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Abstract— The complexity of designing embedded systems is 

constantly increasing. Some of the factors contributing to the 
increase in complexity are: increasing complexities of hardware 
and software, increased pressure to deliver full-featured 
products with reduced time-to-market, and the fact that more 
embedded systems are using heterogeneous architectures 
consisting of dedicated hardware components (ASIC) and 
software running on processors. This ongoing increase in 
complexities motivates the usage of high-level system design 
approaches such as System Level Design tools and 
methodologies.  In System Level Design, specification languages 
are used to build high level models of the entire system, at the 
System Level, to allow fast design space exploration. Models of 
Computations (MoC) are used as the underlying formal 
representation of a system. This paper investigates the co-design 
approach and its design activities. Specifically, specification and 
modeling computation process are investigated and evaluated. 
Popular models of computations are described and compared. 
Various specification languages for designing embedded are 
described and compared.. 
 

I. INTRODUCTION 

A.   Embedded Systems  
Embedded systems are special-purpose systems which are 

typically embedded within larger units providing a dedicated 
service to that unit [1]. In most embedded systems, a 
function-specific software application is provided by the 
product manufacturer, and end-users have limited access to 
altering the application running on the system.  Embedded 
systems are found in consumer electronics products (i.e. cell 
phones, PDAs, microwaves, etc), transport control systems 
(i.e. cars, trains, and aircrafts), plant control systems and 
defense systems. These are only few examples of embedded 
systems.  

Vahid et al. [2] describe the characteristic of embedded 
systems that differentiate them from other digital systems: 

• Single-functioned. Embedded systems repeatedly 
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perform a specific function. 
• Reactive and real time. Many embedded systems, 

especially in the control domain, are reactive systems and 
must continually react to changes in the environment and meet 
timings constraints without delay.   

• Tightly constrained. Embedded systems have tight 
constraints on design metrics. For example, embedded 
systems must have minimum design costs, must have small 
form factors and consume minimum power, especially for 
portable systems, must meet real time requirements, must be 
safe and reliable, and must have short time-to-market cycle.   

The majority of embedded systems are implemented using 
heterogeneous systems consisting of dedicated parts and 
programmable processors [3]. A typical heterogeneous 
system consists of: dedicated hardware parts (ASIC), 
programmable processors such as microprocessor and ASIP1

II. SYSTEM LEVEL DESIGN  

 
components (i.e. DSP and microcontrollers), memory for data 
and code, peripherals such A/D, D/A and I/O units, and buses 
connecting the above components.  

Heterogeneous systems are implemented on a single board 
or a single chip. In single-board systems, processors, AISC 
components, memories and peripheral are integrated on a 
single board. Single-chip systems integrate on one ASIC 
processor cores, dedicated parts, memories and peripherals. 
Compared to single-board systems, single-chip system 
provide increased performance and reduced power 
consumption. However, single-chip systems are more 
complex which makes debugging these systems much harder.  

Traditionally, hardware synthesis tools (logic synthesis and 
behavior synthesis) have been used to increase productivity. 
However, hardware synthesis is not sufficient since embedded 
systems use more software content [4]. In addition, hardware 
synthesis methods focus on designing a single hardware chip, 
where more embedded systems are using heterogeneous 
architectures.  

The complexities in designing embedded systems motivate 
the need for using more efficient tools and design 
methodologies. System Level Design is a methodology to help 
address these complexities, and enable SoC designs. 

System Level Design is concerned with addressing the 
challenges encountered in designing heterogeneous 
embedded systems. In System Level Design, complexities are 
managed by (1) starting the design process at the highest level 
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of abstraction (System Level), (2) utilizing automated design 
methodologies to enable step-wise refinements during the 
design process (3) reusing Intellectual Property (IP) 
components when feasible [5].  

The goal of System Level Design is to implement System 
Level specification on target architecture by refining the 
specification into a set of target-specific specifications. 

Designing at a higher level of abstraction reduces the 
number of components with which the designer has to deal 
with, and thus increasing design productivity. This paradigm 
shift in design requires methodologies and automated tools to 
support design at higher levels abstractions.   

