
 
 

 

  
Abstract— Environment’s review, shared experiences and 

agents’ self-analyze in the performance of cooperative tasks is a 
powerful set of resources that situated agents can use in 
hazardous, unpredictable and dynamic scenarios. Despite the 
importance of such information, nowadays, it handling suffer 
several carelessness when this knowledge is embodied. In fact, 
such consideration can be helpful by the agents to make suitable 
decision and to perform trustworthy individual commitments 
with other agents in order to benefit the collective execution 
performance. In light of this, we present a general structure for 
coordinating situated agents allowing both the individual 
agents’ autonomy as well as explicit coordination. In this latter 
case, we pay particular attention to the possibility that agents 
with different abilities are aware on the needed to be focused on 
perceive the information aforementioned and used it in their 
individual reasoning process. We use the robot soccer test bed 
to express our method operatively. While several efforts are 
going towards take advantages of particular agent technologies, 
we think that simple consideration of the information 
aforementioned arise as bridge between the existence of such 
information and its embodiment as a whole system. 
 

Index Terms— Situated Agents, Dynamics, Control Systems, 
Multi-agent Systems, Awareness, Coordination.  
 

I. OVERVIEW 
  Controlled systems are, in many cases, software 
applications that use high technologies that go beyond to the 
scope of a simple knowledge range. In fact, general trends in 
engineering control are pioneer using artificial intelligence 
methods jointly with traditional control theory to reach 
Intelligent Systems. In particular, some trends in this 
research line promote the management of complex systems 
using agent technology [1], [5], [6], [7]. These approaches 
consider all the process as a mutli-agent system that needs an 
effective coordination to achieve the desired goals [2]. Some 
promising results have been obtained when control systems 
are designed using agent technology [3]. Here, dynamic of 
such controlled system is understood as the skill of a situated 
agent to move throughout the scenario. Particularly, such 
dynamic is mainly related to: the dynamic intrinsic in the 
systems components and the dynamic produced in the 
execution of the required actions, which are established by 
the control engineer’s criteria. In this sense, the set of such 
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dynamics generates heterogeneity in the systems 
components. In particular, situated agents are a common 
application of controlled systems. From this point of view, a 
situated agent is any physical object “controlled” by an 
intelligent agent or group of intelligent agents. For instance, a 
physical object can be represented by a robot, an electronic 
device or machine. Such agent, must therefore, considers the 
physical features of the body that must manage (i.e., its 
dynamics) when they must achieve a commitment to perform 
a task or when they must agree to assume a specific behavior. 
It’s mean, the dynamic limits and conditions the decisions, 
actions and cooperation among these agents. Diversity in 
dynamics abovementioned, gives origin to heterogeneous 
entities (i.e., heterogeneous situated agents). Such agents 
possess different characteristics both in their control structure 
as in their components. In this light, situated agents can 
perform the same action but in a different way. Inside a 
multi-agent scenario, interaction is one of the more 
transcendental challenges that must be solved. Interaction 
among agents allows perform tasks in a diverse and wide 
ways pursuing the achievement of a common goal. To 
perform these tasks coordination is needed. However, to 
work with situated agents has particularly; difference that to 
work with software agents because such situated agents must 
evaluate their bodies to reach individual decisions. Then, 
situated agents must take into account their physical 
capabilities and constraints in their decision-making structure 
(e.g., their dynamics). In addition, other relevant knowledge 
must be used to endow situated agent with a more set of 
information in order to improve their decisions. These 
information aims to be usefulness to situated agents at the 
moment when they must decide if are capable or not to 
perform a particular action [4], [8], [9], [10]. In particular, 
this paper shows three parameters to manage the dynamic 
aforementioned. Such parameters aim to be used as a simple 
but efficient coordination mechanism among situated agents. 
To mention, these parameters are: awareness, trust and 
world. But the scope of this work only the influence of one of 
these parameters is analyzed. In this sense, the relevance of 
the awareness in the development of complex problems is the 
analysis introduced. This parameter have been selected due 
to this knowledge is directly related to the physical 
representation of a situated agent and for thus, is related to 
the dynamic of the multi-agent system in a control-oriented 
background. To the end, the paper shows how this diversity 
can be modeled y generated using advanced control theories. 
This approach is particularly successful in an automatic 
control level, where situated agents must have a 
decision-making structure that takes advantages due to 
information obtained from the dynamics of the situated 
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agents’ bodies.  

