

Index Terms—System Level Design, Hardware / Software
co-design, Heterogeneous embedded systems.

Abstract— The complexity of designing embedded systems is

constantly increasing. Some of the factors contributing to the
increase in complexity are: increasing complexities of hardware
and software, increased pressure to deliver full-featured
products with reduced time-to-market, and the fact that more
embedded systems are using heterogeneous architectures
consisting of dedicated hardware components (ASIC) and
software running on processors. This ongoing increase in
complexities motivates the usage of high-level system design
approaches such as System Level Design tools and
methodologies. In System Level Design, specification languages
are used to build high level models of the entire system, at the
System Level, to allow fast design space exploration. Models of
Computations (MoC) are used as the underlying formal
representation of a system. This paper investigates the co-design
approach and its design activities. Specifically, specification and
modeling computation process are investigated and evaluated.
Popular models of computations are described and compared.
Various specification languages for designing embedded are
described and compared..

I. INTRODUCTION

A. Embedded Systems
Embedded systems are special-purpose systems which are

typically embedded within larger units providing a dedicated
service to that unit [1]. In most embedded systems, a
function-specific software application is provided by the
product manufacturer, and end-users have limited access to
altering the application running on the system. Embedded
systems are found in consumer electronics products (i.e. cell
phones, PDAs, microwaves, etc), transport control systems
(i.e. cars, trains, and aircrafts), plant control systems and
defense systems. These are only few examples of embedded
systems.

Vahid et al. [2] describe the characteristic of embedded
systems that differentiate them from other digital systems:

• Single-functioned. Embedded systems repeatedly

Manuscript received March 23, 2009.

Adnan Shaout is with the University of Michigan-Dearborn, the
Electrical and Computer Engineering Department, shaout@umich.edu.

Ali H. El-Mousa is with the Computer Engineering Department, Faculty
of Engineering & Technology, University of Jordan, Amman, Jordan.
(Phone: ++96265355000 ext. 23000, fax: ++96265355588, e-mail:
elmousa@ju.edu.jo)

Khalid Mattar is with the University of Michigan-Dearborn, the
Electrical and Computer Engineering Department.
.

perform a specific function.
• Reactive and real time. Many embedded systems,

especially in the control domain, are reactive systems and
must continually react to changes in the environment and meet
timings constraints without delay.

• Tightly constrained. Embedded systems have tight
constraints on design metrics. For example, embedded
systems must have minimum design costs, must have small
form factors and consume minimum power, especially for
portable systems, must meet real time requirements, must be
safe and reliable, and must have short time-to-market cycle.

The majority of embedded systems are implemented using
heterogeneous systems consisting of dedicated parts and
programmable processors [3]. A typical heterogeneous
system consists of: dedicated hardware parts (ASIC),
programmable processors such as microprocessor and ASIP1

II. SYSTEM LEVEL DESIGN

components (i.e. DSP and microcontrollers), memory for data
and code, peripherals such A/D, D/A and I/O units, and buses
connecting the above components.

Heterogeneous systems are implemented on a single board
or a single chip. In single-board systems, processors, AISC
components, memories and peripheral are integrated on a
single board. Single-chip systems integrate on one ASIC
processor cores, dedicated parts, memories and peripherals.
Compared to single-board systems, single-chip system
provide increased performance and reduced power
consumption. However, single-chip systems are more
complex which makes debugging these systems much harder.

Traditionally, hardware synthesis tools (logic synthesis and
behavior synthesis) have been used to increase productivity.
However, hardware synthesis is not sufficient since embedded
systems use more software content [4]. In addition, hardware
synthesis methods focus on designing a single hardware chip,
where more embedded systems are using heterogeneous
architectures.

The complexities in designing embedded systems motivate
the need for using more efficient tools and design
methodologies. System Level Design is a methodology to help
address these complexities, and enable SoC designs.

