
 
 

 

  
Abstract—Principal Component Analysis (PCA) is a 

technique to transform the original set of variables into a 
smaller set of linear combinations that account for most of the 
original set variance. The data reduction based on the classical 
PCA is fruitless if outlier is present in the data. The 
decomposed classical covariance matrix is very sensitive to 
outlying observations. ROBPCA is an effective PCA method 
combining two advantages of both projection pursuit and 
robust covariance estimation. The estimation is computed with 
the idea of minimum covariance determinant (MCD) of 
covariance matrix. The limitation of MCD is when covariance 
determinant almost equal zero. This paper discusses PCA 
using the minimum vector variance (MVV) to enhance the 
result. The usefulness of MVV is not limited to small or low 
dimension data set and to non-singular or singular covariance 
matrix. The MVV algorithm, compared with FMCD algorithm, 
has a lower computational complexity; the complexity of VV is 
of order 0(p2). 

 
Index Term - Determinant, Generalized Variance, Outlier, 

Principal Component analysis, Robust, Vector Variance.  
 

I. INTRODUCTION 
Some practical problems arise in data mining when a 

large number of variable are measured. This is usually due 
to the fact that more than one variable may be measuring the 
same information. The one of variables can be written as a 
near linear combination of the other variables, and the 
number of correlated variables will increase when the 
number of variables increase. To have the good analysis it is 
necessary to eliminate the redundant information by creating 
a new set of variables that extract the essential 
characteristics of the information. 

Principal components analysis is a technique to transform 
the original set of variables into a smaller set of linear 
combinations that account for most of the original set 
variance. The basic idea of PCA is to describe the dispersion 
of an array of n points in p –dimensional space by 
introducing a new set of orthogonal linear coordinates so 
that the sample variances of the given points are in 
decreasing order of dimension, Gnanadesikan (1977). 

A principal component analysis focused on reducing the 
dimensionality of a data set in order to explain as much 
information as possible. The first principal component is the  
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combination of variables that explains the greatest amount 
of  variation. The second principal component defines the 
next largest amount of variation and is independent to the 
first principal component. This step will be continued for the 
entire principal components corresponding to the 
eigenvectors of covariance matrix sample.  

The data reduction based on the classical PCA becomes 
unreliable if outliers are present in the data. The 
decomposed classical covariance matrix is very sensitive to 
outlying observations. The first component consisting of the 
greatest variation is often pushed toward the anomalous 
observations. Regarding the fact, Huber et al (2003) 
introduced a new method for robust principal component 
(ROBPCA). 

ROBPCA is PCA method combining two advantages of 
both projection pursuit and robust covariance estimation. 
The robust estimator is computed by the MCD ideas of 
covariance matrix. Based on our experience in 
computations, ROBPCA is an effective and efficient 
method. The good properties of ROBPCA tend us to 
propose the new measure of robust principal component 
based on minimum vector variance (MVV).   

MVV is a measure minimizing vector variance to obtain 
the robust estimator. The vector variance (VV) is 
multivariate dispersion that is formulated as ( )2Tr Σ , 

geometrically VV is a square of the length of the diagonal of 
a parallelotope generated by all principal components of X  
(Djauhari, 2005). The usefulness of ( )2Tr Σ  is not limited to 

small or low dimension data set and to non-singular 
covariance matrix. VV can be used efficiently for very large 
and high dimension data sets or even for singular covariance 
matrix. The MVV algorithm, compared with FMCD 
algorithm, has a lower computational complexity; the 
complexity of VV is of order 2( )O p . The objective of this 
paper is to demonstrate the performances of robust principal 
component using MVV. 

 

II. THE CLASSICAL PRINCIPAL COMPONENT 
ANALYSIS (PCA) 

The principal component analysis is primarily a data 
analytic technique describing the variance covariance 
structure through a linear transformation of the original 
variables. The technique is a useful device for representing a 
set of variables by a much smaller set of composite variables 
that account for much of the variance among the set of 
original variables. 
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Suppose that the random vector  X  of p  components 
has the classical covariance matrix S which is a p p×  
symmetric and positive semi definite. Covariance 
matrix S can be reduced to a diagonal matrix L which is a 
particular orthogonal matrix U  such that U SU L′ =  

The diagonal elements of L , 1 2, , , pλ λ λ , are called the 
characteristic roots or eigenvalues of S , the columns of U  
are called the characteristic vectors or eigenvectors of S . 
For 1 2 pλ λ λ≥ ≥ ≥ , the principal components are 

uncorrelated linear combinations Y  whose variances are as 
large as possible. The first principal component is given by 

1 1Y U X′=   which has the largest proportion of total 
variance. 

