-3
, DCQ

n-1
 is embedded into XQ

10

2n-3
, 

and the root r is embedded into one of the unused nodes in 

XO
00

2n-3
. In the last step, we construct CQ

n
 by finding the 

paths r∼a, r∼b, r∼c, and r∼d, each of at most length two.  

The embedding process is continued recursively by 

decomposing the complete quad sub trees and the crossed 

sub cubes, repeating the above steps, until we reach the 

leaves of the complete quad tree.  At the bottom level of 

the complete quad tree, each complete quad sub tree with 5 

nodes is mapped into a crossed sub cube of dimension 3. 

Next, we present Algorithm Embed Complete Quad Tree 

(ECQT) that uses a recursive divide and conquers 

technique to embed a complete quad tree CQ
n
 into its 

optimal crossed cube XQ2n-1. 

 

Algorithm ECQT 

Let δi be the binary string of length n with a 1 in position i 
and 0 in all other positions, θk be the binary string of 
length k with 0 in all positions, and ⊕ be the xor operator. 
Begin   

Decompose CQ
n
 to ACQ

n-1
, BCQ

n-1
, CCQ

n-1
, DCQ

n-1
, 

and r. 

Decompose XQ
2n-1

 to XQ
00

2n-3
, XQ

01

2n-3
, 

XQ
11

2n-3
, and XQ

10

 
2n-3

. 

Map the quad sub trees into the crossed sub cubes as 

follows: 

a. Embed ACQ
n-1

 into XQ
00

2n-3
, BCQ

n-1
 into 

XQ
01

2n-3
, CCQ

n-1
 into XQ

11

2n-3
, and DCQ

n-1
 into 

XQ
10

2n-3
.  a, b, c, and d will appear at addresses 

000θ
2n-4

, 010θ
2n-4

, 110θ
2n-4

, and 100θ
2n-4

,, 

respectively. 

b. Translate the embeddings in XQ
00

2n-3
 and 

XQ
10

2n-3
 by complementing the (2n-3)

th

 bit of 

each node.  Formally, if a tree node was 

mapped to address x then after the translation it 

will appear at address x ⊕ δ
2n-3

.  After the 

translation, the left root a and the right root d 

will appear at addresses 001θ
2n-3

 and 101θ
2n-4

, 

respectively. Therefore, the final position of a, 

b, c, and d are 001θ
2n-4

, 010θ
2n-4

, 110θ
2n-4

, and 

101θ
2n-4

,, respectively. 

c. Map the root r into the node with label 0 in 

XQ
00

2n-3
. 

Construct CQ
n
 from ACQ

n-1
, BCQ

n-1
, CQ

n-1
, DCQ

n-1
, 

and r by finding the four paths r~a, r~b, r~c, and r~d.  

The edges r-a and r-b of CQ
n
 are mapped to paths of 

length one in XO
2n-1

, while the edges r-c and r-d are 

mapped to paths of length two.  The shortest paths 

from r to c and from r to d are 000θ
2n-4 

- 010θ
2n-4

 - 

110θ
2n-4

 and 000θ
2n-4

 - 100θ
2n-4

 -101θ
2n-4

 ,respectively. 

End 

 

Theorem 2: For all n, Algorithm ECQT maps the complete 

quad tree CQ
n
 within the crossed cube XQ

2n-1
 with dilation 

two and unit expansion. 

Proof:  For n = 1, CQ
1
 can be easily embedded into XQ

1
.  

For n = 2, the existence of a mapping with dilation two is 

shown in Figure 4. Since the crossed cube is vertex 

symmetric, then we can relabel the crossed cube and any of 

the corner nodes of the sub cube XQ
3
 can be the root.  

