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Abstract—In this article, quadratic semiorthog-
onal B-spline scaling functions are developed to
approximate the solutions of nonlinear Fredholm-
Hammerstein integral equations. First, the quadratic
B-spline scaling functions and their properties are
presented; these properties are used to reduce the
computation of integral equations to algebraic equa-
tions.
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1 Introduction

Several numerical methods for approximating the solu-
tion of Hammerstein integral equations are known. In the
present paper, we apply compactly supported quadratic
semiorthogonal (SO) B-spline scaling functions to solve
the nonlinear Fredholm- Hammerstein integral equations
of the form

y(x) = f(x) +
∫ 1

0

k(x, t)g[t, y(t)]dt, (1)

where 0 ≤ x ≤ 1 and f , g and k are given continuous
functions, with g(t, y) nonlinear in y.

Our method consist of reducing (1) to a set of alge-
braic equations by expanding the unknown function as
quadratic B-spline scaling functions, with unknown coef-
ficients. To evaluate the unknown coefficients, the prop-
erties of the quadratic B-spline scaling functions are then
utilized.

This paper organized as follows. In section 2, we present
some properties of general order B-spline functions. Also,
we describe the formulation of the quadratic B-spline
scaling functions on [0, 1] required for our subsequent de-
velopment. In section 3, we illustrate the function ap-
proximation with quadratic B-spline scaling functions,
then, the proposed method is used o approximate the
solution of nonlinear Fredholm-Hamerstein integral equa-
tion. Also, we demonstrate the accuracy of the proposed
numerical scheme by considering a numerical example.
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2 General order B-spline functions

In this section we review (from [1, 2]) some properties
about B-spline scaling functions. For these examples,
scaling functions on real line are the m-th order (degree
m − 1) B-splines Nm(x). We first introduce general or-
der B-splines Nm(x) with a brief summery of some nice
properties.

There are several ways to define B-splines. Typically,
the m-th order B-splines Nm is defined recursively by
convolution:

N1(x)=
{

1, 0 ≤ x < 1;
0, otherwise. (2)

Nm(x)=
∫ +∞

−∞
Nm−1N1(t)dt =

∫ 1

0

Nm−1(x− t)dt (3)

Note that the 1st B-spline N1(x) is the Haar scaling func-
tion.

The two-scale relation for B-spline scaling functions of
general order m is written as:

Nm(x) =
m∑

k=0

pkNm(2x− k) (4)

where the two-scale sequence {pk} for B-spline scaling
functions are given by:

pk = 2−m+1

(
m

k

)
, 0 ≤ k ≤ m. (5)

2.1 Quadratic B-spline

The quadratic B-spline scaling function is defined as:

N3(x) = φ(x) =





1
2 (x)2, 0 ≤ x < 1;
3
4 − (x− 3

2 )2, 1 ≤ x ≤ 2;
1
2 ((xj − k)− 3)2, 2 ≤ x ≤ 3;
0, otherwise.

(6)

Functions φ(2x− k) in V1 space are expressed as

φ(2x−k) =





1
2 (2x− k)2, k

2 ≤ x ≤ k
2 + 1

2 ;
3
4 − (2x− k − 3

2 )2, k
2 + 1

2 ≤ x ≤ k
2 + 1;

1
2 (2x− k − 3)2, k

2 + 1 ≤ x < k
2 + 3

2 ;
0, otherwise.

(7)
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The two scale relation for quadratic B-Spline N3(x) is:

φ(x) =
1
4
φ(2x) +

3
4
φ(2x− 1) +

3
4
φ(2x− 2) +

1
4
φ(2x− 3).

(8)

2.2 B-spline scaling functions on [0, 1]

Scaling functions can be used to expand any function in
L2(R). These functions are defined on the entire real
lines, so that they could be outside of the domain of the
problem (see [3, 4]). In order to avoid this, compactly
supported spline scaling functions, constructed for the
bounded interval [0, 1], have been taken into account in
this article.

When semiorthogonal B-spline scaling functions of order
m used, the condition

2j0 ≥ m, (9)

must be satisfied in order to have at least one complete in-
ner scaling function. In this paper, we will use quadratic
B-spline, m = 3 cardinal B-spline function. From (9),
the third-order B-spline lowest level, which must be an
integer, is determined to j0 = 2.

The third-order B-spline scaling functions are given by

φj,k(x) =





1
2 (xj − k)2, k ≤ xj ≤ k + 1;
3
4 − ((xj − k)− 3

2 )2, k + 1 ≤ xj ≤ k + 2;
1
2 ((xj − k)− 3)2, k + 2 ≤ xj < k + 3,

k = 0, . . . , 2j − 3;
0, otherwise.

(10)

Furthermore the third-order B-spline function have two
left side boundary scaling functions. The first left side
quadratic B-spline scaling function is:

φj,k(x) =
{

1
2 (xj − k)2, 0 ≤ xj ≤ 1; k = −2
0, otherwise. (11)

The second left side quadratic B-spline scaling function
is:

φj,k(x) =





3
4 − ((xj − k)− 3

2 )2, k + 1 ≤ xj ≤ k + 2;
1
2 ((xj − k)− 3)2, k + 2 ≤ xj ≤ k + 3,

k = −1;
0, otherwise.

(12)
The third-order B-spline function have two right side
boundary scaling functions. The first right side quadratic
B-spline scaling function is:

φj,k(x) =





1
2 (xj − k)2, k ≤ xj ≤ k + 1;
3
4 − ((xj − k)− 3

2 )2, k + 1 ≤ xj ≤ k + 2,
k = 2j − 2;

0, otherwise.
(13)

The second right side quadratic B-spline scaling function
is:

φj,k(x) =





1
2 ((xj − k)− 3)2, k + 2 ≤ xj ≤ k + 3,

k = 2j − 1;
0, otherwise.

