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Abstract—Bulk phonon limited mobility in silicon based 

MOSFETs, have long been observed to demonstrate a -1/3rd 
dependence on the effective transverse field at room and higher 
temperatures. However, despite significant effort, existing 
phonon scattering models fail to reproduce this dependence. 
This paper reports on the impact of approximations used in the 
calculation of the intra-valley scattering rate in existing models 
which causes a much reduced dependence of phonon limited 
mobility on the effective field. An expression for scattering rate 
in the absence of such approximations is derived. The 
improvement of the new complex model is however, insufficient 
to match experiment. To improve the situation an empirical 
model is proposed with deformation potentials dependent on 
the inversion sheet concentration.

Index Terms— Phonon Mobility, MOSFET, Effective Field, 
Temperature Dependence. 

I. INTRODUCTION

he electron-phonon scattering model for 
semiconductors dates back to the ‘80’s [1, 2], and can 
be primarily accounted for by acoustic and optical 

phonons, with intra- and inter-valley scattering rates for the 
MOS geometry given by [3-8]:
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where dm is the DOS mass at the bottom of conduction 

band, acD is the potential associated with acoustic phonons, 

TkB is the thermal energy of electrons at temperature T, and 

 is the reduced Plank’s constant . Volume density of the 
substrate is denoted by  and lS is the longitudinal velocity 

of sound. jiF , is the form factor appearing due to electron 

quantization in the channel. The form factor depends upon 
the envelope function  zi of charge carriers in the confined 

state i.e. 2DEG. These envelope functions and the 
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corresponding quantized energies iE in the ith subband are 

calculated by self consistently solving the Schrödinger and 
the Poisson equations [9].  x is the Heaviside step 

function. 0N is the phonon number calculated from the 

Bose-Einstein distribution,  Ef represents the electron 

distribution function, vn is the number of available final 

valleys (see Table I). The optical phonon energy is given by 

0E and the corresponding deformation potential is denoted 

by 0D . For the emission process 1 and for absorption 

1 .

Table I: Degeneracy factors appearing in the inter-valley scattering 
rate.

The simple model equation (1) for the intra-valley 
scattering rate is based on five primary assumptions viz.:

(i) Only the longitudinal phonon mode is considered.
(ii) Isotropic deformation potentials are assumed.
(iii) Conduction bands are parabolic in nature.
(iv) Energy equipartition approximation is employed.
(v) Elastic scattering is assumed.

Deformation potentials ( acD and 0D ) appearing in the 

above expressions (1) and (2) are critical since they exhibit 
the coupling strength between the charge carriers and 
phonons. The deformation potential for acoustic phonons in 
bulk silicon is known to be eVDac 9 [6] but in 

two-dimensionally confined MOS inversion layers, this bulk 
value gives effective mobility greater than measurements. 
This discrepancy has been traditionally overcome by using an 
“effective deformation potential”, i.e. by artificially 
increasing the value of the acoustic deformation potential
from 9eV to upto 23eV, this is done on the basis that only 
Longitudinal Acoustic (LA) modes are taken into account in 
the scattering, whereas the relatively weaker Transverse 
Acoustic (TA) modes are ignored [4, 5, 8, 10, 11]. Hence, 
instead of computing scattering rates twice- once for LA 
phonons and then for TA phonons a “unimode” and isotropic 
scattering is assumed.

For silicon, the inter-valley deformation potentials ( oD ) 

depend on f- and g-type scattering mechanisms and also on 
the corresponding phonon energies ( oE ).Two widely used 

sets of inter-valley deformation parameters are those 
proposed by Jacoboni et al (three f and three g processes 
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included) [6] and Ferry (one f and one g process included) 
[12]. These along with other transport parameters have been 
computed/fitted using Monte Carlo (MC) codes through 
comparing simulated output with measurements [13, 14].

II. EFFECTIVE FIELD DEPENDENCE

Fig. 1 shows the measured phonon limited mobility, taken 

from ref. [4], made on a low doped sample )102( 316  cm

for a range of effective fields below 
cm

MV
5.0 , where the 

impact of surface roughness scattering is negligible [15].
Measured phonon limited mobility has a -1/3rd dependence 
on the effective field. Fig. 1 also displays the simulated 
phonon limited mobility using eVDac 12 (in expression 

(1)) and with inter-valley Jacoboni’s parameters (for 
expression (2)). It is evident that not only is the magnitude of 
simulated mobility higher than the experiment but the 

effE dependency, is a complete mismatch with these simple 

model equations.
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Fig. 1: Simulated and measured mobility from ref [4] versus effE . 

Inset shows the effective mobility for the entire range of effE [15]. 

Note the sharp drop in mobility after 0.5 MV/cm arising from 
surface roughness scattering.