System Level Design is concerned with addressing the
challenges encountered in designing heterogeneous
embedded systems. In System Level Design, complexities are
managed by (1) starting the design process at the highest level

1 Application Specific Instruction-Set Processor

Specification and Modeling of HW/SW
CO-Design for Heterogeneous Embedded

Systems
Adnan Shaout, Ali H. El-Mousa., and Khalid Mattar

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

mailto:elmousa@ju.edu.jo�

of abstraction (System Level), (2) utilizing automated design
methodologies to enable step-wise refinements during the
design process (3) reusing Intellectual Property (IP)
components when feasible [5].

The goal of System Level Design is to implement System
Level specification on target architecture by refining the
specification into a set of target-specific specifications.

Designing at a higher level of abstraction reduces the
number of components with which the designer has to deal
with, and thus increasing design productivity. This paradigm
shift in design requires methodologies and automated tools to
support design at higher levels abstractions.

The use of IP components allows the designer to use
pre-designed components, instead of designing from scratch.
IP use is gaining recognition in the design community. In
order to fully leverage using IP components in the design of
heterogeneous embedded system, IP components must allow
seamless integration into the overall system, and design tools
must support using IP components [6].

System Level Design is different than behavior synthesis
since it (behavior synthesis) maps an algorithm into a ASIC,
while System Level Design maps a high-level abstract
specification model of an entire system onto a target
architecture [4].

A. System level design approaches
There are three main system level design approaches:

hardware/software co-design, platform-based design and
component-based design [7].

• Hardware/Software co-design (also referred to system
synthesis) is a top-down approach. Starts with system
behavior, and generates the architecture from the behavior. It
is performed by gradually adding implementation details to
the design.

• Platform-based design. Rather than generating the
architecture from the system behavior as in co-design,
platform-based design maps the system behavior to
predefined system architecture. An example of
platform-based design is shown in [8].

• Component-based design is a bottom-up approach. In
order to produce the predefined platform, it assembles
existing heterogeneous components by inserting wrappers
between these components. An example of component-based
design is described in [9].

III. HARDWARE / SOFTWARE CO-DESIGN
Hardware/Software co-design can be defined as the

cooperative design of hardware2 and software3

2 Hardware refers to dedicated hardware components (ASIC).
3 Software refers to software executing on processor or ASIP

 in order to
achieve system-level objectives (functionality & constraints)
by exploiting the synergism of hardware and software [6],[7].
Hardware/Software co-design research focuses on presenting
a unified view of hardware and software, and the development
of synthesis tools and simulators to address the problem of
designing heterogeneous systems. While hardware
implementation provides higher performance, software
implementation is more cost effective and flexible since
software can be reused and modified. The choice of hardware

versus software in co-design is a trade-off among various
design metrics like performance, cost, flexibility and
time-to-market. This trade-off represents the optimization
aspect of co-design. Fig. 1 shows the flow of a typical
Hardware / Software co-design system.

Fig. 1: Flow of a typical co-design system

Generally, Hardware / Software co-design consists of the
following activities: specification and modeling, design and
validation [6].

A. Specification and modeling
This is the first step in the co-design process. The system

behavior at the system level is captured during the
specification step [3]. Section IV provides details about
specification and modeling, including Models of
Computation.

B. Design and refinement
The design process follows a step-wise refinement

approach using several steps to transform a specification into
an implementation. Niemann [3] and O’Nils [6] define the
following design steps:

• Tasks assignment: The system specification is divided
into a set of tasks/basic blocks that perform the system
functionality [3].

• Cost estimation: This step estimates cost parameters for
implementing the system’s basic blocks (output of task
assignment) in hardware or software. Examples of hardware
cost parameters are: gate count, chip area and power
consumption, where execution time, code size and required
code memory are examples of software cost parameters. Cost
estimates are used to assist in making design decision to
decrease the number of design iterations [3].

