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Abstract—Data miners have access to a significant
number of classifiers and use them on a variety of dif-
ferent types of dataset. This large selection makes
it difficult to know which classifier will perform most
effectively in any given case. Usually an understand-
ing of learning algorithms is combined with detailed
domain knowledge of the dataset at hand to lead to
the choice of a classifier. We propose an empirical
framework that quantitatively assesses the accuracy
of a selection of classifiers on different datasets, re-
sulting in a set of classification rules generated by
the J48 decision tree algorithm. Data miners can fol-
low these rules to select the most effective classifier
for their work. By optimising the parameters used
for learning and the sampling techniques applied, a
set of rules were learned that select with 78% accu-
racy (with 0.5% classification accuracy tolerance), the
most effective classifier.

Keywords: Bayesian networks; Data mining; Classifi-

cation; Search algorithm; Decision tree.

1 Introduction

The past 20 years have seen a dramatic increase in the
amount of data being stored in electronic format. The
accumulation of this data has taken place at an explosive
rate and it has been estimated that the amount of infor-
mation in the world doubles every two years [1]. Within
this ocean of data, valuable information lies dormant.

Data mining uses statistical techniques and advanced al-
gorithms to search the data for hidden patterns and re-
lationships. However, as data expands and the impor-
tance of data mining increases, a problem emerges. There
are many different classifiers and many different types of
dataset resulting in difficulty in knowing which will per-
form most effectively in any given case. It is already
widely known that some classifiers perform better than
others on different datasets. Usually an understanding
of learning algorithms is combined with detailed domain
knowledge of the dataset at hand for the choice of classi-
fier. Experience and deep knowledge will of course affect
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the choice of the most effective classifier - but are they
always right? It is always possible that another classifier
may unknowingly work better.

In deciding which classifier will work best for a given
dataset there are two options. The first is to put all
the trust in an expert’s opinion based on knowledge and
experience. The second is to run through every possi-
ble classifier that could work on the dataset, identify-
ing rationally the one which performs best. The latter
option, while being the most rigorous, would take time
and require a significant amount of resources, especially
with larger datasets, and as such is impractical. If the
expert consistently chooses an ineffective classifier, the
most effective classification rules will never be learned,
and resources will be wasted. Neither method provides
an efficient solution and as a result it would be extremely
helpful to both users and experts, if it were known explic-
itly which classifier, of the multitude available, is most
effective for a particular type of dataset.

We therefore propose a framework to quantify which of a
selection of classifiers is most effective at mining a given
dataset in terms of accuracy (for our experiments, speed
was not a focus). From this assessment, the J48 learning
algorithm [2] is used to generate a series of rules in the
form of a decision tree which then enables data miners to
select the most accurate classifier given their particular
dataset. (To the best of our knowledge, no other work
has been attempted in such a way.)

This paper is organised as follows. Section 2 presents
the proposed empirical framework for automatically se-
lecting the best Bayesian classifier. Section 3 discusses
the performance evaluation metrics. Section 4 presents
the experimental results from the 39 datasets selected.
Finally, Section 5 concludes the paper.

2 Proposed Framework

The empirical framework for automatically selecting the
best classifier is depicted in Figure 1, which consists
of four main processes, Dataset Categorisation, Classi-
fier Training, Results Sampling, and Classification Rules
Generation.

The ultimate aim of this research was to find a set of
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Figure 1: An empirical framework for automatically selecting the best classifier.

rules that would allow a user to predict which is the best
classifier for use on their dataset. It was decided that
this could be attempted by applying a learning algorithm
to the initial analysis of which classifier performs best
for each dataset. If a rational system for selecting the
optimum classifier on the basis of the type of dataset to
be analysed could be identified, then the process of data
mining could be made significantly more effective. For
the ease of use, a set of rules in a decision tree format
is desirable. To create such a tree the effective learning
algorithm J48 [2] was selected. The following will discuss
each of the four processes in details.