The use of IP components allows the designer to use 
pre-designed components, instead of designing from scratch. 
IP use is gaining recognition in the design community. In 
order to fully leverage using IP components in the design of 
heterogeneous embedded system, IP components must allow 
seamless integration into the overall system, and design tools 
must support using IP components [6].  

System Level Design is different than behavior synthesis 
since it (behavior synthesis) maps an algorithm into a ASIC, 
while System Level Design maps a high-level abstract 
specification model of an entire system onto a target 
architecture [4].  

A. System level design approaches  
There are three main system level design approaches: 

hardware/software co-design, platform-based design and 
component-based design [7]. 

• Hardware/Software co-design (also referred to system 
synthesis) is a top-down approach. Starts with system 
behavior, and generates the architecture from the behavior. It 
is performed by gradually adding implementation details to 
the design. 

• Platform-based design. Rather than generating the 
architecture from the system behavior as in co-design, 
platform-based design maps the system behavior to 
predefined system architecture. An example of 
platform-based design is shown in [8]. 

• Component-based design is a bottom-up approach. In 
order to produce the predefined platform, it assembles 
existing heterogeneous components by inserting wrappers 
between these components.  An example of component-based 
design is described in [9]. 

III. HARDWARE / SOFTWARE CO-DESIGN  
Hardware/Software co-design can be defined as the 

cooperative design of hardware2 and software3

 
2 Hardware refers to dedicated hardware components (ASIC). 
3 Software refers to software executing on processor or ASIP 

 in order to 
achieve system-level objectives (functionality & constraints) 
by exploiting the synergism of hardware and software [6],[7]. 
Hardware/Software co-design research focuses on presenting 
a unified view of hardware and software, and the development 
of synthesis tools and simulators to address the problem of 
designing heterogeneous systems. While hardware 
implementation provides higher performance, software 
implementation is more cost effective and flexible since 
software can be reused and modified. The choice of hardware 

versus software in co-design is a trade-off among various 
design metrics like performance, cost, flexibility and 
time-to-market. This trade-off represents the optimization 
aspect of co-design. Fig. 1 shows the flow of a typical 
Hardware / Software co-design system.  

 
Fig. 1: Flow of a typical co-design system 

Generally, Hardware / Software co-design consists of the 
following activities: specification and modeling, design and 
validation [6]. 

A. Specification and modeling 
This is the first step in the co-design process. The system 

behavior at the system level is captured during the 
specification step [3]. Section  IV provides details about 
specification and modeling, including Models of 
Computation.  

B. Design and refinement  
The design process follows a step-wise refinement 

approach using several steps to transform a specification into 
an implementation. Niemann [3] and O’Nils [6] define the 
following design steps: 

• Tasks assignment: The system specification is divided 
into a set of tasks/basic blocks that perform the system 
functionality [3]. 

• Cost estimation: This step estimates cost parameters for 
implementing the system’s basic blocks (output of task 
assignment) in hardware or software. Examples of hardware 
cost parameters are: gate count, chip area and power 
consumption, where execution time, code size and required 
code memory are examples of software cost parameters. Cost 
estimates are used to assist in making design decision to 
decrease the number of design iterations [3].  

• Allocation: This step maps functional specification into 
a given architecture by determining the type and number of 
processing components required to implement the system’s 
functionality.  To make the allocation process manageable, 
co-design systems normally impose restrictions on target 
architectures. For example, allocation may be limited to a 
certain pre-defined components [10]. 

• Hardware/Software partitioning: This step partitions 
the specification into two parts: (1) a part that will be 
implemented in hardware and (2) a part that will be 
implemented in software.  
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• Scheduling: This step is concerned with scheduling the 
tasks assigned to processors. If tasks information (i.e. 
execution time, deadline, delay) are known, scheduling is 
done statically at design time. Otherwise, scheduling is done 
dynamically at run time (i.e. using Real Time OS – RTOS). 
De Michell et al. [1] provide an overview of  techniques and 
algorithms to address the scheduling problem.  