• Allocation: This step maps functional specification into
a given architecture by determining the type and number of
processing components required to implement the system’s
functionality. To make the allocation process manageable,
co-design systems normally impose restrictions on target
architectures. For example, allocation may be limited to a
certain pre-defined components [10].

• Hardware/Software partitioning: This step partitions
the specification into two parts: (1) a part that will be
implemented in hardware and (2) a part that will be
implemented in software.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

• Scheduling: This step is concerned with scheduling the
tasks assigned to processors. If tasks information (i.e.
execution time, deadline, delay) are known, scheduling is
done statically at design time. Otherwise, scheduling is done
dynamically at run time (i.e. using Real Time OS – RTOS).
De Michell et al. [1] provide an overview of techniques and
algorithms to address the scheduling problem.

• Co-synthesis: Niemann [3] classifies several design
steps as part of co-synthesis:

1) Communication synthesis: Implementing the
partitioned system on heterogeneous target architecture
requires interfacing between the ASIC components
(HW) and the processors (SW) communication between
the ASIC(s) and the processors. This is accomplished in
communication synthesis step.
2) Specification refinement: Once the system is
partitioned into hardware and software, and the
communication interfaces are defined, the system
specification is refined into hardware specifications and
software specifications, which include communication
methods to allow interfacing between the hardware and
software components.
3) Hardware synthesis: AISC components are
synthesized using behavior (high-level) synthesis and
logic synthesis methods. Hardware synthesis is a mature
field due to the extensive research done in this field.
Details about hardware synthesis methods are provided
in [11] and [12]
4) Software synthesis: This step is related to
generating, from high level specification, C or assembly
code for the processor(s) that will be executing the
software part of the heterogeneous system. Edwards et
al. [10] provides an overview of software synthesis
techniques.

C. Validation
Informally, validation is defined as the process of

determining that the design, at different levels of abstractions,
is correct. The validation of hardware/software systems is
referred to as co-validation. Methods for co-validations are
[9],[13] :

• Formal verification is the process of mathematically
checking that the system behavior satisfies a specific
property. Formal verification can be done at the specification
or the implementation level. For example, formal verification
can be used to check the presence of a deadlock condition in
the specification model of a system. At the implementation
level, formal verification can be used to check whether a
hardware component correctly implements a given Finite
State Machine (FSM). For heterogeneous systems (i.e.
composed of ASIC components and software components),
formal verification is called co-verification.

• Simulation validates that a system is functioning as
intended by simulating a small set of inputs. Simulation of
heterogeneous embedded systems requires simulating both
hardware and software simultaneously, which is more
complex than simulating hardware or software separately.
Simulation of heterogeneous systems is referred to as
co-simulation. A comparison of co-simulation methods is
presented in [10].

IV. SPECIFICATION AND MODELING
Specification is the starting point of the co-design process,

where the designer specifies the system’s specification
without specifying the implementations. Languages are used
to capture system specifications. Modeling is the process of
conceptualizing and refining the specifications. A model is
different from the language used to specify the system. A
model is a conceptual notation that describes the desired
system behavior, while a language captured that concept in a
concrete format. A model can be captured in a variety of
languages, while a language can capture a variety of models
[2].

In order to design systems that meet performance, cost and
reliability requirements, the design process need to be based
on formal computational models to enable step-wise
refinements from specification to implementation during the
design process [13]. Co-design tools use specification
languages as their input. In order to allow refinement during
the design process, the initial specifications are transformed
to intermediate forms based on the Model of Computation
(MOC) [14] used by the co-design systems. Two approaches
are used for system specification, homogeneous modeling and
heterogeneous modeling [6],[17]:

• Homogeneous modeling uses one specification language
for specifying both hardware and software components of a
heterogeneous system. The typical task of a co-design system
using homogeneous approach is to analyze and split the initial
specification into hardware and software parts. The key
challenge in this approach is the mapping of high level
concepts used in the initial specification onto low level
languages (i.e. C and VHDL) to represent hardware/software
parts. To address this challenge, most co-design tools that use
the homogeneous modeling approach start with a low level
specification language in order to reduce the gap between the
system specification and the hardware/software models. For
example, Lycos [15] uses a C-like language called Cx and
Vulcan uses another C-like language called HardwareC. Only
few co-design tools start with a high level specification
language. For example, Polis [16] uses Esterel [17] for its
specification language.

