
 
 

 

  
Abstract—This paper presents the identification of the 

topological spatial relations that can exist between a Circular 
Spatially Extended Point and a Line in the geographical space. 
For the identification of the topological spatial relations that 
can exist between these two types of objects, the intersections 
existing between the several parts of the objects were verified. 
Using 14 conditions and the respective proofs, a set of 38 
topological spatial relations were identified. The geometric 
characterization of the topological relations was also achieved, 
proving the existence of such relations. 
 

Index Terms—Qualitative reasoning, Spatially Extended 
Point, Spatial Reasoning, Topological spatial relations.  
 

I. INTRODUCTION 
  Spatial relations between objects have been classified 

into several types [1, 2], including direction relations [3], 
distance relations [4] and topological relations [5]. 
Topological relations are those spatial relations preserved 
under continuous transformations of the space, such as 
rotation or scaling. 

Research on topological spatial relations between different 
types of objects (points, lines and regions) has been 
undertaken for many years, identifying the topological spatial 
relations between regions, lines, regions and lines, regions 
and points, among others, and representing their geometric 
realization, proving the existence of such relations. Some of 
the works undertaken so far include the identification of the 
topological spatial relations between regions [6], between 
lines [6], between regions and lines [6, 7], between regions 
with broad boundaries [8], between a spatially extended point 
and a region [9], between broad lines [10], and between lines 
with broad boundaries [10], only to mention a few. 

The relevance of the identification of such topological 
spatial relations is associated with the need to conceptualize 
the spatial relations that can exist among several objects in 
the geographical space. The obtained models can be used as a 
computational framework for spatial reasoning. Their 
implementation in a system, like a Geographical Information 
System, allows the representation and manipulation of 
complex objects associated with complex realities. 

The work described in this paper is associated with the 
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topological spatial relations existing between a Circular 
Spatially Extended Point and a Line. A Circular Spatially 
Extended Point is a region-like object characterized by the 
inclusion of a point and a region that defines the area of 
influence of that point. In the scope of this work, the Circular 
Spatially Extended Point represents a complex object in the 
sense that the point and its region of influence are not 
dissociable. The identification of the topological spatial 
relations between a Circular Spatially Extended Point and a 
Line was first addressed by the authors of this paper in [11] to 
use them in the prediction of mobile users’ future positions in 
a context-aware mobile environment. In this paper this work 
is revisited and all formal proofs are provided demonstrating 
the validity of the work undertaken. 

Looking at the abstractions usually used to represent 
spatial objects, single points, single lines and single regions, 
and their complex data types, complex points, complex lines 
and complex regions, and for whom the topological spatial 
relations existing between them were already identified [12], 
none of these abstractions allows the representation of the 
particular integration of a point and a region, here identified 
as a Circular Spatially Extended Point. For regions with 
broad boundaries, the two regions that integrate the object 
“region with broad boundary” are 2-dimensional components, 
also not representing the 0-dimensional part of a Circular 
Spatially Extended Point (its pivot) [13]. 

The following sections are organized as follows. Section 2 
is dedicated to an overview of the principles behind 
qualitative spatial reasoning. Section 3: i) describes the 
conceptual framework adopted for the identification of the 
topological spatial relations that can exist between a Circular 
Spatially Extended Point and a Line; ii) presents the formal 
proofs for all the adopted conditions; and iii) shows the 
geometrical characterization of the identified topological 
relations. Section 4 concludes with some remarks about the 
work undertaken.  

II. QUALITATIVE SPATIAL REASONING 
Human beings use qualitative identifiers extensively to 

simplify reality and to perform spatial reasoning more 
efficiently. Spatial reasoning is the process by which 
information about objects in space and their relationships are 
gathered through measurement, observation or inference and 
used to arrive at valid conclusions regarding the relationships 
of the objects [14]. Qualitative spatial reasoning [15] is 
based on the manipulation of qualitative spatial relations, for 
which composition tables facilitate reasoning [14, 16], 
thereby allowing the inference of new spatial knowledge. 

Spatial relations include direction relations, distance 
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relations and topological relations. 

A. Direction Spatial Relations 
Direction relations describe where objects are placed 

relative to each other. Three elements are needed to establish 
an orientation: two objects and a fixed point of reference 
(usually the North Pole) [1, 3]. Cardinal directions can be 
expressed using numerical values specifying degrees (0º, 
45º…) or using qualitative values or symbols, such as North 
or South, which have an associated acceptance region. The 
regions of acceptance for qualitative directions can be 
obtained by projections (also known as half-planes) or by 
cone-shaped regions (Fig. 1). 
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Fig. 1 – Direction relations by projection and cone-shaped 

systems 

B. Distance Spatial Relations 
Distances are quantitative values determined through 

measurements or calculated from known co-ordinates of two 
objects in some reference system. The frequently used 
definition of distance can be achieved using the Euclidean 
geometry and Cartesian coordinates. In a two-dimensional 
Cartesian system, it corresponds to the length of the shortest 
possible path (a straight line) between two objects, which is 
also known as the Euclidean distance [16]. Usually a metric 
quantity is mapped onto some qualitative indicator such as 
very close or far for human common-sense reasoning [4]. 