The dependence of phonon limited mobility on effE

appears through the form factor jiF , in equations (1) and (2). 

Mathematically jiF , is a matrix entity with “i” number of 

rows and “j” number of columns. The form factor is a weak 
but complex function of effE ; additionally, its components 

show different dependence on effE . To analyse its impact on 

simulated mobility a simple approach is adopted i.e. the sum 
over initial and final subbands is computed and then the 
reciprocal of the resultant “form factor” is plotted against the 
effective field in fig. 2. These results reveal that the power 

law ( 11.0
effE ) governing theoretical mobility arises 

primarily between ladder-1 valleys.
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Fig. 2: Plot of reciprocal sum of the form factor versus effE plotted

to provide an understanding of the underlying causes of the -1/3rd

dependence of phonon limited mobility. The strongest dependence 
appears for transitions between ladder-1 valleys.

III. INTRA-VALLEY MODEL WITHOUT APPROXIMATIONS

The failure of the electron-phonon scattering model has 
been explicitly reported earlier by Takagi et al [4] and 
Jungemann et al [5]. Since intra-valley scattering is the 
dominant scattering mechanism in electron-phonon 
interaction [11] it is therefore appropriate to review the 
assumptions made in arriving at the intra-valley scattering 
rate for expression (1). The impact of these approximations 
on the phonon limited mobility may be understood by 
deriving a relatively “complete” model equation for 
intra-valley scattering..

A. Inclusion of Anisotropy with LA and TA modes

The anisotropy of intra-valley deformation potential is 
introduced through the formulation given by Herring and 
Vogt, specifically [16].

  )(cos2
QudQLA   (3a)

  )sin()cos( QQuQTA   (3b)

where u and d are uniaxial-shear and dilation 

deformation potentials, respectively. The angle Q is 

measured between the major axis of an ellipsoidal conduction 
valley and the 3D phonon wave vector Q.  Without loss of 
generality, aligning the Cartesian coordinate axes along the 
major and minor axes of the ellipsoid, the longitudinal 
component lQ of the wave vector is given by (see fig. 3):
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where zq and q are, respectively, the components of the 

wave vector Q along the quantized direction (z) and the 
xy-plane. Mathematically q is given in terms of initial wave 
vector ik and the final (scattered) wave vector jk by, (see 

fig. 4):

ij kkq  (5)

by taking the self dot product of (5), one gets:
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Fig. 3: Schematic layout of three-dimensional wave vector Q in an 

ellipsoidal conduction valley is shown.

)cos(2222   jiji kkkkq (6)

Angles  and   give the relative separation between 

ik and jk . For the specific case of Si which has two different 

ladders of valleys viz.: ladder-1 with major axis aligned with 
the quantization direction (z) and ladder-2 with major axis 
along one of the x or y direction. The longitudinal component 

lQ is given for the two ladders as:

1 ladderqQ zl      (7a)

2)cos()cos(  ladderkkQ ijl  (7b)

From the above description it is clear that the anisotropic 
longitudinal and transverse deformation potentials are 
function of electron energy, quantization vector zq , angles 

 and   . In order to keep the scattering rate independent 

of zq ,  and   , and only dependent on electron energy it 

is reasonable to take the average value of the deformation 
potential over zq ,  and   , defined as [17].
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where “n” stands for LA or TA mode and the electronic form 
factor )(, zji q is related to the “usual” form factor jiF , as 

[17, 18]:
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Replacing 2
acD in (1) by  2,, )(ED avg

jin defined in (8), the 

intra-valley scattering rate reflects the anisotropy of the LA 
and TA modes i.e.:
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where 
2
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
dd m

g  is the two-dimensional density of 

states. In the last equation, two approximations are removed 
i.e. both longitudinal and transverse modes of the acoustic 
phonons are considered and an anisotropic, electron energy 
dependent deformation potential is introduced. Evaluation of 

Fig. 4: 2D wave vector q with initial ik and final jk wave vectors 

shown.

anisotropic deformation potentials (expression (8)) is 
computationally expensive (both in terms of memory and 
CPU time) due to the appearance of triple integral. Jacoboni 
et al proposed an efficient scheme as an alternative to the 
expensive computation of anisotropic potentials, termed as 
“self-scattering” technique, unfortunately this can only be 
used in conjunction with Monte Carlo (MC) codes [6, 17].