000 010 110 100 

001 011 111 101 

011 

010 

001 

000 110 

011  

100 
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Figures 4-b and 4-c show two different kinds of possible 

embeddings that might be used during the embedding 

process. For n > 2, we prove this by induction on the 

height of the complete quad tree CQ
n
. Our induction basis 

is CQ
3
, a dilation two mapping of CQ

3
 into XQ

5
 is shown 

in Figure 5. Note that the figure shows only the positions 

of the roots, as the rest of the embedding follows directly 

from Figure 4. Assume the theorem is true for a mapping 

of CQ
n-1

 in XQ
2n-3

.  Now, we prove that the theorem is true 

for the embedding of CQ
n
 in XQ

2n-1
.  In XQ

2n-1
, consider 

the four sub cubes XQ
00

2n-3
, XQ

01

2n-3
, XQ

11

2n-3
, and XQ

10

2n-

3
.  By induction hypothesis, there exist a dilation two 

mapping from CQ
n-1

 to XQ
00

2n-3
, XQ

01

2n-3
, XQ

11

2n-3
, and 

XQ
10

2n-3
.  Since the number of nodes in CQ

n-1
 is less than 

the number of nodes in XQ
2n-3

, then XQ
00

2n-3
, XQ

01

2n-3
, 

XQ
11

2n-3
, and XQ

10

2n-3
 contain extra unused nodes.  Now, 

we can use the unused node with label 0 in XQ
00

2n-3
, the 

CQ
n-1

 of XQ
00

2n-3
, the CQ

n-1
 of XQ

01

2n-3
, the CQ

n-1
 of 

XQ
11

2n-3
, and the CQ

n-1
 of XQ

10

2n-3
 to construct the 

complete quad tree CQ
n
. To prove that the dilation of this 

mapping is two, we need to show that the length of the 

shortest path from the root r to any of its four children is at 

most two.  Clearly, the length of the paths r~a and r~b is 

one since they are mapped directly to edges in the crossed 

cube.  Let r~c be the shortest path from the root r of CQ
n
 to 

the root c of the right middle complete quad sub tree 

CCQ
n-1

 and r~d be the shortest path from the root r of CQ
n
 

to the root d of the right complete quad sub tree DCQ
n-1
. r 

will appear at address 000θ
2n-4

, c will appear at address 

110θ
2n-4

, and d will appear at address 101θ
2n-4

. Notice, that 

if we group the addresses of r,  c, and d into pairs of bits, 

from right to left, then they are pair-related except for the 

left most three bits. By using the routing algorithm of [6], 

the shortest path from 000θ
2n-4

 to 110θ
2n-4

 is 000θ
2n-4

 - 

010θ
2n-4

 -110θ
2n-4

 and from 000θ
2n-4

 to 101θ
2n-4

 is 000θ
2n-4

 -

100θ
2n-4

 -101θ
2n-4

.  So, the length of the paths r~c and r~d 

are two. Therefore, the dilation of this embedding is two. 
 
 

 

 

 

 

 

 (a) 

 

 

 

 

 

 

(b)                                           (c) 

Figure 4: Embedding CQ1 into the sub cube XQ3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Embedding CQ3 into XQ5. 

 

V. EMBEDDING CYCLES 

Given a cycle C2n with 2
n
 nodes, consider the problem of 

assigning the cycle nodes to the nodes of the crossed cube 

XQn such that adjacency is preserved. Now, given any two 

adjacent nodes in the cycle, their images by this 

embedding should be neighbors in the crossed cube 

through some dimension i, where 1 ≤ i ≤ n.  We can view 

such an embedding as a sequence of dimensions crossed by 

adjacent nodes.  We call such a sequence the embedding 

sequence, denoted by ES = (d1, d2, ..., d2n), where di ∈ {1, 

..., n} for all 1 ≤ i ≤ 2n
. Figure 6 shows two different 

embeddings of the cycle C23 into the crossed cube XQ3.  It 

is more convenient to view the embedded cycle as will as 

the crossed cube in the way shown in Figure 6.  The 

embedding sequence of C23 is ES = (1, 3, 1, 2, 1, 3, 1, 2).  

For example, in Figure 6-a, notice that nodes 000 and 001 

are connected by a link through dimension 1, 001 and 111 

are connected by a link through dimension 3, 111 and 110 

are connected by a link through dimension 1, 110 and 100 

are connected by a link through dimension 2, and so on.  

