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Abstract— Empirical validation of software metrics 
to predict quality using machine learning methods is 
important to ensure their practical relevance in the 
software organizations. In this paper, we build a 
Support Vector Machine (SVM) model to find the 
relationship between object-oriented metrics given 
by Chidamber and Kemerer and fault proneness. 
The proposed model is empirically evaluated using 
public domain KC1 NASA data set. The 
performance of the SVM method was evaluated by 
Receiver Operating Characteristic (ROC) analysis. 
Based on these results, it is reasonable to claim that 
such models could help for planning and performing 
testing by focusing resources on fault-prone parts of 
the design and code. Thus, the study shows that SVM 
method may also be used in constructing software 
quality models.  
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I. INTRODUCTION 
 
As the complexity and the constraints under which 
the software is developed are increasing, it is 
difficult to produce software without faults. One 
way to deal with this problem is to predict 
important software quality attributes such as fault-
proneness, effort, testability, maintainability, and 
reliability during early phases of software 
development. The software metrics [4, 9, 10, 14, 
15, 24, 25, 29-32, 41] may be used in predicting 
these quality attributes.   
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The behaviour of several quantitative models 
ranging from using simple linear discriminant 
analysis to more complex logistic regression, 
decision tree, and SVM have been proposed. The 
regression and machine learning approaches are 
inherently different, raising the question to analyze 
the performance of these methods. 
Several empirical studies have been carried out to 
predict the fault proneness models such as [1, 2, 5, 
7, 11, 12, 14, 16, 20, 21, 23, 27, 34, 35, 40, 44]. 
There is a need to empirically validate the machine 
learning methods in predicting software quality 
attributes. Therefore, more data-based empirical 
studies that can be used to verify the capability of 
machine learning methods are needed. The 
evidence gathered through these empirical studies 
is considered to be the strongest support for testing 
a given hypothesis.  
Thus, there is a need for both 1) empirically 
validating the results of machine leaning methods 
such as SVM and 2) finding the relation between 
OO metrics given  by Chidamber and Kemerer 
[15] and fault proneness models. Now we briefly 
describe the work done in this study. In this paper, 
we investigate the following issue: 

• Are the fault proneness models predicted 
using SVM method feasible and 
adaptable? 

• How accurately and precisely do the OO 
metrics predict faults? 

In order to perform the analysis we validate the 
performance of the SVM method using public 
domain KC1 NASA data set [42]. The 145 classes 
in this data were developed using C++ language. 
The contributions of this paper are summarized as 
follows: First, we performed the analysis of public 
domain NASA data set [42], therefore analyzing 
valuable data in an important area where empirical 
studies and data are limited. Second, we applied 
SVM method to predict the effect of OO metrics 
on fault proneness. To the best of our knowledge, 
there has been no such 
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previous research using SVM method to predict 
software fault proneness. The proposed results 
showed that SVM method predict faulty classes 
with high accuracy. However, since our analysis is 
based on only one data set, this study should be 
replicated on different data sets to generalize our 
findings.  
The paper is organized as follows: Section 2 
summarizes the metrics studied, and describes 
sources from which data is collected. Section 3 
presents the overview of the SVM method. The 
results of the study are given in section 4. The 
model is evaluated in section 5. Conclusions of the 
research are presented in section 6.  

 
II. RESEARCH 

BACKGROUND 
 
In this section, we present the summary of metrics 
studied in this paper (Section A), and empirical 
data collection (Section B). 
 
A. Dependent and Independent Variables 
 
The binary dependent variable in our study is fault 
proneness. The goal of our study is to explore 
empirically the relationship between OO metrics 

and fault proneness.  Fault proneness is defined as 
the probability of fault detection in a class [2]. We 
use machine learning methods to predict the 
probability of fault proneness. Our dependent 
variable will be predicted based on the faults found 
during software development life cycle. The 
metrics given by [15] are summarized in Table 1.  

B. Empirical Data Collection 

This study makes use of the public domain data set 
KC1 from the NASA Metrics Data Program [42]. 
The data in KC1 was collected from a storage 
management system for receiving/processing 
ground data, which was implemented in the C++ 
programming language. This system consists of 
145 classes that comprise of 2107 methods, with 
40K lines of code. KC1 provides both class-level 
and method-level static metrics. At the method 
level, 21 software product metrics based on 
product’s complexity, size and vocabulary are 
given. Five types of defects such as the number of 
defects and density of defects are also given. At 
the class level, values of 10 metrics are computed 
including seven metrics given by Chidamber and 
Kemerer [15]. These seven OO metrics are taken 
in our study (see Table 1) for analyses.

