

Software Fault Proneness Prediction Using
Support Vector Machines

Yogesh Singh, Arvinder Kaur, Ruchika Malhotra

Abstract— Empirical validation of software metrics
to predict quality using machine learning methods is
important to ensure their practical relevance in the
software organizations. In this paper, we build a
Support Vector Machine (SVM) model to find the
relationship between object-oriented metrics given
by Chidamber and Kemerer and fault proneness.
The proposed model is empirically evaluated using
public domain KC1 NASA data set. The
performance of the SVM method was evaluated by
Receiver Operating Characteristic (ROC) analysis.
Based on these results, it is reasonable to claim that
such models could help for planning and performing
testing by focusing resources on fault-prone parts of
the design and code. Thus, the study shows that SVM
method may also be used in constructing software
quality models.

Keywords: Metrics, Object-oriented, Software
Quality, Empirical validation, Fault prediction,
Support vector machine, Receiver Operating
Characteristics analysis

I. INTRODUCTION

As the complexity and the constraints under which
the software is developed are increasing, it is
difficult to produce software without faults. One
way to deal with this problem is to predict
important software quality attributes such as fault-
proneness, effort, testability, maintainability, and
reliability during early phases of software
development. The software metrics [4, 9, 10, 14,
15, 24, 25, 29-32, 41] may be used in predicting
these quality attributes.

Manuscript received March 21, 2009.
Prof. Yogesh Singh is with Guru Gobind Singh Indraprastha
University, Delhi, India (email: ys66@rediffmail.com)
Dr. Arvinder Kaur is with Guru Gobind Singh Indraprastha
University, Delhi, India (e-mail:
arvinderkaurtakkar@yahoo.com.)
Ruchika Malhotra (Corresponding Author phone: 91-011-
26431421) is with Guru Gobind Singh Indraprastha University,
Delhi, India (email: ruchikamalhotra2004@yahoo.com)

The behaviour of several quantitative models
ranging from using simple linear discriminant
analysis to more complex logistic regression,
decision tree, and SVM have been proposed. The
regression and machine learning approaches are
inherently different, raising the question to analyze
the performance of these methods.
Several empirical studies have been carried out to
predict the fault proneness models such as [1, 2, 5,
7, 11, 12, 14, 16, 20, 21, 23, 27, 34, 35, 40, 44].
There is a need to empirically validate the machine
learning methods in predicting software quality
attributes. Therefore, more data-based empirical
studies that can be used to verify the capability of
machine learning methods are needed. The
evidence gathered through these empirical studies
is considered to be the strongest support for testing
a given hypothesis.
Thus, there is a need for both 1) empirically
validating the results of machine leaning methods
such as SVM and 2) finding the relation between
OO metrics given by Chidamber and Kemerer
[15] and fault proneness models. Now we briefly
describe the work done in this study. In this paper,
we investigate the following issue:

• Are the fault proneness models predicted
using SVM method feasible and
adaptable?

• How accurately and precisely do the OO
metrics predict faults?

In order to perform the analysis we validate the
performance of the SVM method using public
domain KC1 NASA data set [42]. The 145 classes
in this data were developed using C++ language.
The contributions of this paper are summarized as
follows: First, we performed the analysis of public
domain NASA data set [42], therefore analyzing
valuable data in an important area where empirical
studies and data are limited. Second, we applied
SVM method to predict the effect of OO metrics
on fault proneness. To the best of our knowledge,
there has been no such

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

previous research using SVM method to predict
software fault proneness. The proposed results
showed that SVM method predict faulty classes
with high accuracy. However, since our analysis is
based on only one data set, this study should be
replicated on different data sets to generalize our
findings.
The paper is organized as follows: Section 2
summarizes the metrics studied, and describes
sources from which data is collected. Section 3
presents the overview of the SVM method. The
results of the study are given in section 4. The
model is evaluated in section 5. Conclusions of the
research are presented in section 6.

II. RESEARCH

BACKGROUND

In this section, we present the summary of metrics
studied in this paper (Section A), and empirical
data collection (Section B).

A. Dependent and Independent Variables

The binary dependent variable in our study is fault
proneness. The goal of our study is to explore
empirically the relationship between OO metrics

and fault proneness. Fault proneness is defined as
the probability of fault detection in a class [2]. We
use machine learning methods to predict the
probability of fault proneness. Our dependent
variable will be predicted based on the faults found
during software development life cycle. The
metrics given by [15] are summarized in Table 1.