The embedding sequence ES can be generated using 

Algorithm ES. 

 

Algorithm ES 

Let n be the dimension of the crossed cube and the vertical 

bar be the concatenation operator. 

Begin 

ES ← 1 

For i ← 3 to n do 

ES ← ESiES 
ES ← ES2ES2 

End 

 

     The embedding sequence is generated by applying 

Algorithm ES on n, where n is the dimension of the 

crossed cube.  The number of nodes in the crossed cube is 

equal to the number of nodes in the embedded cycle, which 

is 2
n
 nodes.  Thus, the embedding sequence of the cycle 

C24 is ES = (1, 3, 1, 4, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 1, 2) and 

the embedding sequence of the cycle C25 is ES = (1, 3, 1, 4, 

1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 

1, 3, 1, 2).  The embedding sequence corresponds to the 

extended binary-reflected Gray code embedding of a cycle 

into a crossed cube.  The binary-reflected Gray code is the 
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most common technique to embed a cycle into a fault-free 

hypercube. Notice that the same embedding sequence may 

result in different embeddings of C2n into XQn depending 

on the crossed cube node that initiates the cycle 

construction.  Among all different embeddings, we are 

interested in one kind. The embedding when the node that 

initiates the cycle construction in the crossed cube is the 

upper leftmost node, node with label 0. This will not 

violate the generalization of the technique since the crossed 

cube is node and vertex symmetric, which means that we 

can relabel the nodes, where any node can be labeled as 

node 0, and hence initiates the construction of the cycle.  In 

Figure 6-a, the cycle is initiated by node 000, while in 

Figure 6-b the cycle is initiated by node 001.  

 

 

 

 

 

 

 

 

 

(a) Node 000 initiating the embedding sequence. 

 

 

 

 

 

 

 

 

 

(b) Node 001 initiating the embedding sequence.  

Figure 6:  The embedding sequence. 

 

Theorem 3: For every n, Algorithm ES will generate the 

embedding sequence to construct a cycle of size 2
n
 in a 

crossed cube of dimension n. 

Proof: We prove this by induction on the dimension of the 

crossed cube. Our induction basis is XQ2, it is trivial that a 

cycle of size 4 can be easily constructed in XQ2 using the 

embedding sequence ES = (1, 2, 1, 2). Assume the theorem 

is true for the construction of a cycle of size 2
n-1 

in a 

crossed cube of dimension n-1.  We now prove that the 

theorem is true for the construction of C2n in XQn.  Let G 

be any undirected labeled graph, then G
b
 is obtained from 

G by prefixing every vertex label with b.  Consider the two 

crossed sub cubes XQ
0
n-1 and XQ

1
n-1.  By induction 

hypothesis, we can construct a cycle of size 2
n-1 

in both 

XQ
0
n-1 and XQ

1
n-1. Let their embedding sequence be ES = 

Sn-12Sn-12, where, Sn is a sequence of dimensions 

recursively defined as follows: S2 = 1 and Sn-1 = Sn-2nSn-

2. Now, we combine two cycles, each of size 2
n-1
, to come 

up with a cycle of size 2
n
.  This is done by replacing the 

first link that goes through dimension 2 of the first cycle 

and the second link that goes through dimension 2 of the 

second cycle by two links that go through dimension n.  

The embedding sequence of the new cycle C2n is ES =  Sn-

1nSn-12Sn-1nSn-12 =  Sn2Sn2, which is the 

same embedding sequence generated by Algorithm ES. 
 

     Next, we present Algorithm Hamiltonian Circuit (HC) 

that uses a recursive divide and conquers technique to 

embed a cycle C2n into a crossed cube XQn. 

 

Algorithm HC 

Begin 

Partition XQn into 2
n-3
 disjoint crossed cubes, each of 

dimension 3. 

Embed the cycle C23 into each sub cube using the 

embedding sequence ES = (1, 3, 1, 2, 1, 3, 1, 2). 

