
 
 

 

  
Abstract—Much research in the sciences involves modelling 

and prediction of the functional relationship between 
simultaneous time series. In this paper we present a new method 
to infer functional relationship between simultaneous time 
series based on the modified version of Singular Value 
Decomposition method. We firstly extract the dominant 
relationships, perform pattern analyses on the dominant 
relationships, and construct the model equations of functional 
relationship between the time series through the time before the 
forecast period of interest. We then conduct predictions on the 
future values of one time series from another time series based 
on the model equations. Several regression schemes are 
proposed to serve as a prediction basis. The proposed model is 
applied to predict the real simultaneous health outcome time 
series. The simulation, the predictions and the real data show 
good agreement.  
 

Index Terms—Time series, functional relationship, 
mathematical modelling, prediction.  
 

I. INTRODUCTION 
  Much research in the sciences involves modelling the 
relationship between simultaneous time series. For example, 
the current research on health and medical fields links to 
various aspects of inferring functional relationships between 
outcomes and predictors in order to examine weather the 
relationships are dynamic across the investigated factors 
[1]-[5]. Inferences vary in type and degree depending on the 
purpose for it and the context in which it is performed. Very 
often, it deals with prediction of one time series with the 
knowledge of another time series and its past values. One of 
the key advantages of studying functional relationships is that 
it can provide a deep quantitative and qualitative 
understanding of how system parameters act and the 
mechanisms behind work. It gives new insights into the 
mechanisms of the data based system.  

However, methods of modelling such functional 
relationship are at present inadequate. A common approach is 
based on correlation analysis which implies only statistical 
dependence and is rather crude [6]. Correlation is often used 
as a simple and naive measure for the statistical dependence 
between simultaneous time series.  

In this paper, we propose a new approach to model the 
functional relationship between simultaneous time series. 
The modified version of Singular Value Decomposition 
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(SVD) method is adopted to capture dominant relationships. 
Then prediction of the future values of one time series from 
another time series is based on a regression model such as 
time series and other statistical analysis.  Several regression 
schemes are proposed to serve as a prediction basis. The 
proposed model is tested using the obtained simultaneous 
time series data regarding the computer-related workload and 
health outcomes and achieves satisfactory results. 

 
 

II. MODEL DEVELOPMENT 

A. The Model 
The model is an extension of our previous model [7]. Here 

we explain only general ideas. We apply a modified version 
of SVD [8] to extract the dominant relationships between the 
simultaneous time series.  Firstly, we generate two matrices 
from the simultaneous time series. The matrix construction 
depends on the analysis purposes that come with the data and 
other conditions. We then apply SVD to the matrices to 
capture the dominant right singular vectors and regress the 
right singular vectors. The left singular vectors are analysed 
to construct simulation model equation that can be used for 
further predictions. The analysis phase takes early time series 
points. The retrospective analysis provides an indication of 
how closely the simulation model matches actual data. Future 
projections are made based on both the analysis phase and the 
constructed simulation model. The proposed methodology is 
outlined below: 

Step 1: Generating two sample m×n matrices Ax and Ay 
from the simultaneous time series;  

Step 2:  Applying SVD to Ax and Ay to capture the 
dominant right singular vectors vxi, vyj, and the left singular 
vectors uxi, uyj; 

Step 3:  Regressing the dominant right singular vectors vxi 
and vyj; 

Step 4:  Analysing and constructing the model equations 
between the left singular vectors uxi and uyj; 

Step 5:  Modelling functional association by combining the 
above regression equations and making predictions.  
  

B. Model Predictions 
Depending on the study goals, the appropriate method is 

not apparent. We suggest four primary methods used for the 
prediction: 

(i). Linear model 
By linear model, we mean the classical linear model. The 

most important assumption of the model is that the 
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observations of the dependent variables are uncorrelated. 
Under this assumption, the maximum likelihood parameter 
estimates can be obtained with well-known least square 
method. The application of the model will lead to a loss of 
power if there is correlation among the observations. Such 
complication can be handled with other modelling 
approaches for example: marginal and random effect models.  