  
 
TABLE 1 

 METRICS STUDIED  
Metric Definition 

Coupling between Objects 
(CBO) 

CBO for a class is count of the number of other classes to which it is coupled 
and vice versa. 

Lack of Cohesion (LCOM) For each data field in a class, the percentage of the methods in the class 
using that data field; the percentages are averaged then subtracted from 
100%. 

Number of Children (NOC) The NOC is the number of immediate subclasses of a class in a hierarchy. 
Depth of Inheritance (DIT) The depth of a class within the inheritance hierarchy is the maximum 

number of steps from the class node to the root of the tree and is measured 
by the number of ancestor classes. 

Weighted Methods per Class 
(WMC) 

A count of methods implemented within a class.  

Response for a Class (RFC) A count of methods implemented within a class plus the number of methods 
accessible to an object class due to inheritance. 

Source Lines Of Code 
(SLOC) 

It counts the lines of code. 
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III. MODEL PREDICTION USING SUPPORT 
VECTOR MACHINE (SVM) METHOD 

 
SVM are useful tools for performing data 
classification, and have been successfully used in 
applications such as face identification, medical 
diagnosis, text classification [43], pattern 
recognition [13], chinese character classification 
[45], and identification of organisms [33]. SVM 
constructs an N-dimensional hyperplane that 
optimally separates the data set into two 
categories. The purpose of SVM modeling is to 
find the optimal hyperplane that separates clusters 
of vector in such a way that cases with one 
category of the dependent variable on one side of 
the plane and the cases with the other category on 
the other side of the plane [37]. The support 
vectors are the vectors near the hyperplane. The 
SVM modeling finds the hyperpalne that is 
oriented so that the margin between the support 
vectors is maximized. When the points are 
separated by a nonlinear region, SVM handles this 
by using a kernel function inorder to map the data 
into a different space when a hyperplane can be 
used to do the separation. Details on SVM can be 
found in [17, 18].  
The recommended kernel function is the Radial 
basis Function (RBF) [37]. Thus, we used RBF 
function in SVM modeling to predict faulty classes 
in this study. The RBF kernel maps non-linearly 
data into a higher dimensional space, so it can 
handle non linear relationships between the 
dependent and the independent variables. Figure 1 
shows the RBF kernel. One category of the 

dependent variable is shown as rectangles and the 
Given a set of (xi, yi),………,(xm, ym) and 

}1,1{ +−∈iy training samples. iα  =(i=1,……,m) is 
a lagrangian multipliers. K(xi,yi) is called a kernel 
function and b is a bias. The discriminant function 
D of two class SVM is given below [45]: 
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Then an input pattern x is classified as [45]: 
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The performance of the models predicted was 
evaluated using sensitivity, specificity, precision, 
completeness, and Area Under the Curve (AUC). 
Details on these measures can be found in [19]. 
The ROC curve, which is defined as a plot of 
sensitivity on the y-coordinate versus its 1-
specificity on the x coordinate, is an effective 
method of evaluating the quality or performance of 
the predicted models [22]. 
 

IV. ANALYSIS RESULTS 
 
This section presents the analysis results, 
following the procedure described in Section 3. 
The results of the model predicted and evaluated 
are presented.  

  
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 1: Radial basis function 
 
 
other as triangles. The shaded circles and 
rectangles are support vectors. 
 
 
 

 
Results of prediction model: Table 2 shows the 
sensitivity, specificity, precision, completeness, 
and cutoff point of each metric and the model 
predicted. SLOC and CBO metrics have the 
highest values of the sensitivity and completeness. 
However, in case of NOC metric all the classes 
were predicted to be non faulty hence the results 
are not shown, as testing all the classes will be a 
high waste of the testing resources. 
The model was applied to 145 classes and Table 3 
presents the results of correctness of the fault 
proneness model predicted. As shown in Table 2, 
the cut off point for the model build to predict fault 
proneness is 0.44. Out of 59 classes, actually fault 
prone, 45 classes were predicted to be fault prone. 
The sensitivity of the model is 76.27 percent. 
Similarly, 70 out of 86 classes were predicted not 
to be fault prone. Thus, the specificity of the model 
is 81.39 percent. The completeness of the model is 
85.66 percent. Thus, 
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the accuracy of the model is very high.  

