
Assessing a Sparse Distributed Memory

Using Different Encoding Methods

Mateus Mendes†∗, A. Paulo Coimbra†, and Manuel Crisóstomo †

Abstract—A Sparse Distributed Memory (SDM) is
a kind of associative memory suitable to work with
high-dimensional vectors of random data. This mem-
ory model is attractive for Robotics and Artificial In-
telligence, for it is able to mimic many characteristics
of the human long-term memory. However, sensorial
data is not always random: most of the times it is
based on the Natural Binary Code (NBC) and tends
to cluster around some specific points. This means
that the SDM performs poorer than expected. As
part of an ongoing project, in which we intend to
navigate a robot using a sparse distributed memory
to store sequences of sensorial information, we tested
different methods of encoding the data. Some meth-
ods perform better than others, though some may
fade particular characteristics present in the original
SDM model.

Keywords: SDM, Sparse Distributed Memory, Data

Encoding, Robotics

1 Introduction
The Sparse Distributed Memory model was proposed for
the first time in the 1980s, by Pentti Kanerva [1]. Kan-
erva figured out that such a memory model, based on
the use of high dimensional binary vectors, can exhibit
some properties similar to those of the human cerebellum.
Phenomenons such as “knowing that one knows”, dealing
with incomplete or corrupt data and storing events in se-
quence and reliving them later, can be mimiced in a nat-
ural way. The properties of the SDM are those of a high
dimensional binary space, as thoroughly demonstrated
in [1]. The author analyses in detail the properties of a
model working with 1000-bit vectors, or dimensionality
n = 1000. It should be tolerant to noisy data or incom-
plete data, implement one-shot learning and “natural”
forgetting, as well as be suitable to work with sequences
of events.
In our case, a SDM is used as the basis to navigate a
robot based on a sequence of grabbed images. During a
learning stage the robot stores images it can grab, and
during the autonomous run it manages to follow the same
path by correcting view matching errors which may occur
[2, 3]. Kanerva proposes that the SDM must be ideal to
store sequences of binary vectors, and J. Bose [4, 5] has
extensively described this possibility.
Kanerva demonstrates that the characteristics of the
model hold for random binary vectors. However, in many

∗ESTGOH - Esc. Sup. Tec. Gest. OH, Instituto Polit. Coim-
bra, Portugal. E-mail: mmendes@estgoh.ipc.pt.

†ISR - Institute of Systems and Robotics, Dept. of Electrical
and Computer Engineering, University of Coimbra, Portugal. E-
mail: {acoimbra,mcris}@deec.uc.pt.

Figure 1: One SDM model.

circumstances data are not random, but biased towards
given points. Rao and Fuentes [6] already mention this
problem, although not a solution. In the case of images,
for instance, completely black or white images are not
common. Many authors minimise this problem by adjust-
ing the memory’s structure, so that it has more memory
locations in points where they are needed [7, 8, 9], or use
different addressing methods [7, 9]. But this only solves
part of the problem, and in some cases may even fade
some properties of the model.
We tested different methods of encoding the images and
navigation data stored into the SDM, including: Natu-
ral Binary Code (NBC), NBC with a different sorting of
the numbers, integer values and a sum-code. The per-
formance of the memory was assessed for each of these
methods, and the results are shown.
Sections 2 and 3 briefly describe the SDM and the ex-
perimental platform used. Section 4 explains the en-
coding problem in more detail and presents two widely
used models of the SDM. Section 5 explains two novel ap-
proaches, and section 6 presents and discusses our tests
and results. Finally, in section 7 we draw some conclu-
sions and point out some possible future work.