B. Nonparabolicity

In a nonparabolic conduction band, the initial and final 
wave vectors appearing in (7) are given as follows: [17] (and 
[19] with the assumptions stated therein):
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where tmm 1 and lt mormm 2 for ladder-1 or ladder-2 

valleys, respectively.  is the nonparabolicity factor, for Si 
15.0  eV [6]. Nonparabolicity also affects the 

two-dimensional density of states )2( dg , which increases 

accordingly as [20]:
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depth. kE is the initial electron kinetic energy 
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The “nonparabolic” density of states is also introduced in 
the inter-valley scattering model i.e. (2) which now reads as:
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C. Equipartition and Elastic approximations

For obvious reasons the scattering rate is proportional to 
the number of phonons ( qN ) emitted or absorbed by the 

charge carriers. The Phonon “occupancy” number, qN is 

given by the Bose-Einstein distribution as:
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With the assumption of a linear increase in acoustic 
phonon energy with the transferred wave vector q i.e. 

qSn , the intra-valley scattering rate with the inclusion 

of emission and absorption events is then given by:
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The lower ( minq ) and upper ( maxq ) bound on q are 

calculated by mutually maintaining energy and momentum 
conservation [21]:
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The intra-valley scattering rate given by (17) is 
independent of the five stated approximations. With 
relatively improved intra-valley scattering rate and 
introduction of nonparabolicity factor in the inter-valley 
scattering rate, the results are displayed in fig. 1. It is 

observed that the dependence is now given as 185.0
effE though 

it still falls short of the experimental value of 3.0
effE . To 

resolve the discrepancy between measurement and the 
predicted mobility, Takagi et al have proposed higher values 
for intra- and inter-valley deformation potentials (stronger
coupling ~2.4) [4]. This scheme helps reduce overestimated 
mobility but not the effective field dependence.  

Fig. 5 shows the phonon limited mobility as a function of 
temperature compared with two sets of experimental data 

first from ref. [4] at sheet density of )(101 212 cmN s  and 

the second from ref. [22] at )(105 212 cmN s  . The 

experimental data follows a T-1.75 trend at low sheet density 
and T-1.5 for moderate Ns values in comparison with simulated 
slopes which are -1.73 and -1.65 respectively. However, 
even with relatively comprehensive model the simulated 
mobility is significantly overestimated.
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Fig. 5: Using relatively complete model the simulated phonon 
limited mobility and its temperature dependence for two different 
sheet concentrations is shown. Experimental data are also given for 
comparison from [4] and [22].

IV. EMPIRICAL APPROACH

As a compromise between simplicity and computational 
complexity, an empirical approach whereby the intra- and 
inter-valley deformation potentials are assumed to be 
effective field (or inversion sheet concentration, sN ) 

dependent is proposed. This assumption is based on the 
earlier work of C. Wu and G. Thomas who reported the 
effective field dependent deformation potential for a 
two-dimensional electron-phonon scattering when the 
electron channel density varies significantly over the lattice 
constant of the substrate [23, 24]. The basis for this 
assumption arises from the fact that at low effective fields the 
2DEG is less confined to the surface (and would be more 
bulk-like) than at higher effective fields.

The proposed empirical relationship between acD and 

sN is given by:

ssac NbaND )( (19)

The coefficients ba & which best match experiment are

determined from two limits:

eVcmDeVcmD acac 23)105(;13)101( 213211   (20)

The inter-valley coupling ( oD ) appearing in equation (2) 

is also increased in the same proportion as that of acoustic 
deformation potential i.e.

CPDND oso )( (21)

where the Coupling Parameter (CP)  with reference to bulk Si 
value is defined as:

)(

)(

BulkD

ND
CP

ac

sac (22)

In fig. 6, improved mobility are plotted against effE for 

three different lattice temperatures KT 188 , 

KT 300 and KT 397 . Experimental data from refs. [4]

and [15] are also displayed for comparison. At the higher 
temperature range ( KT 397 ), the simulated mobility is 

now only underestimated by <15% over the entire range of

effE .
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transport model. Mobility is given for three different lattice 
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Temperature dependence of phonon mobility using the 
simplified empirical model is shown in Fig 7. Results in fig. 7 
are significantly improved in comparison to fig 5.
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Fig. 7: A comparison of the temperature dependence of phonon 
limited mobility taken from experiment [4] and [22], and the 
proposed empirical model.

V. CONCLUSION

The limitations of the existing electron-phonon scattering 

models are explored. It is concluded that the 3.0
effE trend is 

not achieved using these phonon scattering models in the 

effE range of 0.1-0.5 MV/cm, where surface roughness 

scattering is negligible. A new empirical scheme is 
introduced in which the scattering phonon deformation 
potentials are nonlinearly sN dependent. Empirical fitted 

parameters successfully reproduce the reported field and 
temperature dependence.

REFERENCES

[1] P. J. Price, "Two-Dimensional Electron Transport in 
Semiconductor Layers: Phonon Scattering," Annals of Physics, 
vol. 133, pp. 217-239, 1981.

[2] B. K. Ridley, "The electron-phonon interaction in 
quasi-two-dimensional semiconductor quantum-well 
structures," Journal of Physics C: Solid State Physics, vol. 15, 
pp. 5899-5917, 1982.