• Heterogeneous modeling uses specific languages for
hardware (e.g. VDHL), and software (e.g. C). Heterogeneous
modeling allows simple mapping to hardware and software,
but this approach makes validation and interfacing much more
difficult. CoWare [18] is an example of a co-design
methodology that uses heterogeneous modeling.

A. Models of computation
A computational model is a conceptual formal notation that

describes the system behavior [2]. Ideally, a Model of
Computation (MOC) should comprehend concurrency,
sequential behavior and communication methods [13].
Co-design systems use computational models as the
underlying formal representation of a system. A variety of
Models of Computation have been developed to represent
heterogeneous systems. Researchers have classified MOCs
according to different criteria.

Gajski [15] classifies Models of Computations according
to their orientation into five classes [3]:

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

• State-oriented models use states to describe systems and
events trigger transition between states.

• Activity oriented models do not use states for describing
systems, but instead they use data or control activities.

• Structural oriented models are used to describe the
physical aspects of systems. Examples are: block diagrams,
RT netlists.

• Data oriented models describe the relations between
data which are used by the systems. Entity Relationship
Diagram (ERD) is an example of Data oriented models.

• Heterogeneous models merge features of different
models into a heterogeneous model. Examples of
heterogeneous models are Program State Machine (PSM),
Control/Data flow graphs (CDFG).

In addition to the classes described above, Bosman [14]
proposes a time-oriented class to capture the timing aspect of
MOCs. Jantsch et al. [19] group MOCs based on their timing
abstractions. They define the following groups of MOCs:
continuous time models, discrete time models, synchronous
models and un-timed models. Continuous and discrete time
models use events with a time stamp. In the case of
continuous time models, time stamps correspond to a set of
real numbers, while the time stamps correspond to a set of
integer numbers in the case of discrete time models.
Synchronous models are based on the synchrony hypothesis4

1) Finite State Machines (FSM)

.
Cortes et al. [13] group MOCs based on common

characteristics and the original model they are based on. The
following is an overview of common MOCs based on the
work in [13] and [14].

The FSM model consists of a set of states, a set of inputs, a
set of outputs, an output function , and a next-state function
[20]. A system is described as set of states and input values
can trigger a transition from one state to another. FSMs are
commonly used for modeling control-flow dominated
systems. The main disadvantage of FSMs is the exponential
growth of the number of the states as the system complexity
rises due the lack of hieracay and conccurency. To address the
limitations of the classical FSM, researches have proposed
several derivates of the classical FSM. Some of these
extensions are described below.

• SOLAR [21] is based on the Extended FSM model
(EFSM), which can support heirachy and conccurency. In
addtion, SOLAR supports high level communication concepts
inlcuding channels and global varaibles. It is used to
represent high-level concepts in control-flow dominated
systems, and it is mainly suited for synthesis purposes. The
model provides an intermediate format that allows
hardware/software designs at the system-level to be
synthesized.

• Hierarchical Concurrent FSM (HCFSM) [3] solve the
drawbacks of FSMs by decomposing states into a set of
sub-states. These sub-states can be concurrent sub-states
communicating via global variables. Therefore, HCFSMs
supports hierarchy and concurrency. Statecharts is a graphical
state machine language designed to capture the HCFSM
MOC [2]. The communication mechanism in statecharts is

4 Outputs are produced instantly in reaction to inputs, and no observable
delay in the outputs.

instantaneous broadcast, where the receiver proceeds
immediately in response to the sender message. The HCFSM
model is suitable for control oriented / real time systems.