(ii). Marginal model 
An extension of the linear model is the marginal model 

which incorporates correlations among the observations. The 
marginal variance depends on the marginal means and the 
variance-covariance structure which specifies the correlation 
structure of the observations. The parameters are commonly 
estimated using Generalised Estimating Equations (GEE) [9] 
rather than a likelihood based method.  

(iii). Random effect model  
The fundamental difference between marginal and random 

effect models is that the latter allows the regression of 
dependent variables on the independent variables differ 
among the subjects by introducing random-effects 
parameters. The random parameters, or random variables, 
can vary, for example, under repeated sampling with more 
flexible specification of the covariance matrix [10]-[11]. The 
parameters are usually estimated using likelihood based 
methods. Very often, it is difficult to justify a particular 
distribution for the random effects. Maximum likelihood 
estimation based on the marginal distribution of the 
observations integrates out the random effects [12]. 

(iv). Time series model  
Much of the literature assumes that the mapping from one 

time series to another can be adequately approximated over 
the range of interest by the impulse response function. The 
Box-Jenkins approach [13] has been widely used to derive 
the impulse response function. The Box-Jenkins approach 
starts with fitting an autoregressive integrated moving 
average (ARIMA) model to the differenced times series for 
prewhitening the series. The cross-covariance function of the 
filtered time series is then applied to obtain a good estimate of 
the impulse response function. For a more detailed 
calculation explanation, refer to Box & Jenkins [13] where 
more estimation methods can be found for example the 
commonly used state-space and the Kalman-filter models. 
 

 

III. APPLICATION OF THE MODEL TO HEALTH 
OUTCOME TIME SERIES DATA 

To apply and validate the model, a measured health 
outcome time series dataset is employed. The dataset is 
simultaneous time series based on the daily records of human 
computer-related work exposure and the correspondent 
health outcomes expressed as discomfort ratings at different 
body sites including eyes, head, neck, and many others. We 
firstly identify the functional association between 
computer-related work exposure series and the discomfort 
ratings. Based on the results, prediction of the future 
discomfort ratings is made. The measured discomfort ratings 
are plotted against the simulated and predicted ones for 
assessing the accuracy of the model.  

A. Data 
The study population consists of office staff in Finland. 

They did office work for at least four hours a day and had 
reported a moderate amount of musculoskeletal symptoms. 
The data collection procedure was carried out in two-week 
periods before the intervention, and at the 2-month and 
10-month follow-up. The computer-related work exposure 
was measured with the software (Work-PaceTM, Niche 
Software Limited, New Zealand) which continuously 
monitored the staff' keyboard and mouse entries with an 
accuracy of ten milliseconds. Data were then summed up 
presenting computer-related workload as a daily base. 
Simultaneously with the recordings of computer use the 
subjects were asked to fill in a questionnaire-diary three 
times a day: in the morning, at noon and in the evening. The 
questionnaire-diary contained a body map diagram and 
questions about the existence of musculoskeletal discomfort 
in different body regions. Each item was assessed using 
5-point rating scale from "5-feel good" to "1-feel very 
uncomfortable". Data were averaged to indicate the daily 
health outcomes expressed as discomfort ratings at different 
body sites. A detailed description of the data collection 
procedures can be found in [14]. For illustrative clarity, not 
any deeper reason, only the discomfort ratings of eyes, head 
and neck are selected as health outcomes to demonstrate the 
model equations and the analysis results.   

 

B. Model Equations 
The model equations were constructed from the 

simultaneous time-series of both computer-related workload 
and discomfort ratings from week one to three. The model 
was applied to forecast health outcomes for week four.  
Previous studies have shown that both the computer-related 
workload and discomfort ratings had only one dominant 
pattern and contributed over 90% variability [7]. Therefore i, 
j =1 from Step 1 to Step 4 which are omitted in the following 
equations. The model equations are 

 
 

vx= αworkload_1+αworkload_2 t (1) 
 

vy= (α1+ 3101
12
α

αα
−+

−
t )   (2) 

 
 

and their closed-form is 
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where α1,α2, and α3 are body site-related parameters such as 
eyes, head and neck.  