II. CONTROL STRUCTURE & DIVERSITY IN DYNAMICS 
A set of no-holonomic mobile robots has been used in this 

paper. The model of the robots is described in Fig. 1.  
 

 
Fig. 1. Variables that describe the robots’ state, L=9.5 cm, R=2.25 cm, G: 
geometric center. 

 
Where vl and vr are the linear velocities of the wheels left 

and right respectively, ωl and ωr are the angular velocities of 
the wheels left and right respectively and R is the radius of 
the wheels. Also, it can be shown that: 
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Where v is the linear velocity of the mobile robot; ω is the 
robot’s angular velocity and L is the distance between the 
wheels. The projections of the linear velocity on the X and Y 
axes are given by:  

)sin(vvand)cos(vv yx θ=θ=  
A mobile robot is then a MIMO (Multi-Input 

Multi-Output) system and its control is typically too complex 
to be developed and operated when it must include the 
specifications of the system’s response. These specifications 
must take into account the dynamical limitations and the 
non-holonomic features of the mobile robot and the 
geometric and kinematics properties of the movement path. 
In this sense, (1) provides the robot model used. 
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In particular, four different robots’ movement behavior 
has been developed taking into account a particular set of 
control criteria, such that: 

speediness refers to the velocity response of the physical 
agents to reach any desired target.  

precision refers to the capability of the agents to achieve 
their goals with a minimal error. This represents the skills of 
the controlled systems to follow the changes of the set point. 

persistence refers to the capability of the agents to follow 
the set point when there are external signals affecting the 
aims’ value of the agents.  

control effort represents the energy consumes present in 
each physical agent when tries to achieve its goals. 

Table 1 shows the dependence of each designed physical 
agent according to the four selected control design criteria. 

 
 
 

TABLE I. PHYSICAL AGENTS’ CRITERIA DESIGN DEPENDENCE 
 (↑: GREAT DEPENDENCE; ↓: MINOR DEPENDENCE) 

 
speediness precision persistence control 

effort 
pa2 ↓ ↑ ↑ ↓ 

pa3 ↓ ↓ ↓ ↑ 

pa4 ↑ ↓ ↑ ↑ 

pa5 ↑ ↓ ↓ ↑ 

 
Thus, in dependence of consider each criteria; it produces 

different dynamics in the free movements of the physical 
agent in the execution of the any proposed trajectory. The 
result of the actions’ executions will be different; due to the 
physical agents have different control laws under the same 
environmental condition and actions requirements. Thus, it is 
possible to obtain a capability associated with the controller 
assigned for each physical agent. In fact, these capabilities 
describe the dynamic features of the system during the 
execution of the actions. 

III. MANAGING THE DIVERSITY 
Let us suppose that a supervisor agent SA is an 

omnipresent and omniscient agent which is in-charge both to 
supervise the development and execution of the actions and 
to validate the final performance of such actions. In this 
sense, the supervisor knows the goals of the system. Let us 
define that a goal Gγ means the general target of a specific 
region of the environment. In particular, tasks are assigned to 
a specific region of the environment, here called scenes1. 
Thus,  

GG)S(GGG|)S(GG,G jiji ⊆∧≠∈∃ αα  
Such goal generally must involve more than one task for its 

achievement. Hence, a task Tβ is part of a set of cooperative 
activities that must be performed to efficiently solve the 
expected goal. Such fact limits the range of operatively of the 
tasks to its assigned scene Sα. Thus, 

TT)S(TTT|)S(TT,T jiji ⊆∧≠∈∃ αα  
}T,...,T,T,T{)S(T,where p321=α  

In fact, let us define that a role Rϕ is part of a set of actions 
that must be fulfillment to achieve a specific task Tβ in any 
determined region of the environment. Thus, 

RR)S(R)T(RRR|)T(RR,R jiji ⊆⊆∧≠∈∃ αββ  
}R,...,R,R,R{)T(R,where q321=β  

Particularly, roles are physical and executable actions that 
must be performed to change the settings on the environment. 
Such actions only can be executed by situated agents which 
are physical and cognitive entities capable to work in a real 
scenario. Let us define a situated agent PAj as an intelligent 
entity with a physical representation on the environment and 
through which the multi-agent system can realize physical 
actions in the environment. Such situated agents are 
embodied by considering the knowledge involved in their 
capability to execute an action within their knowledge base. 
Let us suppose that a PAj is part of a cooperative group of 

 
1  A scene refers to a spatial region where agents must interact and 

cooperate to perform some set of action in order to satisfy the whole system’s 
goal. 
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physical agents GPA. A group of physical agents must 
generally involve more than one physical agent for the 
fulfillment of a task. 