2 Sparse Distributed Memories

One possible implementation of a SDM is as shown in
Figure 1. It comprises two main arrays: one stores the
locations’ addresses (left), the other contains the data
(right). In the auto-associative version of the model, as
used here, the same vector can be used simultaneously as
address and data, so that only one array is necessary.
Kanerva proposes that there are much less addresses than
the addressable space. The actually existing locations
are called “hard locations”. This is both a practical con-
straint and a requirement of the theory. On one hand,
it’s not feasible to work with, e.g., 21000 locations, us-
ing current common technology. On the other hand, the
properties of the memory arise from its sparseness.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Figure 2: Robot and experimental platform.

In a traditional computer memory one input address shall
only activate one memory location, which can then be
read or written. In an SDM, however, addressing is done
based on the use of an access circle: all the hard locations
within a given radius are activated for reading or for writ-
ing. Kanerva proposes the Hamming distance (HD) to
compute the set of active locations. The HD is actually
the number of bits in which two binary numbers differ:
dh(x, y) =

∑
i(|xi − yi|). In the example (Fig. 1), the

radius is set to 3 bits, and the input address is 00110011.
Therefore, the first and third hard locations are activated,
for they differ from the input address, respectively, 2 and
3 bits. The second and fourth hard locations differ 7 and
4 bits and are, therefore, out of the access circle.

The “hard locations” don’t actually store the data as it
is input to the memory: they are composed of bit coun-
ters. During a write operation, the bit counters of the
selected hard locations are incremented to store ones and
decremented to store zeros. During a read operation, the
active bit counters are summed columnwise and averaged.
If the average of the sum for a given bit is above a set
threshold, then it shall be one, otherwise it shall be zero.

3 Experimental setup

Some experiments were carried out using a small robot,
which was taught a path and was expected to follow it
later. The experimental platform used is a small robot
with tank-style treads and differential drive, as shown in
Fig. 2 and described in more detail in [10].

For navigation using a sequence of images, we follow
Y. Matsumoto’s proposal [2]. This requires a super-
vised learning stage, during which the robot is manually
guided, and a posterior autonomous navigation stage.

During the learning stage the robot captures views of
the surrounding environment, as well as some additional
data, such as odometric information. During the au-
tonomous run, the robot captures images of the environ-
ment and uses them to localise itself and follow known
paths, based on its previously acquired knowledge. This
technique has been extensively described in [2, 3].

The SDM is used to store those sequences of images and
image data. Input and output vectors consist of arrays
of bytes, meaning that each individual value must fit in
the range [0, 255]. Every individual value is, therefore,
suitable to store the graylevel value of an image pixel or
an 8-bit integer.

The composition of the input vectors is:

xi =< imi, seq id, i, timestamp, motion > (1)

imi is image i. seq id is an auto-incremented 4-byte inte-
ger, unique for each sequence. It is used to identify which
sequence the vector belongs to. i is an auto-incremented
4-byte integer, unique for every vector in the sequence.
It is used to quickly identify every image in the sequence.
timestamp is a 4-byte integer, storing Unix timestamp.
It is read from the operating system, but not being used
so far for navigation purposes. motion is a single byte,
identifying the type of movement the robot performed
just before capturing imi.
Images of resolution 80x64 are used. Since every pixel is
stored as an 8-bit integer, the image alone needs 80× 64
= 5120 bytes = 40960 bits. The overhead information
comprises 13 additional bytes, meaning the input vector
contains 41064 bits.
The memory is used to store vectors as explained, but
addressing is done using just the image, not the whole
vector. The remainder bits could be set at random, as
Kanerva suggests, but it was considered preferable to set
up the software so that it is able to calculate similarity
between just part of two vectors, ignoring the remain-
der bits. This saves computational time and reduces the
probability of false positives being detected.