B. Empirical Data Collection

This study makes use of the public domain data set
KC1 from the NASA Metrics Data Program [42].
The data in KC1 was collected from a storage
management system for receiving/processing
ground data, which was implemented in the C++
programming language. This system consists of
145 classes that comprise of 2107 methods, with
40K lines of code. KC1 provides both class-level
and method-level static metrics. At the method
level, 21 software product metrics based on
product’s complexity, size and vocabulary are
given. Five types of defects such as the number of
defects and density of defects are also given. At
the class level, values of 10 metrics are computed
including seven metrics given by Chidamber and
Kemerer [15]. These seven OO metrics are taken
in our study (see Table 1) for analyses.

TABLE 1

 METRICS STUDIED
Metric Definition

Coupling between Objects
(CBO)

CBO for a class is count of the number of other classes to which it is coupled
and vice versa.

Lack of Cohesion (LCOM) For each data field in a class, the percentage of the methods in the class
using that data field; the percentages are averaged then subtracted from
100%.

Number of Children (NOC) The NOC is the number of immediate subclasses of a class in a hierarchy.
Depth of Inheritance (DIT) The depth of a class within the inheritance hierarchy is the maximum

number of steps from the class node to the root of the tree and is measured
by the number of ancestor classes.

Weighted Methods per Class
(WMC)

A count of methods implemented within a class.

Response for a Class (RFC) A count of methods implemented within a class plus the number of methods
accessible to an object class due to inheritance.

Source Lines Of Code
(SLOC)

It counts the lines of code.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

III. MODEL PREDICTION USING SUPPORT
VECTOR MACHINE (SVM) METHOD

SVM are useful tools for performing data
classification, and have been successfully used in
applications such as face identification, medical
diagnosis, text classification [43], pattern
recognition [13], chinese character classification
[45], and identification of organisms [33]. SVM
constructs an N-dimensional hyperplane that
optimally separates the data set into two
categories. The purpose of SVM modeling is to
find the optimal hyperplane that separates clusters
of vector in such a way that cases with one
category of the dependent variable on one side of
the plane and the cases with the other category on
the other side of the plane [37]. The support
vectors are the vectors near the hyperplane. The
SVM modeling finds the hyperpalne that is
oriented so that the margin between the support
vectors is maximized. When the points are
separated by a nonlinear region, SVM handles this
by using a kernel function inorder to map the data
into a different space when a hyperplane can be
used to do the separation. Details on SVM can be
found in [17, 18].
The recommended kernel function is the Radial
basis Function (RBF) [37]. Thus, we used RBF
function in SVM modeling to predict faulty classes
in this study. The RBF kernel maps non-linearly
data into a higher dimensional space, so it can
handle non linear relationships between the
dependent and the independent variables. Figure 1
shows the RBF kernel. One category of the

dependent variable is shown as rectangles and the
Given a set of (xi, yi),………,(xm, ym) and

}1,1{ +−∈iy training samples. iα =(i=1,……,m) is
a lagrangian multipliers. K(xi,yi) is called a kernel
function and b is a bias. The discriminant function
D of two class SVM is given below [45]:

∑
=

+=
m

i

iii bxxKyxD
1

),()(α

(1)

Then an input pattern x is classified as [45]:

⎭
⎬
⎫

⎩
⎨
⎧

<−
>+

=
0)(if 1
0)(if 1

xD
xD

x
(2)

The performance of the models predicted was
evaluated using sensitivity, specificity, precision,
completeness, and Area Under the Curve (AUC).
Details on these measures can be found in [19].
The ROC curve, which is defined as a plot of
sensitivity on the y-coordinate versus its 1-
specificity on the x coordinate, is an effective
method of evaluating the quality or performance of
the predicted models [22].

IV. ANALYSIS RESULTS

This section presents the analysis results,
following the procedure described in Section 3.
The results of the model predicted and evaluated
are presented.

Figure 1: Radial basis function

other as triangles. The shaded circles and
rectangles are support vectors.