• Codesign Finite State Machine (CFSM) [16],[25] adds
concurrency and hierarchy to the classical FSM, and can be
used to model both hardware and software. It is commonly
used for modeling control-flow dominated systems. The
communication primitive between CFSMs is called an event,
and the behavior of the system is defined as sequences of
events. CFSMs are widely used as intermediate forms in
co-design systems to map high-level languages, used to
capture specifications, into CFSMs.
2) Discrete-Event Systems

In a Discrete Event system, the occurrence of discrete
asynchronous events triggers the transitioning from one state
to another. An event is defined as an instantaneous action,
and has a time stamp representing when the event took place.
Events are sorted globally according to their time of arrival. A
signal is defined as set of events, and it is the main method of
communication between processes [13]. Discrete Event
modeling is often used for hardware simulation. For example,
both Verilog and VHDL use Discrete Event modeling as the
underlying Model of Computation [10]. Discrete Event
modeling is expensive since it requires sorting all events
according to their time stamp.
3) Petri Nets

Petri Nets are widely used for modeling systems. Petri Nets
consist of places, tokens and transitions, where tokens are
stored in places. Firing a transition causes tokens to be
produces and consumed. Petri Nets supports concurrency and
is asynchronous; however, they lack the ability to model
hierarchy. Therefore, it can be difficult to use Petri Nets to
model complex systems due to its lack of hierarchy.
Variations of Petri Nets have been devised to address the lack
of hierarchy. For example, the Hierarchical Petri Nets (HPNs)
proposed by Dittrich [22]

• Hierarchical Petri Nets (HPNs) supports hierarchy in
addition to maintaining the major Petri Nets features such as
concurrency and asynchronously. HPNs use Bipartite 5

4) Data Flow Graphs

directed graphs as the underlying model. HPNs are suitable
for modeling complex systems since they support both
concurrency and hierarchy.

In Data Flow Graph (DFG), systems are specified using a
directed graph where nodes (actors) represent inputs, outputs
and operations, and edges represent data paths between nodes
[3]. The main usage of Data Flow is for modeling data flow
dominated systems. Computations are executed only where
the operands are available. Communications between
processes is done via unbounded FIFO buffering scheme [13].
Data Flow models support hierarchy since the nodes can
represent complex functions or another Data Flow [6],[13].

Several variations of Data Flow Graphs have been
proposed in the literature such as Synchronous Data Flow
(SDF) and Asynchronous Data Flow (ADF) [22]. In SDF, a
fixed number of tokens are consumed, where in ADF the
number of tokens consumed is variable. Lee[23] provides an

5 A graph where the set of vertices can be divided into two disjoint sets
 U and V such that no edge has both end-points in the same set.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29�
http://en.wikipedia.org/wiki/Disjoint_sets�
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29�

overview of Data flow models and its variations.
5) Synchronous/Reactive Models

Synchronous modeling is based on the synchrony
hypothesis, which states that outputs are produced instantly in
reaction to inputs and there is no observable delay in the
outputs [14]. Synchronous models are used for modeling
reactive real time systems. Cortes in [13] mentions two styles
for modeling reactive real time systems: multiple clocked
recurrent systems (MCRS) which is suitable for data
dominates real time systems and state base formalisms which
is suitable for control dominated real time systems.
Synchronous languages such as Esterel [17] is used for
capturing Synchronous/Reactive Model of Computation [13].
6) Heterogeneous Models

Heterogeneous Models combine features of different
models of computation. Two examples of heterogeneous
models are presented.