4 Practical problems
The original SDM model, though theoretically sound and
attractive, has some problems which one needs to deal
with.
One problem is that of placing the hard locations in the
address space. Kanerva proposes that they are placed
at random when the memory is created, but many au-
thors state that’s not the most appropriate option. D.
Rogers [8], e.g., evolves the best locations using genetic
algorithms. Hely proposes that locations must be created
where there is more data to store [9]. Ratitch et al pro-
pose the Randomised Reallocation algorithm [7], which is
essentially based on the same idea: start with an empty
memory and allocate new hard locations when there’s a
new datum which cannot be stored in enough existing
locations. The new locations are allocated randomly in
the neighbourhood of the new datum address. This is the
approach used here.
Another big weakness of the original SDM model is that
of using bit counters. This results in a low storage rate,
which is about 0.1 bits per bit of traditional computer
memory, huge consumption of processing power and a
big complexity of implementation. To overcome this dif-
ficulty we simply dropped the counters and built two
different models: one called “bitwise implementation”
(BW), and another which uses an arithmetic distance
(AD) instead of the HD, called “arithmetic implemen-
tation” (AR).
The bitwise implementation is based on Furber et al [11],
who claim their results show that the memory’s perfor-
mance is not significantly affected if a single bit is used to

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Figure 3: Bitwise SDM, which works with bits but not
bit counters.

Figure 4: Arithmetic SDM, which works with byte inte-
gers, instead of bit counters.

store one bit, instead of a bit counter, under normal cir-
cumstances. For real time operation, this simplification
greatly reduces the need for processing power and mem-
ory size. Fig. 3 shows this simplified model. Writing
is simply to replace the old datum with the new datum.
Additionally, since we’re not using bit counters and our
data can only be 0 or 1, when reading, the average value
of the hard locations can only be a real number in the
interval [0, 1]. Therefore, the best threshold for bitwise
operation is at 0.5.
The arithmetic model is inspired by Ratitch et al’s work
[7]. In this variation, the bits are grouped as integers, as
shown in Fig. 4. Addressing is done using an arithmetic
distance, instead of the HD [3]. Learning is achieved
using a reinforcement learning algorithm:

hk
t = hk

t−1
+ α · (xk − hk

t−1
), α ∈ R ∧ 0 ≤ α ≤ 1 (2)

hk
t is the kth number of the hard location, at time t. xk

is the corresponding number in the input vector x and α

the learning rate.

5 Binary codes and distances
In natural binary code the value of each bit depends on
its position. 01 is different from 10. This characteris-
tic means that the HD is not proportional to the binary
difference of the numbers.
Table 1 shows the HDs between all the 3-bit binary num-
bers. As it shows, this distance is not proportional to the
arithmetic distance. The HD sometimes even decreases
when the arithmetic difference increases. One example is
the case of 001 to 010, where the arithmetic distance is
1 and the HD is 2. And if we compare 001 to 011, the
arithmetic distance increases to 2 and the HD decreases
to 1. In total, there are 9 undesirable situations in the

Table 1: Hamming distances for 3-bit numbers.
000 001 010 011 100 101 110 111

000 0 1 1 2 1 2 2 3
001 0 2 1 2 1 3 2
010 0 1 2 3 1 2
011 0 3 2 2 1
100 0 1 1 2
101 0 2 1
110 0 1
111 0