Results of prediction model: Table 2 shows the
sensitivity, specificity, precision, completeness,
and cutoff point of each metric and the model
predicted. SLOC and CBO metrics have the
highest values of the sensitivity and completeness.
However, in case of NOC metric all the classes
were predicted to be non faulty hence the results
are not shown, as testing all the classes will be a
high waste of the testing resources.
The model was applied to 145 classes and Table 3
presents the results of correctness of the fault
proneness model predicted. As shown in Table 2,
the cut off point for the model build to predict fault
proneness is 0.44. Out of 59 classes, actually fault
prone, 45 classes were predicted to be fault prone.
The sensitivity of the model is 76.27 percent.
Similarly, 70 out of 86 classes were predicted not
to be fault prone. Thus, the specificity of the model
is 81.39 percent. The completeness of the model is
85.66 percent. Thus,

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

the accuracy of the model is very high.

V. MODEL EVALUATION USING ROC
ANALYSIS

The accuracy of the models predicted is somewhat
optimistic since the models are applied on same
data set from which they are derived. To predict
accuracy of the model it should be applied on
different data sets thus we performed 10-cross
validation of the SVM model. Details on cross
validation can be found in [39]. Table 4
summarizes the results of 10-cross validation of
models using the SVM method. The AUC of the
model predicted is 0.89.
In line with other predictive models, likewise
findings of this study need to be externally
validated. Although regression analysis is widely

used method in literature, our results show that
performance of the SVM model is good. In a
previous study, we validated SVM using open
source data set [38]. In [38], results also showed
good performance of the SVM method. Therefore,
it appears that the model predicted using machine-
learning methods might lead to development of
optimum software quality models for predicting
fault prone classes.
Planning and resource allocating for inspection
and testing is difficult and it is usually done on
empirical basis. The model predicted in the above
section could be of great help for planning and
executing testing activities. To illustrate how the
prediction model can be applied in practice,
consider Figure 2. The values for the predicted
fault proneness were taken from the results of
validation of the models. On X-axis, we plot

TABLE 2

SENSITIVITY, SPECIFICITY, PRECISION, AND COMPLETENESS
Metric Sensitivity Specificity Precision Completeness Cutoff
CBO 76.27 68.6 71.7 82.24 0.40
WMC 55.93 65.1 61.37 71.18 0.41
RFC 52.54 66.27 60.68 67.13 0.37
SLOC 62.7 75.58 70.34 76.32 0.32
LCOM 59.32 63.95 62.75 65.88 0.33
NOC - - - - -
DIT 71.18 29 46.2 78.34 0.38
Model IV 76.27 81.39 78.62 85.66 0.44

TABLE 3

 PREDICTED CORRECTNESS OF MODEL

TABLE 4
. RESULTS OF 10-CROSS VALIDATION OF MODELS

SUPPORT VECTOR MACHINE
 Model
Cutoff point
Sensitivity
Specificity
Precision
Completeness
AUC

0.45
69.49
82.55
77.24
79.59
0.89

Predicted

 Po<=0.43 Po>0.43

Observed Not faulty Faulty
Not faulty

70 16

Faulty

14(92) 45(550)

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

the probability of classes sorted in increasing order
of their cutoff points. On Y-axis each column
presents two lines. The first and second line shows
the sensitivity and completeness of the predicted
model, respectively. For example, in Figure 2 at
X=0, the sensitivity of the model is 100% and the
completeness is 100%.

VI. CONCLUSIONS

The goal of our research is to empirically analyze
the performance of the SVM method. We find the
individual and combined effect of each metric on
fault proneness of classes. Based on public domain
NASA data set KC1, we empirically analyzed the
performance of the SVM method using ROC
analysis.
We analyzed OO design metrics given by
Chidamber and Kemerer. Our main results are as
follows:

• The CBO, RFC, and SLOC metrics
were found to be related to fault
proneness. NOC and DIT metric was
not found to be significantly related to
fault proneness. Thus, the results of
machine learning method (SVM) show
that usefulness of NOC and DIT metric
is poor.

• The SVM method yielded good AUC
using ROC analysis. This study
confirms that construction of the SVM
models is feasible, adaptable to OO
systems, and useful in predicting fault
prone classes. While research continues,
practitioners and researchers may apply
machine learning methods for
constructing the model to predict faulty
classes.

As in all empirical studies, the relationship we
established is valid only for certain population of
systems. In this case, the authors can roughly
characterize this population as “object-oriented,
large-sized systems.”
We plan to replicate our study to predict the
models based on machine learning algorithms such
as genetic algorithms. We will also focus on cost
benefit analysis of models that will help to
determine whether a given fault proneness model
would be economically viable.