2.1 Dataset Categorisation

Categorising the datasets has two advantages. First, it
allows an identification of which classifier performs best
for a particular type of dataset. Secondly, it provides a
means to select a representative sample against which a
learning algorithm is tested.

A total of 39 datasets were selected from the UCI Machine
Learning repository1, the WEKA Web site2, and the
Promise repository3. The characteristics of each dataset
and whether univariate outlier detection has been per-
formed are listed in Table 1. Given that the datasets
are of different sizes, in terms of both attributes and in-
stances, it was difficult to use a generic categorising sys-
tem. Nonetheless, having looked at the data as a whole
it was decided that the median values of total instances
and attribute numbers should be used as the basis on
which to categorise them. These were 286 instances and

1http://archive.ics.uci.edu/ml/
2http://www.cs.waikato.ac.nz/ml/weka/
3http://promisedata.org/

16 attributes. Using the median values meant that an
equal number of large and small datasets, as defined by
the values, would sit either side of the boundary.

Using these values as thresholds; the datasets were ini-
tially split into four groups: those datasets with > 286
and those with <= 286 instances, and within each of
these groups those datasets with > 16 attributes and
those with <= 16. This represented the datasets entirely
in terms of their structure, without reference to the type
of attributes. Using only the structure of a dataset kept
the categorisation simple. No datasets were ever 100%
numeric, due to the fact that the class must always be a
categorical value when used with Bayesian classifiers [2].
For this reason it was decided that three sub-categories
were to be created, one which housed all the datasets
that were 100% categorical and two others which were
50%−99% categorical and 1%−49% categorical, respec-
tively. This means that there exist 12 different categories
of dataset. This is summarised in Table 2. Some will hold
more than others, but at least any samples taken will be
representative, using the categorical system as shown in
Table 2.

Table 2: The criteria for categorising datasets based on
the number of instances, attributes and the % of at-
tributes that are categorical.

> 286 Instances
> 16 Attributes ≤ 16 Attributes

100% ≥ 50% < 50% 100% ≥ 50% < 50%
≤286 Instances

> 16 Attributes ≤ 16 Attributes
100% ≥ 50% < 50% 100% ≥ 50% < 50%
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Table 1: List of details of all the datasets used.
Categorical Numeric Missing Univariate

Dataset Inst Attr (%) (%) Values Outliers Source
Balance Scale 625 4 25.00 75.00 0 None UCI
Balloons 20 5 100.00 0.00 0 NA UCI
Breast Cancer 286 10 100.00 0.00 9 NA UCI
Bridges 95 12 66.67 33.33 88 Yes UCI
Car 1728 7 100.00 0.00 0 NA UCI
Chess - krvk 28056 7 57.14 42.86 0 None UCI
Chess - krvskp 3196 36 100.00 0.00 0 NA UCI
CM1 498 22 4.5 95.45 0 Yes Promise
Congress Voting 428 17 100.00 0.00 392 NA UCI
Contact Lenses 24 5 100.00 0.00 0 NA WEKA
Credit Screening 690 16 62.50 37.50 67 Yes UCI
Cylinder Bands 502 39 48.72 51.28 352 Yes UCI
Disease 10 5 100.00 0.00 0 NA UCI
Ecoli 336 9 22.22 77.78 0 Yes UCI
Eucalyptus 736 20 35.00 65.00 448 Yes WEKA
Flag 194 30 10.00 90.00 0 Yes UCI
Grub-Damage 155 9 77.78 22.22 0 None WEKA
Horse-Coli 268 23 69.57 30.43 1927 Yes UCI
Image 210 16 6.25 93.75 0 Yes UCI
Ionosphere 351 35 2.86 97.14 0 None UCI
KC1 2109 22 4.55 95.45 0 Yes Promise
KC2 522 22 4.55 95.45 0 Yes Promise
Lymphography 148 19 84.21 15.79 0 Yes UCI
Monk 122 7 100.00 0.00 0 NA UCI
Mushroom 8124 22 100.00 0.00 2480 NA UCI
Nursery 12960 8 100.00 0.00 0 NA UCI
PC1 1109 22 4.55 95.45 0 Yes Promise
Pasture 36 23 8.70 91.30 0 None WEKA
Post-Operative 90 9 88.89 11.11 3 None UCI
Segment-Challenge 1500 20 5.00 95.00 0 Yes WEKA
Soybean-large 301 36 2.78 97.22 684 Yes UCI
Soybean-small 47 36 2.78 97.22 0 None UCI
Squash-stored 52 25 16.00 84.00 6 None WEKA
Squash-unused 52 24 16.67 83.33 39 None WEKA
Tae 151 6 16.67 83.33 0 None UCI
Tic-Tac-Toe 958 10 100.00 0.00 0 None UCI
Titanic 2201 4 100.00 0.00 0 None WEKA
Weather 14 5 60.00 40.00 0 None WEKA
White-Clover 63 32 15.63 84.38 0 Yes WEKA