Connect the 2
n-3 

cycles, each of size 8, through the 

upper, or lower, links to come up with a cycle of 

size C2n. 

End 

 

Theorem 4: For every n, Algorithm HC will embed a 

Hamiltonian cycle of size 2
n 

in a crossed cube of 

dimension n. 

Proof: We prove this by induction on the dimension of the 

crossed cube.  Our induction basis is XQ3, the embedding 

of a cycle of size 2
3
 into a crossed cube of dimension 3 is 

shown in Figure 6.  Assume the theorem is true for the 

construction of a cycle of size 2
n-1 

in a crossed cube of 

dimension n-1.  We now prove that the theorem is true for 

the construction of C2n in XQn. Consider the two crossed 

sub cubes XQ
0
n-1 and XQ

1
n-1.  By induction hypothesis, we 

can construct a cycle of size 2
n-1 

in both XQ
0
n-1 and XQ

1
n-1. 

Now, we combine two cycles, each of size 2
n-1
, to come up 

with a cycle of size 2
n
.  This is done by replacing the first 

link that goes through dimension 2 of the first cycle 

constructed in XQ
0
n-1 and the first link that goes through 

dimension 2 in of the second cycle constructed in XQ
1
n-1 

by links that go through dimension n. Note the use of the 

upper links of dimension n when the embedding sequence 

is generated by node 0, while the lower crossed links of 

dimension n are used when the embedding sequence is 

generated by node 1, as shown in Figure 7. 
 
 

VI. CONCLUSIONS 

The problem of embedding one interconnection network 

into another is very important in the area of parallel 

computing for portability of algorithms across various 

architectures, layout of circuits in VLSI, and mapping 

logical data structures into computer memories. The 

importance of trees comes from the fact that this class of 

structures is useful in the solution of banded and sparse 

systems, by direct elimination, and captures the essence of 

divide and conquers algorithms. The important of cycles 

and rings comes from the fact that it is the task graph of 

many basic operations in parallel computing. The 

hypercube is one of the most popular interconnection 

networks due to many of its attractive properties and its 

suitability for general purpose parallel processing.  An 

attractive version of the hypercube is the crossed cube.  It 

preserves many properties of the hypercube and most 

importantly reduces the diameter by a factor of two. This 

paper has presented different schemes to show the ability 

of the crossed cube as a versatile architecture to simulate 

other interconnection networks efficiently. We present new 

schemes to embed complete binary trees, complete quad 

trees, and cycles into crossed cubes. A good problem will 

be to improve the dilation on embedding trees into crossed 
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cubes. Another interesting problem is to generalize the 

schemes to embed trees and cycles in the presence of 

faults. 

 

 

 

 

 

 

 

(a) Using upper links when ES initiated by 000. 

 

 

 

 

 

(b) Using lower links when ES initiated by 001. 

Figure 7: The recursive construction of the cycle C2n in a 

fault-free environment. 

 

REFERENCES 

[1] E. Abuelrub, "The Hamiltonicity of Crossed Cubes in 

the Presence of Faults," Engineering Letters, vol. 16, 

no. 3, pp. 453-459, 2008. 

[2] L. Barasch, S. Lakshmivarahan, and S. Dhall, 

"Embedding Arbitrary Meshes and Complete Binary 

Trees in Generalized Hypercubes," Proceedings of 

the 1
st
 IEEE Symposium on Parallel and Distributed 

Processing, pp. 202-209, 1989. 

[3] A. Bardera, M. Feixas, I. Boada, J. Rigau, and M. 

Sbert, "Medical Image Registration Based on BSP 

and Quad-Tree Partitioning", Proceedings of 

WBIR'2006, pp. 1-8, 2006. 

[4] C. Chang, T. Sung, and L. Hsu, "Edge Congestion 

and Topological Properties of Crossed Cubes," IEEE 

Transactions on Parallel and Distributed Systems, 

vol. 11, no. 1, pp. 64-80, 2006. 