Qualitative distances must correspond to a range of 
quantitative values specified by an interval. The adoption of 
the qualitative distances very close (vc), close (c), far (f) and 
very far (vf), intuitively describe distances from the nearest to 
the furthest. An order relationship exists among these 
relations, where a lower order (vc) relates to shorter 
quantitative distances and a higher order (vf) relates to longer 
quantitative distances [16] (Fig. 2). 
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Fig. 2 – Qualitative distances 

C. Topological Spatial Relations 
Topological relations are those relationships that are 

invariant under continuous transformations of space such as 
rotation or scaling. There are eight topological relations that 
can exist between two planar regions without holes: disjoint, 
contains, inside, equal, meet, covers, covered by and overlap 
(Fig. 3). These relations can be defined considering the 
intersections between the two regions, their boundaries and 
their complements [5]. 
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Fig. 3 – Topological spatial relations 

III. TOPOLOGICAL SPATIAL RELATIONS BETWEEN A 
CIRCULAR SPATIALLY EXTENDED POINT AND A LINE 

A Circular Spatially Extended Point (CSEP) can be 
considered as a region-like concept. A CSEP (Fig. 4) has its 
own interior, boundary and exterior. While it shares the same 
concepts of interior, boundary and exterior of a region, the 
CSEP is distinguished from a general region by the 
identification of a point within the interior called the pivot. 
The pivot is conceptually similar to a 0-dimension object. A 
major difference between a usual point and a pivot is that a 
pivot has an area of influence that defines the boundary of the 
CSEP [9].  

 

Pivot

 
Fig. 4 – A circular spatially extended point 

 
From a geometrical point of view, a simple line, 

representing a linear curve, has a boundary with two simple 
points, each of which has no extension [6, 12] (Fig. 5). The 
definition of a simple line usually refers to a 1-dimensional 
object of ℜ2 with no self-intersections [17]. Closed lines are 
lines without end-points [17], so they lay out of the definition 
of simple line and consequently are not considered in the 
scope of the work presented in this paper.    

 

 
Fig. 5 – A simple line 

 
The formalism used for the identification of the 

topological spatial relations between a CSEP and a line is 
based on the algebraic approach proposed by Egenhofer (the 
4- and 9-intersections models) [5]. The topological spatial 
relations were identified [11], using a 4x3 matrix as proposed 
in [9]. The conditions that allowed the identification of the 
spatial relations were revised and their formal proofs were 
undertaken, work that is presented in this paper. The 4x3 
matrix analyses the intersections (∩ ) between the pivot (P•), 
interior (P°), boundary (∂P) and exterior (P-) of a CSEP (P) 
and the interior (L°), boundary (∂L) and exterior (L-) of a line 
(L) (Fig. 6). 
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Fig. 6 – Parts of a CSEP and a line 

 
Each relation (R) between a CSEP (P) and a line (L) is 

characterized by 12 (4x3) intersections with empty (∅) or 
non-empty (¬∅) values depending on how the geographical 
objects are related (Equation 1). 
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The several conditions proposed by Egenhofer and 

Herring [6] for the identification of the topological relations 
between regions, lines and points in a Geographic Database 
were analyzed. Following these authors’ suggestions, 9 
conditions were adopted and adapted to the specific context 
of this work. These conditions are associated with the 
definition of the topological spatial relations that can exist 
between regions, between a region and a line, and between a 
non-point object (a region or a line) and a point, and are here 
described as conditions 1 to 9. Additional conditions were 
defined attending to the particular case of the definition of the 
topological relations between a CSEP and a line. These 
conditions are referred as condition 10 to condition 14. The 
whole set of conditions and their formal proofs are described 
as follows:  

 
Condition 1. The exteriors of the two objects (P and L) 

intersect with each other (Equation 2). 
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Proof: Knowing that P• ∪ P° ∪ ∂P ∪ P- = ℜ2 and that L° ∪ 

∂L ∪ L- = ℜ2, the statement P- ∩ L- = ∅ can only be possible 
either if: i) P• ∪ P° ∪ ∂P = ℜ2; ii) L° ∪ ∂L = ℜ2; or iii) P• ∪ P° 
∪ ∂P ∪ L° ∪ ∂L = ℜ2. However, all these conditions are 
impossible since the objects P, L and P ∪ L are bounded and 
ℜ2 is unbounded. 