The proportion of total variance the k  principal 
component is often explained by the ratio of the eigenvalues   

kλ =
k

i
i i

λ
=

∑ . The determination of k  is an important role to 

the PCA analysis. A larger k  gives a better fit in PCA, but a 
larger k   has the larger redundancy of information. The 
replacement of original variable p  to the k  principal 
component must be considered as a goal in optimizing. 

The decomposed classical covariance matrix S  is very 
sensitive to outlying observations. The k principal 
component becomes unreliable if outliers are present in the 
original variable p . The k  principal component consisting 
of the largest proportion of total variance S is often pushed 
toward the outliers.   

The following application is one of the examples of PCA 
which is classical to the process of clustering flowers.  There 
are three categories of flowers; red color for Red Hisbiscus, 
Purple color for Linum Narbonense, and yellow color for 
Oxalis Pes-Caprae Each pixel of the image can be 
represented as a point in a 3D RGB color space. The visual 
contents of the images are extracted and described by color 
feature vectors.  

 

    
(a) (b) 

 

 
 (c) 

Figure 1. The Images of Flower (a) Oxalis Pes-Caprae, (b) 
Red Hisbiscus and (c) Linum Narbonense 

Figure 1 illustrates the flowers. We can easily categorize 
these three flowers by their colors although they have almost 
no different shapes. The classical PCA will be used to 
cluster the flowers. Table 1 contains the ordered λ  and 
cumulative proportion of λ .  The result of the clustering 
involving the three largest or biggest components with 
cumulative proportion of 91% total of variation turns out to 
show a’ bad ‘ clustering 

 
Table 1. The Eigen Value of λ  

Ordered λ  Cumulative 
Proportion of λ  

4.1296 0.459    
3.1250 0.806    
0.9316 0.910 *   
0.5320 0.969    
0.1638 0.987    
0.0686 0.995    
0.0332 0.998    
0.0157 1.000 
0.0005 1.000 

 
Figure 2 gives the description of categorized flowers  

based on their colors. The figure explains that the 
components having the ‘best’ low rank approximation to 
original data can not separate the three categorized flower 
colors.  To enhance the clustering, the robust PCA will be 
discussed in the next section. 

 

 
Figure 2. The Clustering of Flower Using Classical PCA 
 

III. THE ROBUST PCA USING MINIMUM VECTOR 
VARIANCE   (MVV) 

A measure of dispersion is a measure which explains how 
far a group of data spread out. Two famous measures of 
multivariate dispersion are often used in the applications. 
They are the total variance (TV) and the generalized 
variance (GV). Generalized variance is often called as 
covariance determinant (CD). Related with the covariance 
matrix Σ , TV is defined as ( )Tr Σ  and CD is defined as Σ . 
The role of TV in general can be found in the problem of 
reduction on data dimension, such as in the analysis of 
principal component, analysis of discriminant and canonical 
analysis (Anderson, 1984). The role of CD can be found on 
every literature of multivariate analysis. The limitation of 
TV is very natural, because TV is merely involving 
variances without involving the structure of covariance. 
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Meanwhile CD involves both of them, the structure of 
variance and covariance.  That is way CD has a wider role 
on application (Djauhari, 2005), including the role on 
various robust methods. Even though CD has wider 
applications than TV, but CD has a limitation too. 