[5] A. Dingle and I. Sudborough, "Simulating Binary 

Trees and X-Trees on Pyramid Networks," 

Proceedings of the 1
st
 IEEE Symposium on Parallel 

and Distributed Processing, pp. 210-219, 1989. 
[6] K. Efe, "The Crossed Cube Architecture for Parallel 

Computation," IEEE Transactions on Parallel and 

Distributed Systems, vol. 3, no. 5, pp. 513-524, 1992. 

[7] A. El-Amaway and S. Latifi, "Properties and 

Performance of  Folded Hypercubes," IEEE 

Transactions on Parallel and Distributed Systems, 

vol. 2, no. 1, pp. 31-42, 1991. 

[8] J. Fan, X. Lin, and X. Jia, "Non-Pancylicity and 

Edge-Pancyclicity of Crossed Cubes," Information 

Processing Letters, vol. 93, no. 3, pp. 133-138, 2005. 

[9] J. Fan, X. Lin, and X. Jia, "Optimal Path Embedding 

in Crossed Cubes," IEEE Transactions on Parallel 

and Distributed Systems, vol. 16, no. 12, pp. 1190-

1200, 2005. 

[10] J. Fu and G. Chen, "Hamiltonicity of the Hierarchical 

Cubic Network," Theory of Computer Systems, vol. 

35, pp. 59-79, 2008. 

[11] H. Keh and J. Lin, "On Fault-Tolerance Embedding 

of Hamiltonian Cycles, Linear Arrays, and Rings in a 

Flexible Hypercube," Parallel Computing, vol. 26, 

no. 6, pp. 769-781, 2000. 

[12] S. Latifi and S. Zheng, "Optimal Simulation of Linear 

Array and Ring Architectures on Multiply-Twisted 

Hypercube," Proceedings of the 11
th
 International 

IEEE Conference on Computers and 

Communications, 1992.  

[13] S. Lee and H. Ho, "A 1.5 Approximation Algorithm 

for Embedding Hyperedges in a Cycle," IEEE 

Transactions on Parallel and Distributed Systems, 

vol. 16, no. 6, pp. 481-487, June 2005. 

[14] T. Leighton, Introduction to Parallel Algorithms and 

Architecture: Arrays, Trees, Hypercubes, Morgan 

Kaufmann, 1992. 

[15] J. Lin, "Embedding Hamiltonian Cycles, Linear 

Arrays, and Rings in a Faulty Supercube," 

International Journal of High Speed Computing, vol. 

11, no. 3, pp. 189-201, 2000. 

[16] M. Ma and J. Xu, "Panconnectivity of Locally 

Twisted Cubes," Applied Mathematical Letters, vol. 

17, no. 7, pp. 674-677, 2006. 

[17] T. Markas and J. Reif, "Quad Tree Structures for 

Image Compression Applications", Information 

Processing Letters, vol. 28, no. 6, pp. 707-722, 1992. 

[18] F. Preparata and J. Vuillemin, "The Cube-Connected 

Cycles: A Versatile Network for Parallel 

Computation," Communications of the ACM, vol. 24, 

no. 5, pp. 3000-309, 1981. 

[19] L. Topi, R. Parisi, and A. Uncini, "Spline Recurrent 

Neural Network for Quad-Tree Video Coding," 

Proceedings of WIRN'2002, pp. 90-98, 2002. 

[20] Y. Saad and M. Schultz, "Topological Properties of 

the Hypercube," IEEE Transactions on Computers, 

vol. 37, no. 7, pp. 867-872, July 1988, 

[21] L. Youyao, "A Hypercube-based Scalable 

Interconnection Network for Massively Parallel 

Computing," Journal of Computers, vol. 3, no. 10, 

October 2008. 

[22] Q. Zhu, J. Hou, and M. Xu, "On Reliability of the 

Folded Hypercubes," Information Science, vol. 177, 

no. 8, pp. 1782-1788, 2008. 

 

 

 

 

001 

2  2 

001 

2  2 

4 4 

2 2 2 2 
4 

4 000 000 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009