• Programming languages [15] provide a heterogonous
model that can support data, activity and control modeling.
Two types of programming languages: imperative such as C,
and declarative languages such as LISP and PROLOG. In
imperative languages, statements are executed in the same
order specified in the specification. On the other hand,
execution order is not explicitly specified in declarative
languages since the sequence of execution is based on a set of
logic rules or functions. The main disadvantage of using
programming languages for modeling is that most languages
do not have special constructs to specify a system’s state [3]

• Program State Machine (PSM) is a merger between
HCFSM and programming languages. A PSM model uses a
programming language to capture a state’s actions [15]. A
PSM model supports hierarchy and concurrency inherited
from HCFSM. The Spec Charts language, which was
designed as an extension to VHDL, is capable of capturing the
PSM model. The Spec C is another language capable of
capturing the PSM model. Spec C was designed as an
extension to C [2].

Table I: Comparison of Models of Computation [14] [13]

M
O

C

O
rig

in

M
O

C

M
ai

n
A

pp
lic

at
io

n

C
lo

ck

M
ec

ha
ni

sm

O
rie

nt
at

io
n

Ti
m

e

C
om

m
.

M
et

ho
d

H
ie

ra
rc

hy

SOLAR FSM Control
Oriented Synch State

No
Explicit
Timings

Remote
Procedure

Call
Y

HCSFM/
State

Charts
FSM

Control
Oriented/
Reactive
Real time

Synch State

Min/Max
Time

spent in
State

Instant
Broadcast Y

CFSM FSM Control
Oriented Async State

Events
w/t time
stamp

Event
Broadcast Y

Discreet
Event N/A Real time Synch Timed

Globally
sorted
events
w/t time
stamp

Wired
Signals N

HPN Petri
Net Distributed Async Activity

No
Explicit
Timings

N/A Y

SDF DFG Signal
processing Synch Activity

No
Explicit
Timings

Unbounded
FIFO Y

ADF DFC Data
Oriented Async Activity

No
Explicit
Timings

Bounded
FIFO Y

B. Comparison of Models of Computation
A comparison of various Models of Computation is

presented by Bosman [14], and Cortes et al. [13]. Each author

compares MOCs according to certain criteria. Table I
compares MOCs based on the work done in [14] and [13].

C. Specification languages
The goal of a specification language is to describe the

intended functionality of a system non-ambiguously. A large
number of specification languages are currently being used in
embedded system design since there is no language that is the
best for all applications [3]. Below is a brief overview of the
widely used specification languages [2, 6] :
1) Formal description languages

Examples of formal languages are LOTOS and SDL.
• LOTOS is based on process algebra, and used for the

specification of concurrent and distributed system.
• SDL used for specifying distributed real time systems,

and based on extended FSM.
2) Real time languages

Esterel & StateCharts are examples of real time languages.
• Esterel is a synchronous programming language based

on the synchrony hypothesis. It is used for specifying real time
reactive systems. Esterel is based on FSM, with constructs to
support hierarchy and concurrency.

• StateCharts is graphical specification language used for
specifying reactive system. StateCharts extend FSM by
supporting hierarchy, concurrency and synchronization.
3) Hardware Description Languages (HDL)

Commonly used HDL are VHDL, Verilog and HardwareC.
• VHDL is IEEE standardized HW description language.
• Verilog is another hardware description language, which

has been standardized by IEEE.
• HardwareC is a C based language designed for hardware

synthesis. It extends C by supporting structural hierarchy,
concurrency, communication and synchronization.
4) System Level Design Languages (SLDL)

System Level Design Languages (SLDL) are used to
capture specification and model embedded system at the
system abstraction level. With the increased time-to-market
pressure, and to enable SoC designs, SLDS need to be able to
specify and model all aspects of the system at higher
abstraction level (at the System Level). This will allow early
design space exploration to evaluate various design
alternatives early in the design process. Most current SLDLs
lack built-in support for specifying and modeling ALL aspects
of a heterogeneous embedded system at the System Level.
Some of these deficiencies are lack of support for:

• RTOS modeling at the System Level. This is important
for modeling real time embedded system, and determining if
the scheduling policy will meet time constraints and deadline
at the System Level before committing to a specific RTOS
implementation.