 
Condition 2. If P’s boundary intersects L’s exterior then 

P’s interior must intersect L’s exterior as well, and vice-versa 
(Equation 3 where ∨ means or).  
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Proof: Assuming that the constraint rules are false, then ∂P 

∩ L- = ¬∅ ⇒ P° ∩ L- = ∅ and ∂L ∩ P- = ¬∅ ⇒ L° ∩ P- = ∅. 
Knowing that L° ∪ ∂L ∪ L- = ℜ2, this leads to P° ∩ (L° ∪ ∂L 
∪ L-) = P° ∩ ℜ2 = ∅, which is a contradiction to the assumed 
non-emptiness of the interior of a CSEP, here represented by 
a region, so P° ∩ ℜ2 = ¬∅. For the other rule, and knowing 
that P• ∪ P° ∪ ∂P ∪ P- = ℜ2, this leads to L° ∩ (P• ∪ P° ∪ ∂P 
∪ P-) = L° ∩ ℜ2 = ∅, which is a contradiction to the assumed 
non-emptiness of the interior of a line, so L° ∩ ℜ2 = ¬∅. 

 
Condition 3. P’s boundary intersects with at least one part 

of L and vice-versa (Equation 4). 
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Proof: Knowing that P• ∪ P° ∪ ∂P ∪ P- = ℜ2, L° ∪ ∂L ∪ L- 
= ℜ2, and that only non-empty parts of both objects are 
considered, it is obtained that ∂P ∩ ℜ2 = ¬∅ and that ∂L ∩ 
ℜ2 = ¬∅. These statements are equivalent to ∂P ∩ (L° ∪ ∂L 
∪ L-) = ¬∅ and ∂L ∩ (P• ∪ P° ∪ ∂P ∪ P-) = ¬∅, which 
verify the constrain rules expressed in equation 4. 

 
Condition 4. If both interiors are disjoint then P’s interior 

cannot intersect with L’s boundary (Equation 5). 
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Proof: Assuming that both interiors are disjoint, Pº ∩ Lº = 

∅, and that P’s interior intersects L’s boundary, Pº ∩ ∂L = 
¬∅, the concept of simple line is not accomplished since the 
two end points that represent the boundary of the line are 
contiguous to the points that integrate the interior of the line 
and cannot be disaggregated from them. So, it is impossible 
for a line to be disjoint from the interior of a region and at the 
same time its boundary be intersected by the interior of the 
region. 

 
Condition 5. If L’s interior intersects with P’s interior and 

exterior, then it must also intersect with P’s boundary 
(Equation 6). 
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Proof: As a simple line integrates two end points that 
represent the boundary of the line and that are contiguous to 
the connected set of points that integrate the interior of the 
line, it is impossible the intersection of L’s interior with the 
interior and the exterior of P without also intersecting P’s 
boundary (between P’s interior and exterior we have P’s 
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boundary). 
 
Condition 6. P’s interior always intersects with L’s 

exterior (Equation 7). 
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Proof: Let’s assume that the condition is wrong, then Pº ∩ 

L- = ∅. To confirm this condition, the statement Pº = Lº ∪ ∂L, 
or the statement Pº = Lº, must be verified. Since P is a 
region-like object (2-dimensional) and L represents a simple 
line object (1-dimensional) this leads to an impossible 
situation since they cannot be equal. 

 
Condition 7. P’s boundary always intersects with L’s 

exterior (Equation 8). 
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Proof: Let’s assume that the condition is wrong, then ∂P ∩ 
L- = ∅. To confirm this condition, the statement ∂P = ∂L ∪ Lº 
must be verified. Since a simple line has two end-points, a 
non-empty boundary, and the boundary of a region is a closed 
line with no end-points, the statement is not verified since the 
boundary of a region is not equal (in conceptual terms) to a 
simple line. 

 
Condition 8. L’s interior must intersect with at least one of 

the four parts of P (Equation 9). 
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Proof: Knowing that P• ∪ P° ∪ ∂P ∪ P- = ℜ2, L° ∪ ∂L ∪ L- 

= ℜ2, and that only non-empty parts of objects are 
considered, it is possible to say that Lº ∩ ℜ2 = ¬∅. These 
statements are equivalent to Lº ∩ (P• ∪ P° ∪ ∂P ∪ P-) = ¬∅, 
which verifies the constrain rules expressed in equation 9. 

 
Condition 9. P’s pivot can only intersect with a single part 

of L (Equation 10). 
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Proof: Since P• is 0-dimensional geometric primitive, 

representing a position, and by definition it has no boundary 

(a simple point can be specified as having the following 
characteristics: ∂P = ∅ and P° = P ([12]), it that can only be 
intersected by one of the three parts considered for a line, L°, 
∂L or L-. This leads to the conditions P• ∩ L° = ¬∅ ∨ P• ∩ ∂L 
= ¬∅ ∨ P• ∩ L- = ¬∅. 