Table 2: Example distances using different metrics.
Pixel value Distance

imi imj Arit. Hamming Vanhala
01111111 10000000 1 8 1
11111111 00000000 127 8 1

table, where the HD decreases while it should increase or,
at least, maintain its previous value. The problem of this
characteristic is that the PGM images are encoded using
the Natural Binary Code, which takes advantage of the
position of the bits to represent different values. But the
HD does not consider positional values. The performance
of the SDM, therefore, might be affected because of these
different criteria being used to encode the information
and to process it inside the memory.
These characteristics of the NBC and the HD may be ne-
glectable when operating with random data, but in the
specific problem of storing and retrieving graylevel im-
ages, they may pose serious problems. Suppose, for in-
stance, two different copies, imi and imj, of the same
image. Let’s assume a given pixel P has graylevel 127
(01111111) in imi. But due to noise, P has graylevel
128 (10000000) in imj. Although the value is almost the
same, the hamming distance between the value of P in
each image is the maximum it can be—8 bits.
Vanhala et al. [12] use an approach that consists in us-
ing only the most significant bit of each byte. This still
relies on the use of the NBC and is more robust to noise.
However, this approach should work as a very rough fil-
ter, which maps the domain [0, 255] onto a smaller do-
main [0, 1], where only binary images can be represented.
While effective reducing noise, which Vanhala reports to
be the primary goal, this mapping is not the wisest so-
lution to the original problem we’re discussing. To ef-
fectively store graylevel images in the SDM, we need a
better binary code. For example, one in which the num-
ber of ones is proportional to the graylevel value of the
pixel. In this aspect, Vanhala’s approach should not per-
form well. The distance from a black pixel (00000000)
to a white pixel (11111111), for instance, is the same as
between two mid-range pixels which are almost the same,
as in the example of imi and imj described above. Table
2 summarises some example distances.

5.1 Gray code

A solution to this problem could rely on the use of the
Gray Code (GC), where only one bit changes at a time as
the numbers increase. This would ensure that transitions
such as the one from 127 to 128 have only a difference of

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Table 3: 3-bit natural binary and Gray codes.
Natural BC Gray code

000 000

001 001

010 011

011 010

100 110

101 111

110 101

111 100

Table 4: Hamming distances for 3-bit Gray Code.
000 001 011 010 110 111 101 100

000 0 1 2 1 2 3 2 1
001 0 1 2 3 2 1 2
011 0 1 2 1 2 3
010 0 1 2 3 2
110 0 1 2 1
111 0 1 2
101 0 1
100 0

one.

The GC, as summarised in Table 3, though, also exhibits
an undesirable characteristic: it is circular, so that the
last number only differs one single bit from the first one.
In the case of image processing, in the worst case this
means that a black image is almost a white image. There-
fore, the GC is not the ideal one to encode information
to store in an SDM. Table 4 shows all the HDs for a 3-bit
GC. As happens in NBC, there are also undesirable tran-
sitions. For example, the HD between 000 and 011 is 2,
and the HD between 000 and 010 is 1, while the arith-
metic distances are, respectively, 2 and 3. In conclusion,
while the GC might solve a very specific problem, it is
not a general solution in this case.

5.2 Sorting the bytes

Another approach is simply to sort the bytes in a more
convenient way, so that the HD becomes proportional to
the arithmetic distance—or, at least, does not exhibit so
many undesirable transitions.

This sorting can be accomplished by trying different per-
mutations of the numbers and computing the matrix of
hamming distances. For 3-bit numbers, there are 8 dif-
ferent numbers and 8! = 40, 320 permutations. This can
easily be computed using a modern personal computer, in
a reasonable amount of time. After an exhaustive search,
different sortings are found, but none of them ideal. Table
5 shows a different sorting, better than the NBC shown
in Table 1. This code shows only 7 undesirable transi-
tions, while the NBC contains 9. Therefore, it should
perform better with the SDM, but not outstanding. It
should also be mentioned that there are several sortings
with similar performance. There are 2,783 other sortings
that also have 7 undesirable transitions. The one shown
is the first that our software found.

While permutations of 8 numbers are quick to compute,
permutations of 256 numbers generate 256! ∼= 8.58×10506

sortings, which is computationally very expensive. How-
ever, there are several sortings that should exhibit similar

Table 5: Hamming distances for 3-bit numbers.
000 001 010 100 101 111 011 110

000 0 1 1 1 2 3 2 2
001 0 2 2 1 2 1 3
010 0 2 3 2 1 1
100 0 1 2 3 1
101 0 1 2 2
111 0 1 1
011 0 2
110 0

performance. The sorting shown in Table 5 was found
after 35 out of 40,320 permutations. In the case of 16
numbers (4 bits), a sorting with just 36 undesirable tran-
sitions, the minimum possible, is found just after 12 per-
mutations. Therefore, it seems reasonable to assume that
after just a few permutations it is possible to find one
sorting with minimum undesirable transitions, or very
close to it. This assumption also makes some sense con-
sidering that the number of ones in one binary word is
strongly correlated with its numerical value. Big num-
bers tend to have more ones and small numbers tend to
have less.