• Co-synthesis: Niemann [3] classifies  several design 
steps as part of co-synthesis: 

1) Communication synthesis: Implementing the 
partitioned system on heterogeneous target architecture 
requires interfacing between the ASIC components 
(HW) and the processors (SW) communication between 
the ASIC(s) and the processors. This is accomplished in 
communication synthesis step.  
2) Specification refinement: Once the system is 
partitioned into hardware and software, and the 
communication interfaces are defined, the system 
specification is refined into hardware specifications and 
software specifications, which include communication 
methods to allow interfacing between the hardware and 
software components.  
3) Hardware synthesis: AISC components are 
synthesized using behavior (high-level) synthesis and 
logic synthesis methods. Hardware synthesis is a mature 
field due to the extensive research done in this field. 
Details about hardware synthesis methods are provided 
in [11] and [12] 
4) Software synthesis: This step is related to 
generating, from high level specification, C or assembly 
code for the processor(s) that will be executing the 
software part of the heterogeneous system.  Edwards et 
al. [10] provides an overview of software synthesis 
techniques. 

C. Validation 
Informally, validation is defined as the process of 

determining that the design, at different levels of abstractions, 
is correct. The validation of hardware/software systems is 
referred to as co-validation. Methods for co-validations are  
[9],[13] : 

• Formal verification is the process of mathematically 
checking that the system behavior satisfies a specific 
property. Formal verification can be done at the specification 
or the implementation level. For example, formal verification 
can be used to check the presence of a deadlock condition in 
the specification model of a system. At the implementation 
level, formal verification can be used to check whether a 
hardware component correctly implements a given Finite 
State Machine (FSM). For heterogeneous systems (i.e. 
composed of ASIC components and software components), 
formal verification is called co-verification. 

• Simulation validates that a system is functioning as 
intended by simulating a small set of inputs.  Simulation of 
heterogeneous embedded systems requires simulating both 
hardware and software simultaneously, which is more 
complex than simulating hardware or software separately. 
Simulation of heterogeneous systems is referred to as 
co-simulation.  A comparison of co-simulation methods is 
presented in [10]. 

IV. SPECIFICATION AND MODELING  
Specification is the starting point of the co-design process, 

where the designer specifies the system’s specification 
without specifying the implementations. Languages are used 
to capture system specifications. Modeling is the process of 
conceptualizing and refining the specifications. A model is 
different from the language used to specify the system. A 
model is a conceptual notation that describes the desired 
system behavior, while a language captured that concept in a 
concrete format. A model can be captured in a variety of 
languages, while a language can capture a variety of models 
[2].  

In order to design systems that meet performance, cost and 
reliability requirements, the design process need to be based 
on formal computational models to enable step-wise 
refinements from specification to implementation during the 
design process [13]. Co-design tools use specification 
languages as their input. In order to allow refinement during 
the design process, the initial specifications are transformed 
to intermediate forms based on the Model of Computation 
(MOC) [14] used by the co-design systems. Two approaches 
are used for system specification, homogeneous modeling and 
heterogeneous modeling [6],[17]:  

• Homogeneous modeling uses one specification language 
for specifying both hardware and software components of a 
heterogeneous system. The typical task of a co-design system 
using homogeneous approach is to analyze and split the initial 
specification into hardware and software parts. The key 
challenge in this approach is the mapping of high level 
concepts used in the initial specification onto low level 
languages (i.e. C and VHDL) to represent hardware/software 
parts. To address this challenge, most co-design tools that use 
the homogeneous modeling approach start with a low level 
specification language in order to reduce the gap between the 
system specification and the hardware/software models. For 
example, Lycos [15] uses a C-like language called Cx and 
Vulcan uses another C-like language called HardwareC. Only 
few co-design tools start with a high level specification 
language. For example, Polis [16] uses Esterel [17] for its 
specification language.   

• Heterogeneous modeling uses specific languages for 
hardware (e.g. VDHL), and software (e.g. C). Heterogeneous 
modeling allows simple mapping to hardware and software, 
but this approach makes validation and interfacing much more 
difficult. CoWare [18] is an example of a co-design 
methodology that uses heterogeneous modeling. 

A. Models of computation  
A computational model is a conceptual formal notation that 

describes the system behavior [2]. Ideally, a Model of 
Computation (MOC) should comprehend concurrency, 
sequential behavior and communication methods [13]. 
Co-design systems use computational models as the 
underlying formal representation of a system. A variety of 
Models of Computation have been developed to represent 
heterogeneous systems. Researchers have classified MOCs 
according to different criteria.  