2.2 Classifier Training

After datasets have been categorised, various classifiers
are then trained on them. We mainly focused on Bayesian
network [3] (BN) classifiers. Altogether 8 BN classifiers
have been investigated including Näıve Bayes (NB) [4],
Averaged One Dependence Estimator (AODE) [5], Tree-
Augmented Näıve Bayes (TAN) [6], BN with different
structure learning algorithms such as K2 (BN-K2) [7],
Genetic Search (BN-GS) [2], Simulated Annealing (BN-
SA) [8], Greedy Hill Climber (BN-HC)[2], and Repeated
Hill Climber (BN-RHC) [2]. More details about these
well-known algorithms can be found in the given refer-
ences.

The 8 classifiers described above are then applied to the
39 fully prepared datasets (See Table 1). Each algorithm
has a variety of parameter settings available and all pos-
sible combinations are tested (29 in total). The software
used to complete this testing is the WEKA [9] workbench.
The parameter settings investigated include UseKerne-
lEstimator (k), UseSupervisedDiscretisation (Sd), initAs-
NaiveBayes (iNb), markovBlanketClassifier (Mb), Ran-
domOrder (R), useArcReversal (Ar), and useTourna-
mentSelection (Ts).

After Classifier Training , a large ‘results’ dataset (1073

instances) is formed consisting of the accuracy of the clas-
sifiers learned for all the combinations of the parameters
tested.

2.3 Results Sampling

Using a variety of sampling techniques, different sam-
ples are taken from the results dataset and stored in a
smaller test dataset. The sampling techniques used is
stratified sampling where the datasets are divided into
sub-populations (in this case categories) and then a sam-
ple is taken from each sub-category to make a larger sam-
ple set. The sample in this case is almost artificial as it
is specifically chosen; the advantage is that the sample is
guaranteed to be representative of the category where it
comes from. The purpose of the Results Sampling step
is to extract the representative samples from each of the
39 datasets to form a test set. The remaining instances
then form a training set to derive the classification rules
as will be described in the subsequence subsection.

2.4 Classification Rules Generation

The last step is to use a learning algorithm to analyse
the results generated. Here, the J48 [2] decision tree al-
gorithm is used to generates classification rules in the
form of a decision tree. A set of rules will have been cre-
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ated that assigns the most effective classifier available (of
those tested) to a particular dataset (See Figure 3).

The accuracy of these rules is easily discovered by apply-
ing the appropriate decision tree to the test data (sam-
pled from the results dataset). This is possible as we
know which classifier performed the best on each dataset
within the sample from the Classifier Training step.

In summary, the framework generates two main outputs:

• A method for choosing the best classifier. Using the
decision tree learned by J48 from the ‘results’ data,
the user can simply follow the binary tree answering
the relevant questions about their dataset. Eventu-
ally they will reach a leaf node which will tell them
the best classifier to use.

• The most effective Bayesian classifier for a specific
category of dataset. Given that a method for cate-
gorising datasets was created, it is possible to find
which classifier performs the best in any given cat-
egory. Data miners could then consider which cat-
egory their particular dataset belongs to and know
which classifier performs best for that category. This
provides a practical human solution to the problem
of choosing the best classifier in addition to the de-
cision tree produced by J48.