Alt and Smith (1988) stated that the main limitation lies 
on the property that CD = 0 when there is a variable of zero 
variance or when there is a variable which is a linear 
combination of other variables. Due to this limitation 
Djauhari (2005) proposed a different concept of multivariate 
dispersion measure, called the vector variance (VV). 
Geometrically VV is the square of the length of the diagonal 
of a parallelotope generated by all principal components of 
X   

Suppose  X  is a random vector of covariance matrix Σ of 
dimension ( )p p×  where 1 2 0pλ λ λ≥ ≥ ≥ ≥  are eigen 
values of Σ , 

11 12 1

21 22 2

1 2

p

p

p p pp

σ σ σ
σ σ σ

σ σ σ
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The structure of TV, GV (CD) and VV can be formulated 
as, 
TV = ( )Tr Σ  = 1 2 pλ λ λ+ + +          (1) 
     
CD = Σ = 1 2 pλ λ λ             (2) 
       
VV= ( )2 2 2 2

1 2 pTr λ λ λΣ = + + +           (3) 
      

Computations of  VV are very efficient. The efficiency of  
VV  is of order ( )2O p  compare with CD by using 

Cholesky decomposition which  is of order  ( )3O p . 

Regarding the efficient computation of VV, Herwindiati 
et al (2007) proposed VV in obtaining the robust estimator 
by minimizing vector variance. The algorithm of MVV has 
no significant difference to Rousseeuw and van Driessen’s 
FMCD (1999) except that the criterion used here is not 
MCD but MVV. 

In the outlier labeling process, MVV is an effective and 
an efficient method, but MVV still takes a few more times 
in the computation when the dimension p  is larger than 
100; that is around 110.531. Huber et al (2003) introduced a 
new method for robust principal component (ROBPCA). 
ROBPCA is PCA method which combines two advantages 
of both projection pursuit and robust covariance estimations. 
The robust estimator is computed by the MCD ideas. Based 
on our experience of computations, ROBPCA is an effective 
and an efficient method. The good properties of ROBPCA 
tend us to propose the new measure of robust principal 
component based on minimum vector variance (MVV).   
The algorithm of MVV robust PCA is composed as follows, 
 
Stage 1. Start with a singular value decomposition of the 
mean centered data matrix 

, , ,1n p n n r r r r pX X U L V× ′− = , with rU U I V V′ ′= = , X  is 
classical mean vector, L  is an r r×  diagonal matrix, 
and rI  is the r r×  identity matrix. To optimize the 
result, we chose 1k =  as the principal component 
consisting of the major part of total variance.   

 
Stage 2. Estimate the location and covariance matrix using 
MVV robust approach. 
1. Let oldH  be an arbitrary subset containing 

1
2

n kh + +⎡ ⎤= ⎢ ⎥⎣ ⎦
data points. Compute the mean vector 

oldHX  and covariance matrix 
oldHS  of all observations 

belonging to oldH . Then compute, 

        ( ) ( ) ( )2 1
old old old old

t

H i H H i Hd i X X S X X−= − −  

        for all i = 1, 2, … , n 
     
2. Sort these distances in increasing order, 

( )( ) ( )( ) ( )( )2 2 21 2
old old oldH H Hd d d nπ π π≤ ≤ ≤  

3. Define newH  = ( ) ( ) ( ){ }1 2, , , hX X Xπ π π  

4. Calculate
newHX , 

newHS  and ( )2
newHd i . 

5. If ( )2
newHTr S  = 0, repeat steps 1 to 5.  

 If ( )2
newHTr S = ( )2

oldHTr S ,  the process is stopped.     

 
Otherwise, the process is continued until the k-th 
iteration if  

( ) ( ) ( ) ( ) ( )2 2 2 2 2
1 2 3 1k kTr S Tr S Tr S Tr S Tr S +≥ ≥ ≥ ≥ =   

 
Stage 3. Identify the labeled outlier by using robust MVV 
distance. 
 

Let MVVT  and MVVS  be the location and covariance 
matrix given by that process. Robust squared 
Mahalanobis distance is defined as, 

      ( ) ( ) ( )2 1, t
MVV i MVV i MVV MVV i MVVd X T X T S X T−= − −      

for all i = 1, 2, … , n.  
 
Observations which have a large distance 

( )2 ,MVV i MVVd X T  will be labeled as outliers or suspects. 

 
Compared to FMCD algorithm, the MVV algorithm has a 

lower computational complexity. As VV is the sum of 
square of all elements of the covariance matrix, the 
computational complexity of VV is of order 2( )O p .  On the 
other hand, based on Cholesky decomposition for large 
value of p, the number of operations in the computation of 

CD is equal to 
1

1
( 1) ( 1) ( 1)( )

p

i
p p p p p i p i

−

=

+ − + − − − −∑  

which is of the order of 3( )O p . 
The subset h in the first step has the important role in the 

estimator. Hubert et al (2003) suggested taking 
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subset [ ] ( ){ }maxmax , 1 / 2h n n kα= + +⎡ ⎤⎣ ⎦ , where α is 

chosen as any real value between 0.5 and 1, maxk  as a 
maximal number of components that will be computed. In 

this paper we chose 1
2

n kh + +⎡ ⎤= ⎢ ⎥⎣ ⎦
.  