The natural binary code shows 18,244 undesirable tran-
sitions. Picking 5,000 random sortings, we found an av-
erage number of undesirable transitions that was 25,295.
Even after several days of computation, our software was
not able to randomly find a better sorting. As described
above, this makes some sense, considering the dimension
of the search space and also that the NBC is partially
sorted.

A different approach was also tried, which consisted in
testing different permutations, starting from the most
significant numbers (these contain more ones). After
57,253,888 permutations our software found one sorting
with just 18,050 undesirable transitions1.

It is not clear if there is a better sorting, but up to
681,400,000 permutations our software was not able to
spot a better one. The numbers 244 to 255 have been
tested for their best position, but the other ones haven’t.

Another question may be asked: shall the performance of
all the sortings which exhibit the same number of unde-
sirable transitions be similar? The answer might depend
on the particular domain. If the data are uniformely dis-
tributed, then all the sortings shall exhibit a similar per-
formance. But if the occurrence of data is more probable
at a particular subrange, then the sorting with less unde-
sirable transitions in that subrange is expected to exhibit
the best performance. In our case, we are looking for
the best code to compute the similarity between images.
If those images are equalised, then the distribution of
all the brightness values is such that all the values are
approximately equally probable. This means that it is
irrelevant which sorting is chosen, among those with the
same number of undesirable transitions.

10 1 ... 242 243 245 249 253 252 255 254 246 250 248 244 247
251.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Table 6: Code to represent 5 graylevels.
0 0000

1 0001

2 0011

3 0111

4 1111

5.3 Reducing graylevels

As written previously, using 256 graylevels it’s not pos-
sible to find a suitable binary code with minimum un-
desirable transitions, so that one can take advantage of
the representativity of the NBC and the properties of the
SDM. The only way to avoid undesirable transitions at
all is to reduce the number of different graylevels to the
number of bits + 1 and use a kind of sum-code. There-
fore, using 4 bits we can only use 5 different graylevels,
as shown in Table 6. Using 8 bits, we can use 9 graylevels
and so on. This is the only way to work with a hamming
distance that is proportional to the arithmetic distance.

The disadvantage of this approach, however, is obvious:
either the quality of the image is much poorer, or the
dimension of the stored vectors has to be extended to
accommodate additional bits.

6 Tests and results

Different tests were performed in order to assess the be-
haviour of the system using each of the approaches de-
scribed in the previous sections. The results were ob-
tained using a sequence of 55 images. The images were
equalised, and the memory was loaded with a single copy
of each.

6.1 Results

Table 7 shows the average of 30 operations. The tests
were performed using the arithmetic distance; using the
NBC and the hamming distance (8 bits, 256 graylevels,
represented using the natural binary code); using the the
hamming distance and a partially optimised sorting of the
bytes, as described in section 5.2; and bitwise modes in
which the graylevels were reduced to the number of bits
+ 1, as described in section 5.3. We tested using from 1
to 32 bits, which means from 2 to 33 graylevels, in order
to experimentally get a better insight on how the number
of bits and graylevels might influence the performance of
the system.

The table shows the distance (error in similarity) from
the input image to the closest image in the SDM; the
distance to the second closest image; and the average of
the distances to all the images. It also shows, in percent-
age, the increase from the closest prediction to the second
and to the average—this is a measure of how successful
the memory is in separating the desired datum from the
pool of information in the SDM. We also show the av-
erage processing time for each method. Processing time
is only the memory prediction time, it does not include
the image capture and transmission times. The clock is
started as soon as the command is issued to the SDM
and stopped as soon as the prediction result is returned.