[3] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures: 
Cambridge University Press, 1999.

[4] S. I. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, 
"Comparative study of phonon-limited mobility of 
two-dimensional electrons in strained and unstrained Si 
metal-oxide-semiconductor field-effect transistors," Journal of 
Applied Physics, vol. 80, pp. 1567-1577, 1996.

[5] C. Jungemann, A. Emunds, and W. L. Engl, "Simulation of 
linear and nonlinear electron transport in homogeneous silicon 
inversion layers," Solid-State Electronics, vol. 36, pp. 
1529-1540, 1993.

[6] C. Jacoboni and L. Reggiani, "The Monte-Carlo Method for 
the Solution of Charge Transport in Semiconductors with 
Applications to Covalent Materials," Reviews of Modern 
Physics, vol. 55, pp. 645-705, 1983.

[7] S. Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. 
Miyatsuji, K. Masaki, and U. Ravaioli, "Study of interface 
roughness dependence of electron mobility in Si inversion 
layers using the Monte Carlo method," Journal of Applied 
Physics, vol. 79, pp. 911-916, 1996.

[8] D. Esseni, A. Abramo, L. Selmi, and E. Sangiorgi, "Physically 
Based Modeling of Low Field Electron Mobility in Ultrathin 
Single- and Double-Gate SOI n-MOSFETs," IEEE 
Transactions on Electron Devices, vol. 50, pp. 2445-2455, 
2003.

[9] S. J. W.-K. Shih, G. Chindalore, " UTQUANT 2.0 User's 
Guide," University of Texas Press, Austin, 1997.

[10] H. Ezawa, "Inversion layer mobility with intersubband 
scattering," Providence, RI, USA, 1976, pp. 25-32.

[11] S. Kawaji, "The two-dimensional lattice scattering mobility in 
a semiconductor inversion layer," Journal of the Physical 
Society of Japan, vol. 27, pp. 906-8, 1969.

[12] D. K. Ferry, Semiconductors: Macmillan, 1991.

[13] W. Fawcett and E. G. S. Paige, "Negative Differential Mobility 
of Electrons in Germanium - Monte Carlo Calculation of 
Distribution Function, Drift Velocity and Carrier Population in 
(111) and (100) Minima," Journal of Physics Part C Solid 
State Physics, vol. 4, pp. 1801-&, 1971.

[14] C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, "Electron 
drift velocity and diffusivity in germanium," Physical Review 
B, vol. 24, p. 1014, 1981.

[15] S.-i. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the 
universality of inversion layer mobility in Si MOSFET's: Part I 
- effects of substrate impurity concentration," IEEE 
Transactions on Electron Devices, vol. 41, pp. 2357-2362, 
1994.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



[16] C. Herring and E. Vogt, "Transport and deformation-potential 
theory for many-valley semiconductors with anisotropic 
scattering," Physical Review, vol. 101, pp. 944-961, 1956.

[17] M. V. Fischetti and S. E. Laux, "Monte-Carlo Study of 
Electron-Transport in Silicon Inversion-Layers," Physical 
Review B, vol. 48, pp. 2244-2274, 1993.

[18] K. Tomizawa, Numerical Simulation of Submicron 
Semiconductor Devices: Artech House Publishers, 1993.

[19] F. Stern and W. E. Howard, "Properties of Semiconductor 
Surface Inversion Layers in the Electric Quantum Limit," 
Physical Review, vol. 163, pp. 816-835, 1967.

[20] J. A. Lopez-Villanueva, F. Gamiz, I. Melchor, and J. A. 
Jimenez-Tejada, "Density of states of a two-dimensional 
electron gas including nonparabolicity," Journal of Applied 
Physics, vol. 75, pp. 4267-4269, 1994.

[21] E. Pop, R. W. Dutton, and K. E. Goodson, "Analytic band 
Monte Carlo model for electron transport in Si including 
acoustic and optical phonon dispersion," Journal of Applied 
Physics, vol. 96, pp. 4998-5005, Nov 1 2004.

[22] Z. Ren, M. Fischetti, E. Gusev, E. Cartier, and M. Chudzik, 
"Inversion channel mobility in high-k high performance 
MOSFETs," International Electron Devices Meeting, pp. 
793-796, 2003.

[23] C. Y. Wu and G. Thomas, "Two-dimensional electron-lattice 
scattering in thermally oxidized silicon surface-inversion 
layers," Physical Review B, vol. 9, pp. 1724-1732, 1974.

[24] S. S. Paul, A. K. Ghorai, and D. P. Bhattacharya, "Lattice 
scattering of a two-dimensional electron gas at low 
temperatures," Physical Review B, vol. 48, pp. 18268-18271, 
1993.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009