Gajski [15] classifies Models of Computations according 
to their orientation into five classes [3]: 

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 
 

 

• State-oriented models use states to describe systems and 
events trigger transition between states.   

• Activity oriented models do not use states for describing 
systems, but instead they use data or control activities. 

• Structural oriented models are used to describe the 
physical aspects of systems. Examples are: block diagrams, 
RT netlists.   

• Data oriented models describe the relations between 
data which are used by the systems. Entity Relationship 
Diagram (ERD) is an example of Data oriented models.  

• Heterogeneous models merge features of different 
models into a heterogeneous model. Examples of 
heterogeneous models are Program State Machine (PSM), 
Control/Data flow graphs (CDFG). 

In addition to the classes described above, Bosman [14] 
proposes a time-oriented class to capture the timing aspect of 
MOCs. Jantsch et al. [19] group MOCs based on their timing 
abstractions.  They define the following groups of MOCs: 
continuous time models, discrete time models, synchronous 
models and un-timed models. Continuous and discrete time 
models use events with a time stamp.  In the case of 
continuous time models, time stamps correspond to a set of 
real numbers, while the time stamps correspond to a set of 
integer numbers in the case of discrete time models. 
Synchronous models are based on the synchrony hypothesis4

1) Finite State Machines (FSM)  

.  
Cortes et al. [13] group MOCs based on common 

characteristics and the original model they are based on. The 
following is an overview of common MOCs based on the 
work in [13] and [14].  

The FSM model consists of a set of states, a set of inputs, a 
set of outputs, an output function , and a next-state function 
[20].  A system is described as set of states and input values 
can trigger a transition from one state to another. FSMs are 
commonly used for modeling control-flow dominated 
systems. The main disadvantage of FSMs  is the exponential 
growth of the number of the states as the system complexity 
rises due the lack of hieracay and conccurency. To address the 
limitations of the classical FSM, researches have proposed 
several  derivates of the classical FSM. Some of these 
extensions are described below. 

• SOLAR [21] is based on the Extended FSM model 
(EFSM), which can support heirachy and conccurency. In 
addtion, SOLAR supports high level communication concepts 
inlcuding channels and global varaibles. It is used to  
represent  high-level concepts in control-flow dominated 
systems, and it is mainly suited for synthesis purposes. The 
model provides an intermediate format that allows 
hardware/software designs at the system-level to be 
synthesized.  

• Hierarchical Concurrent FSM (HCFSM) [3] solve the 
drawbacks of FSMs by decomposing states into a set of 
sub-states. These sub-states can be concurrent sub-states 
communicating via global variables. Therefore, HCFSMs 
supports hierarchy and concurrency. Statecharts is a graphical 
state machine language designed to capture the HCFSM 
MOC [2]. The communication mechanism in statecharts is 
 
4 Outputs are produced instantly in reaction to inputs, and no observable 
delay in the outputs. 

instantaneous broadcast, where the receiver proceeds 
immediately in response to the sender message.  The HCFSM 
model is suitable for control oriented / real time systems. 

• Codesign Finite State Machine (CFSM) [16],[ 25] adds 
concurrency and hierarchy to the classical FSM, and can be 
used to model both hardware and software. It is commonly 
used for modeling control-flow dominated systems. The 
communication primitive between CFSMs is called an event, 
and the behavior of the system is defined as sequences of 
events. CFSMs are widely used as intermediate forms in 
co-design systems to map high-level languages, used to 
capture specifications, into CFSMs.  
2) Discrete-Event Systems  

In a Discrete Event system, the occurrence of discrete 
asynchronous events triggers the transitioning from one state 
to another.  An event is defined as an instantaneous action, 
and has a time stamp representing when the event took place. 
Events are sorted globally according to their time of arrival. A 
signal is defined as set of events, and it is the main method of 
communication between processes [13]. Discrete Event 
modeling is often used for hardware simulation. For example, 
both Verilog and VHDL use Discrete Event modeling as the 
underlying Model of Computation [10].  Discrete Event 
modeling is expensive since it requires sorting all events 
according to their time stamp.  
3) Petri Nets 