(14)
The actual coordinate position x is related to xj accord-
ing to xj = 2jx.

3 Function approximation

For any fixed positive integer M , a function f(x) defined
over [0, 1] may be presented by B-spline scaling functions
as

f(x) =
2M−1∑

k=−2

skφM,k = ST ΦM (15)

where

S = [s−2, s−1, . . . , s2M−1] ,
ΦM =

[
φM,−2, φM,−1, . . . , φM,2M−1

]
, (16)

with

sk =
∫ 1

0

f(x)φ̃M,k(x)dx, k = −2,−1, . . . , 2M−1, (17)

where φ̃M,k(x) are dual functions of φM,k(x). These
can be obtained by linear combinations of φM,k(x), k =
−2,−1, . . . , 2M − 1 as follows. Let Φ̃M be the dual func-
tions of ΦM given by

Φ̃M =
[
φ̃M,−2, φ̃M,−1, . . . , φ̃M,2M−1

]
. (18)

Using (16) and (18), we get
∫ 1

0

Φ̃MΦT
Mdx = I1, (19)

where I1 is (2M + 2)× (2M + 2) identity matrix. Let

PM =
∫ 1

0

ΦMΦT
Mdx. (20)

The entry (PM )i,j of the matrix PM in (20) is calculated
from ∫ 1

0

φM,i(x)φM,j(x)dx. (21)

For example for M = 2, using (10)-(14) and (8) we get:

∫ 1

0

ΦΦT dx =
1

960




12 26 2 0 0 0
26 120 52 2 0 0
2 52 132 52 2 0
0 2 52 132 52 2
0 0 2 52 132 52
0 0 0 2 26 12




.

(22)
From (19) and (20), we get

Φ̃M = (PM )−1ΦM . (23)
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3.1 Nonlinear Fredholm-Hammerstein inte-
gral equations

In this section, we solve nonlinear Fredholm-
Hammerstein integral equations of the form (1) by
using B-spline scaling functions. For this, we first
assume

z(x) = g(x, y(x)), 0 ≤ x ≤ 1. (24)

We now use (7) to approximate y(x) and z(x) as

y(x) = DT Φ(x), z(x) = ET Φ(x), (25)

where Φ(x) is defined in (10), and D and E are (2M+1 +
2)× 1 unknown vectors defined similarly to S in (7). We
also expand f(x) and k(x, t) by B-spline dual functions
Φ̃ defined as in (10) as

f(x) = FT Φ̃, k(x, t) = Φ̃T (t)ΘΦ̃(x), (26)

where

Θ(i,j) =
∫ 1

0

[∫ 1

0

k(x, t)Φi(t)dt

]
Φj(x)dx. (27)

From (25) and (26) we get
∫ 1

0

k(x, t)g
(
t, y(t)

)
dt=

∫ 1

0

ET Φ(t)Φ̃T (t)ΘΦ̃(x)dt

=ET

[∫ 1

0

Φ(t)Φ̃T (t)dt

]
ΘΦ̃(x)(28)

=ET ΘΦ̃(x) (29)

By applying (25)-(28) in equation (1) we have:

DT Φ(x)− FT Φ̃(x)− ET ΘΦ̃(x) = 0 (30)

By multiplying equation (30) in ΦT (x) and integrating
form 0 to 1 with respect to x we get:

DT P − FT − ET Θ = 0. (31)

To find the solution y(x) in (25), we first collocate the
following equation in xi = i

2M+1 , i = 0, 1, . . . , 2M+1:

g
(
x, DT Φ(x)

)
= ET Φ(x). (32)

Equation (31) generates a set of 2(M+1) + 1 algebraic
equations. The total number of unknowns for vectors D
and E are 2[2(M+1) +1]. These can be obtained by using
(31) and (32).

Notice that for calculating FT in the equation f(x) =
FT Φ̃(x), multiply both side of f(x) = FT Φ̃(x) in Φ(x).
Now with integrating from 0 to 1 we have:

∫ 1

0

f(x)Φ(x)dx =
∫ 1

0

FT Φ̃(x)Φ(x)dx

so we have

FT =
∫ 1

0

f(x)Φ(x)dx.

Example 3.1 [5] Consider the equation

y(x) = 1+3 sin2(x)+
∫ 1

0

k(x, t)y2(t)dt, 0 ≤ x ≤ 1 (33)

where

k(x, t) =
{ −3 sin (x− t), 0 ≤ t ≤ x;

0, x < t ≤ 1. (34)

The computational results for M = 2 and M = 4 together
with the exact solution y(x) = cos(x) are given in Table
1.

x App. M = 2 App. M = 4 Exact
0.1 0.995675 0.995079 0.995004
0.2 0.983153 0.983158 0.983095
0.3 0.955624 0.955356 0.955336
0.4 0.921328 0.921123 0.921061
0.5 0.877259 0.877519 0.877583
0.6 0.825486 0.825377 0.825336
0.7 0.764444 0.764831 0.764842
0.8 0.696137 0.696876 0.696707
0.9 0.621397 0.621589 0.621619
1.0 0.540359 0.540378 0.540302

Table 1: Exact and approximate values with M = 2, 4.

4 Conclusions

In the present work, a technique has been developed for
solving nonlinear Fredholm-Hammerstein integral equa-
tions. The method is based upon compactly supported
linear semiorthogonal B-spline scaling functions. The
dual functions for these B-spline scaling functions were
also given. The problem has been reduced to solving a
system of nonlinear algebraic equations.
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