While only a limited subset of classifiers and dataset
types could be tested here, this research shows the feasi-
bility and the potential of the proposed framework. With
a more comprehensive analysis, the final set of rules gen-
erated can expected to be more successful.

3 Performance Evaluation Metrics

A statistical analysis is carried out to assess the perfor-
mance of the different classifiers for comparison. These
statistics are explained here.

• Accuracy measures how well each classifier performs
during the cross-validation.

• Mean absolute error. An absolute error is the range
of possible values in terms of the unit of measure-
ment e.g. 10cm+0.5cm. The mean absolute error is
then the weighted average of all the absolute errors
found from cross validations.

• Relative absolute error is a ratio of the mean abso-
lute error of the learning algorithm over the mean
absolute error found by predicting the mean of the
training data. The lower the percentage, the better
the performance of the classifier compared to just
predicting the mean.

Once each classifier was run against every dataset, the
statistics of their performance are collated against each
dataset in the form of a table. This detailed statisti-
cal comparison is a comprehensive way of analysing the
performance of different classifiers. However, such a de-
tailed analysis can be difficult to interpret. Therefore a
more robust method was created to represent the relative
performance of each classifier. For each dataset, every
algorithm was ranked by assigning a score to its perfor-
mance. The lowest accuracy was given 1, and this value
was incremented for each algorithm that performed bet-
ter. If two algorithms had the same performance, they
were both given the same score. The best performing al-
gorithm for each individual dataset could then be easily
identified.

Performance was evaluated and scores assigned on the
basis of the accuracy of each of the algorithms. This is
a good indicator of performance at a glance. However
it was found that many of the algorithms had a simi-
lar accuracy, and so the mean absolute errors were also
taken into account. The algorithm with the highest accu-
racy and the lowest mean absolute error (MAE) was then
ranked as the best performing algorithm. Given the sit-
uation where two different algorithms produce the same
accuracy and mean absolute error, the relative absolute
error was used. If this value turned out to be the same,
then the algorithms were considered to be equally effec-
tive.

4 Experimental Results

4.1 The Best Algorithm for Each Category

The criteria for each category of data has been discussed
in Section 2.1. In the first instance it was necessary to
place the datasets into categories so that a fair sample
of datasets could be taken for subsequent analysis by a
learning algorithm. An additional benefit of categorising
the dataset is that the best performing classifier for each
type of dataset can be identified. This can be used as a
guide for data miners who wish to quickly identify a clas-
sifier for the type of dataset they are working with. Each
algorithm for each category was ranked on the scoring
algorithm described in Section 3. This allows the perfor-
mance of the different algorithms to be easily visualised.
An example of the performance of each algorithm with
various parameter settings for the Category A datasets
is shown in Figure 2. The best performing parameter
settings for each category are summarised in Table 3.

In most cases, the use of the Markov Blanket on a dataset
improves the results. One of the few exceptions to this
is the BN-GS, where accuracy appears to reduce. When
used without using a näıve Bayes structure initially (-
iNb), it was found that for BN-HC and BN-RHC the
accuracy drops. The only exception was on category C,
where BN-HC (-iNb) performed the best.
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Figure 2: The performance of each classifier with various parameter settings on category A.

Table 3: Best performing classifier with its parameter
settings per category.

Category Best Performing
A BN-GS and BN - SA
B TAN
C BN-HC (-iNb)
D No datasets
E TAN
F TAN
G TAN, BN-RHC and BN-HC
H TAN
I No datasets
J TAN
K BN-HC (-iNb) and BN-HC (-iNb Mb Ar)
L TAN

Arc Reversals did have a small positive effect, but in gen-
eral added no improvements to the accuracy and in some
cases did worse than if it had not been used. So it can be
suggested that it is better not to use Arc Reversal. BN-
HC and BN-RHC should in general not be used without
an initial näıve Bayes structure.