V. MODEL EVALUATION USING ROC 
ANALYSIS 

The accuracy of the models predicted is somewhat 
optimistic since the models are applied on same 
data set from which they are derived. To predict 
accuracy of the model it should be applied on 
different data sets thus we performed 10-cross 
validation of the SVM model. Details on cross 
validation can be found in [39]. Table 4 
summarizes the results of 10-cross validation of 
models using the SVM method. The AUC of the 
model predicted is 0.89. 
In line with other predictive models, likewise 
findings of this study need to be externally 
validated. Although regression analysis is widely 

used method in literature, our results show that 
performance of the SVM model is good. In a 
previous study, we validated SVM using open 
source data set [38]. In [38], results also showed 
good performance of the SVM method. Therefore, 
it appears that the model predicted using machine-
learning methods might lead to development of 
optimum software quality models for predicting 
fault prone classes.  
Planning and resource allocating for inspection 
and testing is difficult and it is usually done on 
empirical basis. The model predicted in the above 
section could be of great help for planning and 
executing testing activities. To illustrate how the 
prediction model can be applied in practice, 
consider Figure 2. The values for the predicted 
fault proneness were taken from the results of 
validation of the models. On X-axis, we plot

 
TABLE 2 

SENSITIVITY, SPECIFICITY, PRECISION, AND COMPLETENESS 
Metric Sensitivity Specificity Precision Completeness Cutoff 
CBO 76.27 68.6 71.7 82.24 0.40 
WMC 55.93 65.1 61.37 71.18 0.41 
RFC 52.54 66.27 60.68 67.13 0.37 
SLOC 62.7 75.58 70.34 76.32 0.32 
LCOM 59.32 63.95 62.75 65.88 0.33 
NOC - - - - - 
DIT 71.18 29 46.2 78.34 0.38 
Model IV 76.27 81.39 78.62 85.66 0.44 

 
TABLE 3 

 PREDICTED CORRECTNESS OF MODEL 
 
                                                                           
 
 
 
 
 
 
 
 

TABLE 4 
. RESULTS OF 10-CROSS VALIDATION OF MODELS 

SUPPORT VECTOR MACHINE 
 Model   
Cutoff point 
Sensitivity 
Specificity 
Precision 
Completeness 
AUC                  

0.45 
69.49 
82.55 
77.24 
79.59 
0.89 

 

Predicted 
     
 Po<=0.43 Po>0.43 

Observed Not faulty Faulty 
Not faulty 

 
70 16 

Faulty 
 

14(92) 45(550) 
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the probability of classes sorted in increasing order 
of their cutoff points. On Y-axis each column 
presents two lines. The first and second line shows  
the sensitivity and completeness of the predicted 
model, respectively. For example, in Figure 2 at 
X=0, the sensitivity of the model is 100% and the 
completeness is 100%. 

 
VI. CONCLUSIONS 

 
The goal of our research is to empirically analyze 
the performance of the SVM method. We find the 
individual and combined effect of each metric on 
fault proneness of classes. Based on public domain 
NASA data set KC1, we empirically analyzed the 
performance of the SVM method using ROC 
analysis. 
We analyzed OO design metrics given by 
Chidamber and Kemerer. Our main results are as 
follows: 

• The CBO, RFC, and SLOC metrics 
were found to be related to fault 
proneness. NOC and DIT metric was 
not found to be significantly related to 
fault proneness. Thus, the results of 
machine learning method (SVM) show 
that usefulness of NOC and DIT metric 
is poor. 

• The SVM method yielded good AUC 
using ROC analysis. This study 
confirms that construction of the SVM 
models is feasible, adaptable to OO 
systems, and useful in predicting fault 
prone classes. While research continues, 
practitioners and researchers may apply 
machine learning methods for 
constructing the model to predict faulty 
classes. 

As in all empirical studies, the relationship we 
established is valid only for certain population of 
systems. In this case, the authors can roughly 
characterize this population as “object-oriented, 
large-sized systems.” 
We plan to replicate our study to predict the 
models based on machine learning algorithms such 
as genetic algorithms. We will also focus on cost 
benefit analysis of models that will help to 
determine whether a given fault proneness model 
would be economically viable. 
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Figure 2: Sensitivity and Completeness of the 
Model 
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