The next step, Step 3, is to analyse and construct the model 
equations between the left singular vectors ux and uy which 
are two time series denoted here as {Xt} and {Yt} for 
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convenience. Very often, a time series model, ARIMA 
model, is used for forecasting purpose [13]. The model is 
superior to many common time series and multivariate 
regression models in that it accounts for the correlation 
between the error residual and the lagged values. For 
example, the 'weekly differences' in this study are likely to be 
autocorrelated since the measurements were made from a 
single subject. Therefore ARIMA model should be generally 
applied to model {Xt} and {Yt}.  

   However, due to the short measurement time for small 
size of the data in this study, ARIMA model cannot be 
constructed. Therefore, a relatively simple forecasting 
method, a generalised linear model, that relies exponential 
smoothing method is adopted. Moreover, considering the 
intervention effect on health outcomes, more weight to recent 
observations and less weight to observations further in past 
are assigned in the forecasting procedure [15]. The 
forecasting is performed in the following way: 

  
Yt+1 = ht+1 Xt+1 (4) 
 
where  
 
ht+1 = c0 ht + c1 ht-1 +... and ci = 0.8 (1-0.8)i (5) 
 

Fig 1 to Fig. 7 show the results. Because of the small size 
of the data which do not allow statistical evaluation of 
agreement, the model performance is studied through a 
rigorous direct comparison between simulation and 
measurements only. Simulation is made for two-subject 
observations.  
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Fig. 1. Computer-related workloads for two subjects evaluated with the 
numbers of keyboard and mouse entries. 
 
 
 

0

1

2

3

4

5

6

0 5 10 15 20 25

Time (day)

D
is

co
m

fo
rt

 R
at

in
g

 o
f 

B
o

d
y 

R
e

g
io

n
 'E

ye
s'

O Observed
* simulated or forecasted

simulation period forecast period

 
 
 
Fig. 2. Eye-discomfort rating for subject 1; 5, feel good; 1, feel very 
uncomfortable.  
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Fig. 3. Head-discomfort rating for subject 1; 5, feel good; 1, feel very 
uncomfortable.  
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Fig. 4. Neck-discomfort rating for subject 1; 5, feel good; 1, feel very 
uncomfortable.  
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Fig. 5. Eye-discomfort rating for subject 2; 5, feel good; 1, feel very 
uncomfortable. 
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Fig. 6. Head-discomfort rating for subject 2; 5, feel good; 1, feel very 
uncomfortable.  
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Fig. 7. Neck-discomfort rating for subject 2; 5, feel good; 1, feel very 
uncomfortable.  

 
 
 
 
Note that even though individual workloads varied several 

orders of magnitude depending on many unknown factors 
(Fig.1), the simulation and forecasting are satisfactory. 

 

IV. CONCLUSIONS 
 

Functional relationship between simultaneous time series 
can assist in characterization of mechanisms of the study 
system and is studied in various applications. Most often, 
statistical dependence, for example cross-correlation alone, is 
used to examine the strength of the relation between the 
simultaneous time series even if there is a strict functional 
relationship between the time series. Functional association 
is more desirable goal than just simplicity of the correlation 
as it allows for prediction to a certain extent. This paper 
provides a procedure to find and construct the closed form of 
functional relationship. SVD procedure offers a way to carry 
it out. By using SVD, the dominant relationships between 
two time series can be captured. The method provides a 
simple and robust data-driven procedure to handle various 
noisy time series depending on the data structures and study 
purposes. In addition, computation algorithms are relatively 
simple which are easily computed by computers with 
available commercial software. The functional relationship 
can be used to explore complex interplay among the 
mechanical and physical factors which govern the system and 
to predict the future values of one time series based on the 
other time series.  

   The dataset of measured computer-related workload and 
health outcomes was used to test the proposed model with 
promising results even though the data suffer from a number 
of limitations such as collection of time series of the data is 
short.  
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