0

20

40

60

80

100

0
0.0

8
0.1

6
0.2

4
0.3

2 0.4 0.4
8

0.5
6

0.6
4

0.7
2 0.8 0.8

8
0.9

6

Cutoff

Sensitivity Completeness

Figure 2: Sensitivity and Completeness of the
Model

REFERENCES

[1] Aggarwal K.K., Singh Y., Kaur A., Malhotra R. (2007).
Application of Artificial Neural Network for Predicting
Fault Proneness Models, International Conference on
Information Systems, Technology and. Management
(ICISTM 2007), March 12-13, New Delhi, India.

[2] Aggarwal K.K., Singh Y., Kaur A., Malhotra R. (2008).
Empirical Analysis for Investigating the Effect of Object-
Oriented Metrics on Fault Proneness: A Replicated Case
Study, Forthcoming in Software Process Improvement
and Practice, Wiley.

[3] Aggarwal K.K., Singh Y., Kaur A., Malhotra R. (2006).
Empirical study of object-oriented metrics. Journal of
Object Technology, 5(8), 149-173.

[4] Aggarwal K.K., Singh Y., Kaur A., Malhotra R. (2005).
Software reuse metrics for object-oriented systems. In
Proceedings of the Third ACIS Int’l Conference on
Software Engineering Research, Management and
Applications (SERA ’05), 48-55.

[5] Aggarwal K.K., Singh Y., Kaur A., Malhotra R. (2006).
Investigating the Effect of Coupling Metrics on Fault
Proneness in Object-Oriented Systems. Software Quality
Professional, 8(4), 4-16.

[6] Barnett V., Price T. (1995). Outliers in Statistical Data.
John Wiley & Sons.

[7] Basili,V., Briand, L., and Melo, W. (1996). A validation
of object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering, 22(10), 751-
761.

[8] Binkley, A., and Schach, S. (1998). Validation of the
coupling dependency metric as a risk predictor. In
Proceedings of the International Conference on Software
Engineering, 452-455.

[9] Briand, L., Daly, W., and Wust J. (1998). Unified
framework for cohesion measurement in object-oriented
systems. Empirical Software Engineering, 3(1), 65-117.

[10] Briand, L., Daly, W., and Wust J. (1999). A unified
framework for coupling measurement in object-oriented
systems. IEEE Transactions on Software Engineering ,
25(1), 91-121.

[11] Briand, L., Daly, W., and Wust J. (2000). Exploring the
relationships between design measures and software
quality. Journal of Systems and Software, 51(3), 245-273.

[12] Briand L., Wüst J., Lounis H. (2001). Replicated Case
Studies for Investigating Quality Factors in Object-
Oriented Designs, Empirical Software Engineering: An
International Journal , 6(1), 11-58.

[13] Burges, C. (1998). A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery 2, 121–167.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

[14] Cartwright, M., and Shepperd, M. (1999). An empirical
investigation of an object-oriented software system. IEEE
Transactions of Software Engineering, 26(8), 786-796.

[15] Chidamber, S., and Kamerer, C. (1994). A metrics suite
for object-oriented design. IEEE Transactions on
Software Engineering , 20(6), 476-493.

[16] Chidamber, S., Darcy, D., and Kemerer, C. (1998).
Managerial use of metrics for object-oriented software:
An exploratory analysis. IEEE Transactions on Software
Engineering, 24(8), 629-639.

[17] Cortes, C., Vapnik, V. (1995). Support-vector networks.
Machine Learning 20, 273–297.

[18] Cristianini, N., Shawe-Taylor, J. (2000). An Introduction
to Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press,
Cambridge, UK.

[19] El Emam, K., Benlarbi, S., Goel, N. And Rai, S. 1999. A
Validation of Object-Oriented Metrics, Technical Report
ERB-1063, NRC.

[20] El Emam, K., Benlarbi, S., Goel, N., and Rai, S. (2001).
The Confounding Effect of Class Size on The Validity of
Object-Oriented Metrics. IEEE Transactions on Software
Engineering, 27(7), 630-650.

[21] Gyimothy, T., Ferenc, R., Siket, I. (2005). Empirical
validation of object-oriented metrics on open source
software for fault prediction, IEEE Trans. Software
Engineering, 31 (10), 897 – 910.