Table 7: Experimental results using different metrics.
Dist. Dist. inc. Dist. to inc. Time

to 1st to 2nd (%) Average (%) (ms)
Ar. 18282 118892 550.32 166406.53 810.22 241.29
NBC 6653 9186 38.07 9724.80 46.17 231.35
Sort. 6507 9181 41.09 9720.56 49.39 240.45
B2 101 653 546.53 961.25 851.73 979.31
B3 144 1034 618.06 1465.57 917.76 983.02
B4 232 1459 528.88 2069.46 792.01 964.34
B5 291 1893 550.52 2689.06 824.08 970.88
B6 365 2349 543.56 3308.30 806.38 974.53
B7 412 2849 591.50 3964.05 862.15 963.56
B8 517 3312 540.62 4605.01 790.72 968.84
B9 569 3791 566.26 5257.01 823.90 996.56
B10 654 4214 544.34 5897.50 801.76 981.74
B11 724 4706 550.00 6546.08 804.15 968.81
B12 810 5142 534.81 7183.31 786.83 969.92
B13 871 5608 543.86 7817.77 797.56 971.62
B14 944 6084 544.49 8469.16 797.16 983.49
B15 986 6555 564.81 9126.96 825.66 992.54
B16 1098 6963 534.15 9750.75 788.05 977.52
B17 1180 7487 534.49 10424.05 783.39 967.14
B18 1208 7938 557.12 11040.56 813.95 965.06
B19 1290 8410 551.94 11729.28 809.25 968.77
B20 1406 8843 528.95 12377.95 780.37 975.30
B21 1498 9298 520.69 13015.70 768.87 996.89
B22 1494 9794 555.56 13680.24 815.68 978.63
B23 1591 10230 542.99 14290.35 798.20 968.75
B24 1687 10679 533.02 14934.10 785.25 977.01
B25 1744 11178 540.94 15616.34 795.43 971.71
B26 1850 11646 529.51 16277.14 779.85 974.81
B27 1898 12086 536.78 16880.55 789.39 999.59
B28 1988 12533 530.43 17558.76 783.24 965.80
B29 2083 13000 524.10 18178.87 772.73 965.99
B30 2175 13512 521.24 18878.92 768.00 968.89
B31 2263 13936 515.82 19489.28 761.21 981.75
B32 2336 14433 517.85 20163.64 763.17 967.21
B33 2372 14900 528.16 20796.13 776.73 1012.32

For clarity, chart 5 shows, using a logarithmic scale, the
increments of the distance from the closest image to the
second closest one (lighter colour) and to the average of
all the images (darker colour).

6.2 Analysis of the results

It can be confirmed that the bitwise mode using the NBC
seems to be remarkably worse than the other methods,
which seem to show similar results. Sorting the bytes
results in a small, but not significant, improvement. An-
other interesting point is that the number of graylevels
seems to have little impact on the selectivity of the image,
for images of this size and resolution.

The processing time exhibits a great variation, for the
tests were run on a computer using Linux (OpenSuSE
10.2), a best effort operating system. Even with the num-
ber of processes running down to the minimum, there
were very disparate processing times. For better preci-
sion and real time operation, a real time operating system
would be recommended.

The average processing times for the arithmetic and bit-
wise mode are about 240 ms for the complete cycle to
fetch the closest matching image. Using the NBC with
the HD, the time is a little shorter, and using a different
sorting of the bytes the time increased a little. This was
expectable, since the only variation in this method was
implemented using an indexed table, where each position
held the sorted byte. Therefore, to compute the similar-
ity between two pixels, two accesses had to be done to
the indexed table, which considerably increases the total

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Figure 5: Error increments. Light colour: to the second best image. Darker: to the average.

memory access time. A more efficient approach would
be to make the conversion as soon as the images were
grabbed from the camera. This is undesirable in our case,
though, as we’re also testing other approaches.
As for the other approaches using different graylevels,
the processing times are all similar and about 4 times
larger than the time of processing one image using the
arithmetic mode. The reason for this is that, again, an
indexed table is used to address the binary code used.
And in this case there’s the additional workload of pro-
cessing the conversion into the desired number of gray
values. In a production system, obviously, the conversion
would only need to be done once, just as the images were
grabbed from the camera.