Petri Nets are widely used for modeling systems. Petri Nets 
consist of places, tokens and transitions, where tokens are 
stored in places. Firing a transition causes tokens to be 
produces and consumed. Petri Nets supports concurrency and 
is asynchronous; however, they lack the ability to model 
hierarchy. Therefore, it can be difficult to use Petri Nets to 
model complex systems due to its lack of hierarchy. 
Variations of Petri Nets have been devised to address the lack 
of hierarchy. For example, the Hierarchical Petri Nets (HPNs) 
proposed by Dittrich [22]  

• Hierarchical Petri Nets (HPNs) supports hierarchy in 
addition to maintaining the major Petri Nets features such as 
concurrency and asynchronously. HPNs use Bipartite 5

4) Data Flow Graphs  

 
directed graphs as the underlying model. HPNs are suitable 
for modeling complex systems since they support both 
concurrency and hierarchy.  

In Data Flow Graph (DFG), systems are specified using a 
directed graph where nodes (actors) represent inputs, outputs 
and operations, and edges represent data paths between nodes 
[3].  The main usage of Data Flow is for modeling data flow 
dominated systems. Computations are executed only where 
the operands are available.  Communications between 
processes is done via unbounded FIFO buffering scheme [13]. 
Data Flow models support hierarchy since the nodes can 
represent complex functions or another Data Flow [6],[13].   

Several variations of Data Flow Graphs have been 
proposed in the literature such as Synchronous Data Flow 
(SDF) and Asynchronous Data Flow (ADF) [22]. In SDF, a 
fixed number of tokens are consumed, where in ADF the 
number of tokens consumed is variable. Lee[23] provides an 

 
5 A graph where the set of vertices can be divided into two disjoint sets  
  U and V such that no edge has both end-points in the same set. 
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overview of Data flow models and its variations.  
5) Synchronous/Reactive Models 

Synchronous modeling is based on the synchrony 
hypothesis, which states that outputs are produced instantly in 
reaction to inputs and there is no observable delay in the 
outputs [14]. Synchronous models are used for modeling 
reactive real time systems.  Cortes in [13] mentions two styles 
for modeling reactive real time systems: multiple clocked 
recurrent systems (MCRS) which is suitable for data 
dominates real time systems and state base formalisms which 
is suitable for control dominated real time systems. 
Synchronous languages such as Esterel [17] is used for 
capturing Synchronous/Reactive Model of Computation [13]. 
6) Heterogeneous Models 

Heterogeneous Models combine features of different 
models of computation. Two examples of heterogeneous 
models are presented.  

• Programming languages [15] provide a heterogonous 
model that can support data, activity and control modeling. 
Two types of programming languages: imperative such as C, 
and declarative languages such as LISP and PROLOG. In 
imperative languages, statements are executed in the same 
order specified in the specification. On the other hand, 
execution order is not explicitly specified in declarative 
languages since the sequence of execution is based on a set of 
logic rules or functions. The main disadvantage of using 
programming languages for modeling is that most languages 
do not have special constructs to specify a system’s state [3] 

• Program State Machine (PSM) is a merger between 
HCFSM and programming languages. A PSM model uses a 
programming language to capture a state’s actions [15]. A 
PSM model supports hierarchy and concurrency inherited 
from HCFSM. The Spec Charts language, which was 
designed as an extension to VHDL, is capable of capturing the 
PSM model. The Spec C is another language capable of 
capturing the PSM model. Spec C was designed as an 
extension to C [2]. 

Table I: Comparison of Models of Computation [14] [13] 
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B. Comparison of Models of Computation 
A comparison of various Models of Computation is 

presented by Bosman [14], and Cortes et al. [13]. Each author 

compares MOCs according to certain criteria. Table I 
compares MOCs based on the work done in [14] and [13]. 

C. Specification languages 
The goal of a specification language is to describe the 

intended functionality of a system non-ambiguously. A large 
number of specification languages are currently being used in 
embedded system design since there is no language that is the 
best for all applications [3]. Below is a brief overview of the 
widely used specification languages [2, 6] : 
1) Formal description languages 

Examples of formal languages are LOTOS and SDL. 
• LOTOS is based on process algebra, and used for the 

specification of concurrent and distributed system.  
• SDL used for specifying distributed real time systems, 

and based on extended FSM. 
2) Real time languages  

Esterel & StateCharts are examples of real time languages.  
• Esterel is a synchronous programming language based 

on the synchrony hypothesis. It is used for specifying real time 
reactive systems. Esterel is based on FSM, with constructs to 
support hierarchy and concurrency. 