[22] Hanley, J., McNeil, BJ. (1982). The meaning and use of
the area under a Receiver Operating Characteristic ROC
curve. Radiology, 143: 29-36.

[23] Harrison, R., Counsell, S. J., and Nithi, R.V. (1998). An
evaluation of MOOD set of object-oriented software
metrics. IEEE Transactions on Software Engineering,
24(6), 491-496.

[24] Henderson-Sellers, B. (1996). Object-oriented metrics,
measures of complexity. Englewood Cliffs, N.J.: Prentice
Hall.

[25] Hitz, M., and Montazeri, B. (1995). Measuring coupling
and cohesion in object-oriented systems. In Proceedings
of the International Symposium on Applied Corporate
Computing, Monterrey, Mexico.

[26] Hosmer, D., and Lemeshow, S. (1989). Applied logistic
regression. New York: John Wiley and Sons.

[27] Khoshgaftaar, T.M., Allen, E.D., Hudepohl, J.P, Aud, S.J.
(1997). Application of neural networks to software quality
modeling of a very large telecommunications system,"
IEEE Transactions on Neural Networks, 8(4), 902-909.

[28] Kothari, C. R. (2004). Research Methodology. Methods
and Techniques. New Delhi: New Age International
Limited.

[29] Lake, A., and Cook, C. (1994). Use of factor analysis to
develop OOP software complexity metrics. In
Proceedings of the 6th Annual Oregon Workshop on
Software Metrics, Silver Falls, Oregon.

[30] Lee, Y., Liang, B., Wu, S., and Wang, F. (1995).
Measuring the coupling and cohesion of an object-
oriented program based on information flow. In
Proceedings of the International Conference on Software
Quality, Maribor, Slovenia.

[31] Li, W., and Henry, S. (1993). Object-oriented metrics that
predict maintainability. Journal of Systems and Software,
23(2), 111-122.

[32] Lorenz, M., and Kidd, J. (1994). Object-oriented software
metrics. Englewood Cliffs, N.J.: Prentice-Hall.

[33] Morris, C., Autret, A., Boddy, L. (2001). Support vector
machines for identifying organisms-a comparison with
strongly partitioned radial basis function networks.
Ecological Modeling 146, 57–67.

[34] Olague, H., Etzkorn, L., Gholston, S., and Quattlebaum,
S. (2007). Empirical Validation of Three Software
Metrics Suites to Predict Fault-Proneness of Object-
Oriented Classes Developed Using Highly Iterative or
Agile Software Development Processes. IEEE
Transactions on software Engineering, 33(8), 402-419.

[35] Pai, G. (2007). Empirical analysis of Software Fault
Content and Fault Proneness Using Bayesian Methods,
IEEE Transactions on software Engineering, 33(10), 675-
686.

[36] Porter, A., Selly, R. (1990). Empirically guided Software
Development using Metric-Based Classification Trees,
IEEE Software, 7(2), 46-54.

[37] Sherrod, P. (2003) DTreg Predictive Modeling Software.
[38] Singh, Y., Arvinder, K., Malhotra, R. (2009). Application

of Support Vector Machine to Predict Fault Prone
Classes, ACM SIGSOFT Software Engineering Notes,
34(9), 1-6.

[39] Stone, M. (1974). Cross-validatory choice and assessment
of statistical predictions. J. Royal Stat. Soc., 36, 111-147.

[40] Tang, M.H, Kao,, M.H., and Chen, M.H. (1999). An
Empirical Study on Object-Oriented Metrics, In
Proceedings of Metrics, 242-249.

[41] Tegarden, D., Sheetz, S., and Monarchi, D. (1995). A
software complexity model of object-oriented systems.
Decision Support Systems 13 (3-4), 241-262.

[42] www.mdp.ivv.nasa.gov, NASA Metrics data Repository.
[43] Wang, X., Bi, D., and Wang, S. (2007). Fault recognition

with Labeled multi-category’, Third conference on
Natural Computation, Haikou, China.

[44] Yuming, Z. and Hareton, L. (2006). Empirical analysis of
Object-Oriented Design Metrics for predicting high
severity faults. IEEE Transactions on Software
Engineering, 32(10), 771-784.

[45] Zhao, L., Takagi, N. (2007). An application of Support
vector machines to Chinese character classification
problem. IEEE International Conference on systems, Man
and Cybernetics, Montreal.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