7 Conclusions and future work
We described various tests to assess the performance of
a Sparse Distributed Memory with different methods of
encoding the data and computing the distance between
two memory items.
In the original SDM model Kanerva proposes that the
hamming distance be used to compute the similarity be-
tween two memory items. Unfortunately, this method
exhibits a poor performance if the data are not random.
The NBC with the hamming distance shows the worst
performance. By sorting some bytes the performance is
slightly improved. If the bits are grouped as bytes and an
arithmetic distance is used, the memory shows an excel-
lent performance, but this can fade some characteristics
of the original model, which is based on the properties of
a binary space. If the number of graylevels is reduced and
a sum-code is used, the performance is close to that of the
arithmetic mode and the characteristics of the memory
must still hold..
Although our work was performed using images as data,
our results should still be valid for all non-random data,
as is usually the case of robotic sensorial data.
Future work includes the study of the impact of using
different encoding methods on the performance of the
SDM itself, in order to infer which characteristics shall
still hold or fade.

References
[1] Pentti Kanerva. Sparse Distributed Memory. MIT

Press, Cambridge, 1988.
[2] Yoshio Matsumoto, Masayuki Inaba, and Hirochika

Inoue. View-based approach to robot navigation. In

Proc. of 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2000),
2000.

[3] Mateus Mendes, Manuel Crisóstomo, and A. Paulo
Coimbra. Robot navigation using a sparse dis-
tributed memory. In Proc. of the 2008 IEEE In-
ternational Conference on Robotics and Automation,
Pasadena, California, USA, May 2008.

[4] Joy Bose. A scalable sparse distributed neural mem-
ory model. Master’s thesis, University of Manch-
ester, Faculty of Science and Engineering, Manch-
ester, UK, 2003.

[5] Joy Bose, Steve B. Furber, and Jonathan L. Shapiro.
A spiking neural sparse distributed memory im-
plementation for learning and predicting temporal
sequences. In International Conference on Artifi-
cial Neural Networks (ICANN), Warsaw, Poland,
September 2005.

[6] Rajesh P.N. Rao and Olac Fuentes. Hierarchical
learning of navigational behaviors in an autonomous
robot using a predictive sparse distributed memory.
Machine Learning, 31(1-3):87–113, April 1998.

[7] Bohdana Ratitch and Doina Precup. Sparse dis-
tributed memories for on-line value-based reinforce-
ment learning. In ECML, 2004.

[8] David Rogers. Predicting weather using a genetic
memory: A combination of kanerva’s sparse dis-
tributed memory with holland’s genetic algorithms.
In NIPS, 1989.

[9] Tim A. Hely, David J. Willshaw, and Gillian M.
Hayes. A new approach to kanerva’s sparse dis-
tributed memories. IEEE Transactions on Neural
Networks, 1999.

[10] Mateus Mendes, A. Paulo Coimbra, and Manuel
Crisóstomo. AI and memory: Studies towards equip-
ping a robot with a sparse distributed memory.
In Proc. of the IEEE International Conference on
Robotics and Biomimetics, Sanya, China, Dec. 2007.

[11] Stephen B. Furber, John Bainbridge, J. Mike Cump-
stey, and Steve Temple. Sparse distributed memory
using n-of-m codes. Neural Networks, 17(10):1437–
1451, 2004.

[12] Jukka Vanhala, Jukka Saarinen, and Kimmo Kaski.
Sparse distributed memory for multivalued patterns.
In IEEE International Conference on Neural Net-
works, 1993.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

