
Abstract-Controlling rotary wing platforms, especially on 
helicopters, is a difficult task because of the nonlinearity of the 
structure and strong coupled motion dynamics. In this paper, a 
linear, quadratic regulator method is used to control the 
trajectory and mission paths of the autonomous helicopter. 
Nonlinear motion dynamics is linearized at certain operating 
points and linear model is obtained by Taylor’s series 
expansion. This model is integrated into MATLAB® program. 
By using LQR (Linear Quadratic Regulator) methodology, the 
attitude of 1the autonomous Puma helicopter is controlled and 
two simulations are realized. The results show that this 
approach can effectively be applied to control rotary wing 
platforms on helicopters. 
 

I. INTRODUCTION 
 
In recent years the concept of controlling autonomous 
helicopters has gained a big attraction because of their 
vertical take-off/landing advantages and hovering. Although 
the coupled and nonlinear dynamics of the helicopter make 
the attitude control a difficult task, numerous control 
techniques are applied to perform missions of hovering, 
aggressive manoeuvring, course keeping etc. But 
conventional techniques like PD or PID have shown to be 
insufficient to control such a platform. Even for an 
experienced engineer it is hard to regulate considerable 
amount of parameters of the 6-degrees of freedom 
helicopter. In the literature, LQR has shown to be a very 
efficient and relatively easy way to utilize with respect to 
other control methods that have been applied to helicopters. 
 
Despite the fact that many researchers applied optimal 
control techniques to small scale helicopters [1], there is 
only a few studies focusing on full envelope helicopter 
control. Though, in war/tactical simulators it is necessary for 
the full envelope platforms have middle/high fidelity 
relative to real helicopters. The helicopter’s control 
members of the simulator must hover, take-off and follow a 
path, etc. So this study aims to clarify the main points of 
modelling, trajectory/attitude control of the helicopter by 
LQR contributing to easy control of rotary wing platforms. 
 

II. MANUAL CONTROL OF HELICOPTER 
 
Due to the strong coupling between the longitudinal and 
lateral motion of the helicopter, the work of the pilot is 
harder than an aircraft pilot. Pilot should simultaneously 
control three controllers, collective, cyclic, and tail pedals. 
Collective controller helps pilots to adjust the altitude. 
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Cyclic controller enables pilots to change the angle of attack 
so longitudinal and lateral motion can be performed. By tail 
pedals the angle of attack of the tail rotor is changed so yaw 
motion is performed. Any small mistake can cause collapse 
of the platform. In this paper, owing to the optimal control 
methods, the controller gains will be hold at the optimum 
values. These inputs will be defined in this study as 

0 1 1 0, / ,mr tra bθ θ respectively. 

 
Figure 2.1 Helicopter’s input controllers 

 
III. MATHEMATICAL MODELLING OF HELICOPTER 

 
A. Coordinate Frames and Transformations 
 
Body fixed and earth fixed frames are needed to 
demonstrate the motion of the helicopter.. Force, moment 
and other effects follow these two main frames. The origin 
of the body fixed frame is the center of gravity of the 
platform, and it moves with the motion of the fuselage. In 
body fixed frame, x shows longitudinal, y shows lateral, and 
z shows up/down movement. In the latter coordinate system, 
x points the north, y points east, and z points the center of 
the earth. Earth fixed frame notation is necessary for the 
calculation of the displacements. Figure 3.1 shows body 
fixed and earth fixed frames. 
 

 
Figure 3.1 Helicopter’s two main frames 

 
To transform between body and earth frames, orthonormal 
rotation matrix R is used. Motion equations are multiplied 
with R, which is the result of the rotation by Euler angles. 
[2] yaw, pitch, roll rotation is the standard in aircraft 
modelling. As cΘ shows cos(Θ) and sΘ shows, two rotation 
matrices is as follows.  
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B. Dynamic Equations of Motion 
 
By assuming that the platform as a rigid body, any two 
points on the helicopter does not change during the mission. 
The fuselage can make two types of movements: 
translational and rotational. They define change in position 
and rotate around an axis respectively. 
Translational motion, which is the motion of the center of 
gravity, can be defined by Newton’s second law and 
Coriolis Effect. Linear accelerations along x, y, and z axes 
can be defined as: 
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Angular accelerations around x, y, and z axes can be defined 
as: 
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C. Kinematic Equations 
 
Kinematic equations must be used to represent the motion of 
the helicopter with respect to earth fixed frame,. For 
translational kinematics, relation between body and earth 
fixed frame is as follows, where , ,E E Ex y z identifies 
position of the helicopter with respect to earth-fixed frame. 
 

E B
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x u
dy y R v
dx

z w

⎡ ⎤ ⎡ ⎤
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(3.9) 

Rotational kinematic equations of helicopter are as fallows, 
where , ,φ θ ψ  defines Euler angles of roll, pitch, and yaw 
respectively. 
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D. Force and Moments Acting on Helicopter 
 
In order to represent the motion of the helicopter, force and 
moment effects must be taken into account. 

 
Figure 3.2 Force and moments acting on the platform [3] 
 
Helicopter can be modeled by combining five subsystems: 
main-rotor, fuselage, empennage (consist of horizontal 
stabilizer and vertical fin), tail rotor and engine [4]. To 
define the force and moment effects originated from main 
rotor, tail rotor, gravity and drag on main rotor; mr, tr, g, 
and d subscripts are used respectively.  
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As T, which is equal to 2 2( )TC R Rρ πΩ , shows thrust, a1 
and b1 shows longitudinal flapping angle and lateral 
flapping angle respectively, we obtain combined force 
equation matrix: 
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As ,mr trh h  represents distance between cog and main/tail 

rotor along z axis, ,mr trl l  represents distance between cog 

and main/tail rotor along x axis, mrQ  defines counter torque 
that comes from the drag of main rotor, we can obtain 
combined torque equation matrix: 
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Mathematical model can be build by using nonlinear 
variables given above . To apply a linear controller the 
model must be linearized about certain operating points 
which will be covered in the following section. 
 