• Composing Heterogeneous models with multiple MoCs.
• Estimating power consumption at the System Level.
Examples of SLDL are SpecC and SystemC.
• SpecC [20] is system level design language based on

ANSI C. It was developed at the University of California,
Irvine to improve traditional HDL languages such as VHDL.
The SpecC language models systems as a hierarchal network
of behaviors and channels [3]. SpecC supports behavior and
structural hierarchy, concurrency, state transition, exception
handling, timing aspects and synchronization. Built on the

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

SpecC language is the SpecC design methodology.
• SystemC [24] is a C++ library based language designed

the OpenSystemC Initiative (OCSI) group to improve
traditional HDL languages. SystemC has common features
with SpecC, and is widely used in system level modeling.

D. Requirements for specification languages
Gajski in [20] and Niemann in [3] describe the requirements

for specification languages:
• Hierarchy is an important feature of a specification

language. Two types of hierarchy: (1) behavior hierarchy
which allows a behavior to be decomposed of sub-behaviors,
(2) structural behavior which allows a system to be specified
as a set of interconnected components, where these
components can be specified as sub-components as well.

• State transition explicit support of state transition is
important since state transition is important for modeling
control and reactive embedded systems.

• Concurrency a large number of embedded systems
consist of tasks that are working concurrently. Therefore,
concurrency is a necessary feature of a specification language.

• Synchronization is needed when concurrent parts of a
system exchange data.

• Exception handling exceptions such as reset and
interrupts often occur in embedded systems. When an
interrupt occurs, the system has to transition to a new state to
handle the interrupt. Once the interrupt is serviced, the system
has to go back to point prior to interrupt. Specification
languages should be able to model exceptions.

• Timing is an important aspect of specifying real time
embedded systems. Two timing aspects have to be specified
when dealing with embedded systems: Functional timing
which represents the time consumed for executing a behavior,
and timing constraints which represent a range of time for
executing a behavior.

• Formal verification is desirable for specification
languages since it provides a mechanism to verify the
specification using formal mathematical methods.

• Support for RTOS modeling is important for the
specification of real time systems that will use a RTOS to
implement dynamic scheduling. The ability to model the
dynamic behavior of system, via RTOS modeling, during the
specification phase provides the means to assess the real time
behavior of the system early in the design process.
Table II shows a comparison of different well known
specification languages.

Table II: Comparison of specification languages

(F) Fully supported (P) Partially supported (N) Not supported

REFERENCES
[1] G. De Michell and R. K. Gupta, "Hardware/software co-design,"

Proceedings of the IEEE, vol. 85, no. 3, pp. 349-365, 1997.
[2] F. Vahid and T. Givargis, Embedded system design: a unified

hardware/software introduction: Wiley, 2002.
[3] R. Niemann, Hardware/software co-design for data flow dominated

embedded systems. Boston: Kluwer Academic Publishers, 1998.
[4] R. Domer, "System-level Modeling and Design with the SpecC

Language," Ph. D. Dissertation, Department of Computer Science,
University of Dortmund, Dortmund, Germany, 2000.

[5] R. Dömer, D. Gajski, and J. Zhu, "Specification and Design of
Embedded Systems," it+ ti magazine, Oldenbourg Verlag, Munich,
Germany, no. 3, June 1998.

[6] M. O’Nils, "Specification, Synthesis and Validation of
Hardware/Software Interfaces," Doctoral thesis, Department of
Electronics, Royal Institute of technology, Stockholm, 1999.

[7] L. Cai, "Estimation and Exploration Automation of System Level
Design," Ph. D. Dissertation, Department of Information and
Computer Science, University of California, Irvine, 2004.

[8] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A.
Sangiovanni-Vincentelli, "System-Level Design: Orthogonalization
of Concerns and Platform-Based Design," IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS
AND SYSTEMS, vol. 19, no. 12, pp. 1523 - 1543, 2000.