The choice of this subset is due to the ‘reality’ of 
breakdown points that are found in our computation 
experience. Compared to the other subset h , the breakdown 

point of 1
2

n kh + +⎡ ⎤= ⎢ ⎥⎣ ⎦
 is more stable. The following figure 

reveals the fact. 
 
 

 

Figure 3. MVV Breakdown point using   1
2

n kh + +⎡ ⎤= ⎢ ⎥⎣ ⎦
 

 
 

 
Figure 4. MVV Breakdown point using  0.75h n=  

  

IV. THE PERFORMANCE OF MVV ROBUST PCA 

A. The Clustering Flower Images 
This section discusses the work of MVV through the 

example of flowers clustering in Section 2. We will 
categorize the flowers according to their colors; 40 images 
of Red Hisbiscus, 15 images of Linum Narbonense, and 19 
images of Oxalis Pes-Caprae.  The color moment is used in 
order to get the color feature of those flowers,. The 
extraction of each pixel in the color feature is represented as 
a point in a 3D RGB color space . 

 

 
 

 
 

 

Figure 5. The Images of Flower (a) Oxalis Pes-Caprae, (b) 
Red Hisbiscus and (c) Linum Narbonense 

 

MVV robust PCA is used to cluster the flowers based on 
their color. The excellent result of clustering can be seen in 
Figure 6. Every flower is perfectly categorized into its 
group, as can be seen below, 

 

 
Figure 6. Scatter Plot of  Clustering Flower Images 

 
B.  The Identification of Anomalous Data in High and Large 

Dimension. 
MVV Robust PCA also works well in the process of 

identification of anomalous data in high and large 
dimension, assuming that anomalous data is suspected as 
outlier. For this purpose, we generate 400n =  random data 
from a mixture of p-variate normal distribution 
( ) ( ) ( )1 21 , ,p p p pN I N Iε µ ε µ− +   with  300; 0.1p ε= =    

where 1 0µ = , 2 10eµ =  and e  = ( )1 1 1 te =  is of  p 
dimension 
 

 
Figure 7. The Outlier Labeling in High and Large 

Dimension Data 
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The identification process is done quite well by MVV 
robust PCA. The suspected outliers can be clearly separated 
and is located far away from the group of clean data. The 
separating process needs only less than 4 seconds 

 
C.   The Computation time of MVV Robust PCA 

Hubert et al (2003) described that the computation of 
ROBPCA on Pentium IV with 2.40 GHz is 3.06 seconds for 

39, 226n p= =  and 3.19 seconds for 111, 11n p= = . 
Compared to ROBPCA, the computation time of MVV 
robust PCA is not slower. To see the time effectiveness of 
MVV robust PCA can be seen in the following figures 
which show that  the computation process between the 
dimensional data of  p=25 to p=300 with n= 100, 0.1ε = , 
and 0.2ε = from a mixture model 
( ) ( ) ( )1 21 , ,p p p pN I N Iε µ ε µ− +

 
 

 
 Figure 8. The Computation Time of MVV with 

Contaminant Level  0.1ε =   
 
 

 
 

Figure 9. The Computation Time of MVV with 
Contaminant Level  0.2ε =   

 
The figures show that the additional contaminant ε  and 

also the change of p dimension does not produce a 
significant difference in time. Even if we compare the 
amount of contaminant 0.1ε = and 0.4ε = for the same 
dimension, we find no significant difference, see Figure 8 
and Figure 10. 
 
 

 
Figure 10. The Computation Time of MVV with 

Contaminant Level 0.4ε =   
 
 

V  CONCLUSION 
MVV robust PCA is an effective and an efficient method 

to identify outlier in a high and large dimension. MVV 
robust PCA is also an impressive method for interpreting the 
application of PCA, such as the clustering process. From the 
aspects of computation of several  p- dimensions, MVV 
robust PCA gives the promising results. 
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