• StateCharts is graphical specification language used for 
specifying reactive system. StateCharts extend FSM by 
supporting hierarchy, concurrency and synchronization. 
3) Hardware Description Languages (HDL) 

Commonly used HDL are VHDL, Verilog and HardwareC.  
• VHDL is IEEE standardized HW description language.  
• Verilog is another hardware description language, which 

has been standardized by IEEE. 
• HardwareC is a C based language designed for hardware 

synthesis. It extends C by supporting structural hierarchy, 
concurrency, communication and synchronization.  
4) System Level Design Languages (SLDL) 

System Level Design Languages (SLDL) are used to 
capture specification and model embedded system at the 
system abstraction level. With the increased time-to-market 
pressure, and to enable SoC designs, SLDS need to be able to 
specify and model all aspects of the system at higher 
abstraction level (at the System Level). This will allow early 
design space exploration to evaluate various design 
alternatives early in the design process. Most current SLDLs 
lack built-in support for specifying and modeling ALL aspects 
of a heterogeneous embedded system at the System Level. 
Some of these deficiencies are lack of support for:  

• RTOS modeling at the System Level. This is important 
for modeling real time embedded system, and determining if 
the scheduling policy will meet time constraints and deadline 
at the System Level before committing to a specific RTOS 
implementation.  

• Composing Heterogeneous models with multiple MoCs.  
• Estimating power consumption at the System Level.  
Examples of SLDL are SpecC and SystemC. 
• SpecC [20] is system level design language based on 

ANSI C. It was developed at the University of California, 
Irvine to improve traditional HDL languages such as VHDL. 
The SpecC language models systems as a hierarchal network 
of behaviors and channels [3]. SpecC supports behavior and 
structural hierarchy, concurrency, state transition, exception 
handling, timing aspects and synchronization.  Built on the 
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SpecC language is the SpecC design methodology. 
• SystemC [24] is a C++ library based language designed 

the OpenSystemC Initiative (OCSI) group to improve 
traditional HDL languages. SystemC has common features 
with SpecC, and is widely used in system level modeling. 

D. Requirements for specification languages  
Gajski in [20] and Niemann in [3] describe the requirements 

for specification languages: 
• Hierarchy is an important feature of a specification 

language. Two types of hierarchy: (1) behavior hierarchy 
which allows a behavior to be decomposed of sub-behaviors, 
(2) structural behavior which allows a system to be specified 
as a set of interconnected components, where these 
components can be specified as sub-components as well. 

• State transition explicit support of state transition is 
important since state transition is important for modeling 
control and reactive embedded systems.  

• Concurrency a large number of embedded systems 
consist of tasks that are working concurrently. Therefore, 
concurrency is a necessary feature of a specification language.   

• Synchronization is needed when concurrent parts of a 
system exchange data.  

• Exception handling exceptions such as reset and 
interrupts often occur in embedded systems. When an 
interrupt occurs, the system has to transition to a new state to 
handle the interrupt. Once the interrupt is serviced, the system 
has to go back to point prior to interrupt. Specification 
languages should be able to model exceptions.   

• Timing is an important aspect of specifying real time 
embedded systems. Two timing aspects have to be specified 
when dealing with embedded systems: Functional timing 
which represents the time consumed for executing a behavior, 
and timing constraints which represent a range of time for 
executing a behavior. 

• Formal verification is desirable for specification 
languages since it provides a mechanism to verify the 
specification using formal mathematical methods. 

• Support for RTOS modeling is important for the 
specification of real time systems that will use a RTOS to 
implement dynamic scheduling. The ability to model the 
dynamic behavior of system, via RTOS modeling, during the 
specification phase provides the means to assess the real time 
behavior of the system early in the design process. 
Table II shows a comparison of different well known 
specification languages. 

Table II: Comparison of specification languages 

 
(F) Fully supported  (P) Partially supported    (N) Not supported 
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