[9] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y.
Paviot, S. Yoo, A. A. Jerraya, and M. Diaz-Nava, "Component-Based
Design Approach for Multicore SoCs," in Proceedings of 39th Design
Automation Conference (DAC02), New Orleans, USA, pp. 789 - 794,
2002.

[10] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,
"Design of embedded systems: formal models, validation, and
synthesis," Proceedings of the IEEE, vol. 85, no. 3, pp. 366-390,
1997.

[11] R. Camposano and W. H. Wolf, High-Level VLSI Synthesis: Kluwer
Academic Publishers Norwell, MA, USA, 1991.

[12] S. Devadas, A. Ghosh, and K. Keutzer, Logic synthesis: McGraw-Hill,
Inc. New York, NY, USA, 1994.

[13] L. A. Cortes, P. Eles, and Z. Peng, "A survey on hardware/software
codesign representation models," Dept. of Computer and Information
Science, Linköping University, Linköping, Sweden, SAVE Project
Report, June 1999.

[14] G. Bosman, I. A. M. Bos, P. G. C. Eussen, and I. R. Lammel, "A
Survey of Co-Design Ideas and Methodologies," Master’s Thesis at
Vrije Universiteit Amsterdam, October 2003, 2003.

[15] D. D. Gajski, J. Zhu, and R. Dömer, "Essential Issues in Codesign," in
Hardware/Software Co-Design: Principles and Practice, J.
Staunstrup and W. Wolf, Eds.: Kluwer Academic Publishers, 1997.

[16] POLIS Group. (2009 April 5). POLIS, A Framework For
Hardware-Software Co-Design Of Embedded Systems.
Available: http://embedded.eecs.berkeley.edu/research/hsc/.

[17] F. Boussinot, R. de Simone, and V. Ensmp-Cma, "The ESTEREL
language," Proceedings of the IEEE, vol. 79, no. 9, pp. 1293-1304,
1991.

[18] K. Van Rompaey, D. Verkest, I. Bolsens, H. De Man, and H. Imec,
"CoWare-a design environment for heterogeneous hardware/software
systems," in Proceedings of the conference on European design
automation Geneva, Switzerland, pp. 252-257, 1996.

[19] A. Jantsch and I. Sander, "Models of Computation in the Design
Process," in SoC: Next Generation Electronics, B. M. Al-Hashimi,
Ed.: IEE, 2005.

[20] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC,
Specification Language and [design] Methodology: Kluwer
Academic, 2000.

[21] A. A. Jerraya and K. O’Brien, "SOLAR: An Intermediate Format for
System-Level Modeling and Synthesis," in Computer Aided
Software/Hardware Engineering, K. Buchenrieder and J. Rozenblit,
Eds.: IEEE Press, 1995.

[22] A. Agrawal, "Hardware Modeling and Simulation of Embedded
Applications," M.S. Thesis, Department of Electrical Engineering,
Vanderbilt University, Nashville, Tennessee, 2002.

[23] E. A. Lee and T. M. Parks, "Dataflow process networks," Proceedings
of the IEEE, vol. 83, no. 5, pp. 773-801, 1995.

[24] Open SystemC Initiative. (2009, April 5). SystemC.
Available: http://www.systemc.org/

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

http://embedded.eecs.berkeley.edu/research/hsc/�
http://www.systemc.org/�

	INTRODUCTION
	Embedded Systems

	System Level Design
	System level design approaches

	Hardware / Software Co-design
	Specification and modeling
	Design and refinement
	Validation

	Specification and Modeling
	Models of computation
	Finite State Machines (FSM)
	Discrete-Event Systems
	Petri Nets
	Data Flow Graphs
	Synchronous/Reactive Models
	Heterogeneous Models

	Comparison of Models of Computation
	Specification languages
	Formal description languages
	Real time languages
	Hardware Description Languages (HDL)
	System Level Design Languages (SLDL)

	Requirements for specification languages

	References