E. Trimming and Linearization 
 
Nonlinear motion equations must be linearized about certain 
operating points. Although many researchers have generally 
used one operating point in their models, to increase the 
fidelity of the model 8 trim points (0, 20, 40, 60, 80, 100, 
120 and 140 knots) have been used. First assuming that 
linear and angular accelerations are zero; setting the 
trimming forward/ side/ vertical velocity and heading rate to 
our desired values. Then the trimming algorithm is run until 
the estimated values of 1 1, ,  and a bφ θ converge. 
By using Taylor’s series expansion, external forces acting 
on platform become linear functions of perturbed states. 
Total force along x axis, by the advantage of small 
perturbation theory ( )ex x x= + Δ , can be written as 
follows: 
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If we consider that the motion can be described nonlinearly 
as ( , , )x F x u t= , the linearized model can be defined as 
x Ax Bu= + , 
where [ ]x u w q v p rθ φ=  

and [ ]0 1 1 0mr tru a bθ θ=  

The coefficients like , ,...u wX X are called stability 
derivatives in flight dynamics. 
 
The result of these formulations can be found in appendix as 
A and B matrices. 
 
F. Obtaining The Stability Derivatives 
 
Stability derivatives can be calculated by using numerical 
(which is mentioned in the previous section) and/or 
analytical methods. By using platform’s main characteristics 
[5], [6] all derivatives can be figured. For example uX can 
be found analytically by the equations below: 
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Calculation of other derivatives was not mentioned in this 
paper. Further equations can be found from [4] PUMA type 
helicopter’s stability derivatives was used for the control 
study. Calculated derivatives for 140 knots and the specific 
platform data can be found in appendix as tables. 
 

IV. CONTROLLER DESIGN 
 
As seen in Figure 4.1 proposed LQR based controllers 
consist of three subsystem:. state feedback controller, state 
integrator and PI controller. And gain scheduling is used to 
reflect the change in platform dynamics with respect to the 
forward velocity. 
 

 
Figure 4.1 Block diagram of controllers 

 

desired actuale x x= − . After integrating e , e is obtained. 

Then new control input becomes 2 * *u K e K x= −  
 
A. State Feedback Controller 
 
Full-state feedback control algorithm tries to minimize the 
performance index (J) , where x: states, u: inputs, Q and R 
are weighting matrices 

0

1 ( )
2

T TJ xQx uRu dt
∞

= +∫  

After deciding appropriate weighting matrices according to 
set/rise time, overshoot and controlling effort and feedback 
gain (K) are calculated. By solving Riccati equation, which 
is calculated and used offline, LQR gains are obtained. Then 
the input becomes u Kx= −  
Step response of open loop (left) and LQR closed loop 
(right) systems from collective input to longitudinal velocity 
can be seen in figure below. 
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Figure 4.2 Step response 

 

 
Figure 4.3 Velocity for different Q values 

 
B. State Integrator 
 
Full state feedback control gives adequate results. But 
controller will adjust the system to make states zero. For 
tracking control of the helicopter, the error between 
reference states and actual states must be taken into account. 
So the error term is defined as 
 

 
Figure 4.4 Matlab Simulink block diagrams of controller 

 
Comparison of the desired and actual longitudinal, vertical 
and lateral velocity can be seen from figure below 
respectively. Thick lines are desired values, thin lines show 
actual velocities. 
 

 
Figure 4.5 Comparisons of u, w, and v 

 
C. PI Controller 
 
After controlling the states and setting that values according 
to the reference states, for position control, which has 
slower dynamics than attitude control a proportional-integral 
feedback controller is used. Position error is calculated as 

[ , , ] [ , , ]pos desired actuale x y z x y z= − . By using classical 

*P pos I posK e K e dt+ ∫ formula the trajectory control is 

realized. 
 

V. SIMULATIONS 
 
Following two scenarios, namely movement to point and 
movement through waypoints, are formed for testing the 
controllers.  
 
A. Movement To Point 
 
Initial point=[x z y]=[0 0 0] 
Target point=[2000 -300 -1500] meters 
Composite velocity (of u and v) is 20 m/sec 
 

 
Figure 5.1 Resultant velocities 
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Figure 5.2 Control efforts (u) 

 

 
 

Figure 5.3 3D view of the motion 
 
B. Movement through waypoints 
 
Initial points: [x z y] = [0 0 0] meters 
 
Four waypoints were selected as follows. 
Waypoint 1= [2000 -300 -1500] 
Waypoint 2= [4000 -300 -1500] 
Waypoint 3= [2000 -300 0] 
Waypoint 4= [0   -300 0] 
 
Composite velocity (of u and v) was commanded as 20 
m/sec. In figure below, squares show the waypoints and 
lines show the actual way of the helicopter. 

 
Figure 5.4 2D view of motion through waypoints 

 
VI. CONCLUSION 

 
To control an unmanned air vehicle, kinematics, dynamics 
and mathematical modelling of the platform was examined 
in detail. Optimal and classical control techniques were 
applied to achieve the missions. 
 
Basic results of the study and future work can be 
summarized as follows: 
 
- A platform which has strong coupling affects can 
effectively be controlled by LQR method. Fast dynamics 
and control efforts can easily be optimized to reflect the real 
motion of the helicopter in simulators. 
- For full envelope platforms, PI control is sufficient to 
control slow dynamics like position control. 
- Obstacle avoidance algorithms can be integrated to this 
study to use in tactic environment. 
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Characteristic coefficients of Puma helicopter: 
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