 
Condition 10. P’s pivot must intersect with at least one 

part of L (Equation 11). 
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Proof: Knowing that P• ∪ P° ∪ ∂P ∪ P- = ℜ2, L° ∪ ∂L ∪ L- 

= ℜ2,  and that only non-empty parts of objects are 
considered, it is possible to say that P• ∩ ℜ2 = ¬∅. These 
statements are equivalent to P• ∩ (L° ∪ ∂L ∪ L-) = ¬∅, 
which verifies the constrain rules expressed in equation 11. 

 
Condition 11. If P’s interior intersects with L’s interior, 

and P’s exterior intersects with L’s boundary, then the P’s 
boundary must intersect with L’s interior (Equation 12). 
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Proof: As a simple line integrates two end points that 

represent the boundary of the line and that are contiguous to 
the connected set of points that integrate the interior of the 
line, it is impossible the intersection of L’s interior with P’s 
interior and the intersection of L’s boundary with P’s 
exterior, without L’s interior also intersecting P’s boundary 
(between P’s interior and exterior we have P’s boundary).  

 
Condition 12. The boundary of a simple line L (simple 

lines are one-dimensional, continuous features embedded in 
the plane [12]) can only intersect with at most two parts of P 
(Equation 13). 
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Proof: A simple line has a boundary that integrates two 

points, each one of them being a 0-dimensional geometric 
primitive. These two points can only intersect, each of them, 
one part of the CSEP P. This leads to the intersection of the 
boundary of L (∂L) with at most two parts of P since the two 
points of ∂L can intersect the same part of P, with exception 
to the pivot of P (P•) that can only be intersected by one of the 
two points of ∂L. 

 
Condition 13. If L’s boundary intersects P’s pivot, then 

P’s interior must intersect L’s interior (Equation 14). 
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Proof: Assuming that the constraint rule is false, then ∂L ∩ 

P• = ¬∅ ⇒ P° ∩ L° = ∅. Knowing that L° ∪ ∂L ∪ L- = ℜ2, 
this leads to P° ∩ (L° ∪ ∂L ∪ L-) = P° ∩ ℜ2 = ∅, which is a 
contradiction to the assumed non-emptiness of the interior of 
a CSEP, here represented by a region, so P° ∩ ℜ2 = ¬∅. 

 
Condition 14. If L’s interior intersects P’s pivot, then P’s 

interior must intersect L’s interior (Equation 15). 
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Proof: Assuming that the constraint rule is false, then L° ∩ 

P• = ¬∅ ⇒ P° ∩ L° = ∅. Knowing that L° ∪ ∂L ∪ L- = ℜ2, 
this leads to P° ∩ (L° ∪ ∂L ∪ L-) = P° ∩ ℜ2 = ∅, which is a 
contradiction to the assumed non-emptiness of the interior of 
a CSEP, here represented by a region, so P° ∩ ℜ2 = ¬∅. 

 
The adoption of a 4x3 matrix for the definition of the 

intersections between the pivot (P•), interior (P°), boundary 
(∂P) and exterior (P-) of P, and the interior (L°), boundary 
(∂L) and exterior (L-) of L, results in the identification of 
4096 (212) different matrices. In this set, with a very large 
number of possible combinations, only a reduced number of 
matrices represent valid topological relations for the objects 
in analysis. 

In order to support the process of generation of the 4096 
different matrices and the elimination of the invalid ones, a 
computational approach was followed using Mathematica® 
[18]. This implementation allowed the identification of the 
4096 matrices, the definition of the several conditions 
(Conditions 1 to 14) and the automatic elimination of the 
invalid patterns associated with those conditions (Equations 
2 to 15). 

After the application of the 14 conditions, 38 matrices 
were left as possible ones. Each one of these matrices was 
manually analyzed to certify their validity. As all the matrices 
were considered valid, no more conditions were defined. 
This analysis was undertaken through the geometric 
realization of the 38 different topological spatial relations, 
validating the relations in terms of their existence.  

Table I (Annex I) presents the identified topological 
spatial relations (with their geometric realization) and their 
corresponding matrices. In those matrices the absence of 
intersection is represented by 0 (∅) and its presence by 1 
(¬∅). 

IV. CONCLUSION 
This paper presented the topological spatial relations that 

can exist between a CSEP and a line. After the identification 

of the conditions that must be verified between the several 
parts of a CSEP and a line, 38 topological spatial relations 
were identified. Those relations can now be used in the 
identification of the composition tables or the conceptual 
neighborhood graphs that allow spatial reasoning with these 
two types of objects.  
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ANNEX I 

 
Table I – Topological spatial relations between a circular spatially extended point and a line 
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