For the BN-K2 classifier, when used with -iNb and a
random ordering R, its accuracy decreases significantly.
When looking at how the algorithm performs when only
used with -iNb, it is clear that a random ordering should
not be used.

4.2 Evaluation of the Classification Rules
Generated

After obtaining the results from the Classifiers Training
step, a decision tree could be generated by J48 to auto-
matically select the best classifier to be used for a partic-
ular dataset. The output of the decision tree could either
be one of the 8 classifiers, or a classifier with a specific
parameter settings. For the latter case, the decision tree
would be able to predict precisely which classifier to use
and also with what kinds of parameter settings. How-
ever, the total number of classes (the classifier types) to
be captured by the decision tree increased dramatically
to 29 in total.
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Figure 3: The most accurate binary decision tree learned.
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The most accurate decision tree is shown in Figure 3.
Using this decision tree, the predicated classifiers for
the test datasets obtained through stratified sampling is
listed in Table 4. It can be observed from Table 4 that
our proposed framework is able to select the best per-
formed Bayesian classifier for 5 datasets out of the to-
tal 9 datasets. For the ‘KC2’ and ‘Mushroom’ datasets,
although the framework failed to select the best classi-
fier, there is no significant difference between the actual
classification accuracies and the best classification accu-
racies with a marginal drop of 0.3% and 0.4% respec-
tively. Thus, with 0.5% classification accuracy tolerance,
the overall accuracy achieved by the decision tree is 78%.

4.3 Discussion

The TAN classifier has proven to be the best perform-
ing overall, and if a user is unsure as to which algorithm
to use on their datasets, then TAN would be the recom-
mended option.

With regards to the various parameter settings used, it
was found that when a Markov Blanket correction is
made (Mb), the performance of an algorithm in general
improves. However, if the correction is made while using
a random order of nodes (R), performance drops dramat-
ically.

The BN-SA classifier will probably have found the opti-
mal Bayesian network structure during the long periods
of computing time given to it on many of the datasets,
but the ‘temperature’ may have stayed too high forcing
the algorithm to search too many high energy states, or
the algorithm may have been stuck in a local minima as
a result of a too low temperature.

The BN-GS algorithm may also have found the optimal
solution during the first stages of the search, but the algo-
rithm continues to search for more solutions until a near
optimal solution is found. If the algorithm could have
been halted and the solution pulled out near an optimal
state, the algorithm will have most likely performed bet-
ter than the TAN algorithm. Finally, on datasets with
100% categorical data, the näıve Bayes classifier performs
the same regardless of which parameter settings are used.

Table 4: The predicated classifier for the 9 test datasets
using the most accurate decision tree.

Best Best Predicted Test
Dataset Classifier Accuracy Classifier Accuracy
Ballons BN-GS 100 BN-K2 100
Bridges BN-K2 76.8421 BN-RHC 73.6842
Car TAN 94.6181 TAN 94.6181
KC2 BN-K2 82.567 BN-HC 82.1839
Mushroom TAN 100 BN-HC 99.5446
Pasture BN-K2 83.3333 BN-HC 77.7778
PC1 TAN 92.3354 TAN 92.3354
Soybean-large BN-K2 92.0266 BN-K2 92.0266
Squash-stored BN-HC 67.3077 BN-HC 67.3077

5 Conclusions

This paper provides a means for judging which classifiers
are the best to be used for a given dataset. This therefore
contributes a very useful resource to inexperienced or ca-
sual data miners. Also, this paper presents to the best of
our knowledge a first attempt to produce a set of rules
through learning algorithms to identify the best classi-
fiers available. The results show that the J48 algorithm
derived a decision tree that could, with 78% accuracy
(with 0.5% classification accuracy tolerance), predict the
best classifier to use on an unseen dataset. The fact that
this degree of accuracy was achieved on a limited number
of datasets, and a limited number of classifiers and their
parameter settings, shows the potential of the framework
in generating more accurate decision trees – which in turn
would allow a user to choose the best algorithm for their
dataset.
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