QGPAPA|GPA,PA PAjiPAji ⊆∧≠∈∃  
}PA,...,PA,PA,PA{G,where m321PA =  

In this sense, to situate an agent is used the knowledge 
provided by three dimensions, here called decision axes, 
where each axis provides situated agents with knowledge 
related to its capability to execute any determined action in 
particular kind of knowledge. The agents’ environmental 
conditions EC (axis 1) are composed by information related 
to the state of the environment, directly involved in the 
performance of a cooperative action. The agents’ physical 
knowledge PK (axis 2) meaning the specification, the 
structure and other relevant details related to the agents’ 
physical skills and characteristics. Finally, the agents’ trust 
value TV (axis 3) related to the capability of an agent to 
communicate, to interact and other relevant details to entrust 
in other agents. In this light, the situated agent’s knowledge 
base KB is therefore founded on the combination of the three 
above parameters (EC, PK and TV) directly implicated in the 
execution of any action, such as is described by (2)  

 
)2()]PA(TV)PA(PK)PA(EC[)R,PA(KB jjjj ∪∪=ϕ  

In particular the situated agent’s knowledge base for the 
execution of a specific role Rφ in a given time t in any 
determined scene Sα is given by (3).  

 
=∃∈∀

αϕ StjPAj )R,PA(KBGPA
 

)3(])R,PA(TV)R,PA(PK)R,PA(EC[
SSS tjtjtj ααα ϕϕϕ  

In particular, this paper assumes that each situated agent is 
capable to evaluate its aptitude to execute of any action. Such 
estimation is performed by a match which include two 
aspects to calculate the suitability rate of each physical agent 
to execute any proposed action, such as, 

•  the capabilities of the physical agents (i.e., their 
situation) taking into account the information provided by the 
decision axes, to perform any proposed action. 

•  the influence degree that each axes has over the 
execution of any determined action. 

In particular, the influence degree Ψ refers to the relevance 
that decision axes have in the execution of a determined 
action in a particular scene. Such influence aims to calculate 
critically the suitability of a physical agent to execute any 
action in a successful and reliable way. In this sense, such 
influence degree Ψ is represented as is described by the duple 
(4). 

)4(]TVPKEC[)T(R ΨΨΨ=Ψ β  
]1,0[TV,PK,EC,where ∈ΨΨΨ  

Where ΨEC is the relevance of the environmental 
conditions, ΨPK is the relevance of the physical knowledge 
and ΨTV is the relevance of the trust value. In particular the 
influence degree for the development of any specific role in 
any determined scene is given by (5). 

 
)5()T(RS,R)T(RR ii βαβ Ψ∈ψ∃∈∀

 

]TVPKEC[S,R S,RS,RS,Ri iii ααα
ψψψ=ψ α  

In such case, the suitability rate ξ of any physical agents is 
obtained by a match function which works as a 
requirements/capabilities function. Let us to suppose that a 
physical agent PAj is capable of executing a role Ri with a 
suitability rate ξ in a time t of a scene Sα as is described in (6). 
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IV. EXPERIMENTAL FEATURES 
Robot soccer test bed simulates a soccer game where 

players (i.e., physical agents) must coordinate their 
individual actions to work aiming to achieve the global 
system’s goal (i.e., to win a game). The features for the 
simulated soccer tournaments are here described as follow: a 
supervisor agent SA, five physical agents, Gpa = 
{goalkeeper, defender1, defender2, forward1, forward2} are 
involved in the cooperative actions related to a game match. 
Each physical agent has an obstacle-free movement 
trajectory controller [10] to move them in the environment. 
The supervisor agent have assigned three zone of the 
environment, such that, SA = {scene1=attack; 
scene2=midfield; scene3=defense} as is showed in Fig. 2.  
 

 
Fig. 2. General scheme of the simulated implementation. 

Environment conditions, here called proximity P, are 
related to the distance between the current location of a 
physical agent and the current location of the proposed 
actions, and is provided by (7) 
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Where 
αSmaxd means the maximal distance of a physical 

agent with the proposed roles in the scene Sα as is described 
in (8) 

)8())R,PA(d),...,R,PA(d(maxd timi1S =
α

 

Physical knowledge refers to the cognitive ability of each 
physical agent to estimate the knowledge related to the 
capabilities of its body involved in the execution of a 
proposed action, called introspection I. Introspection 
parameter is calculated implementing feed-forward 
back-propagation neural networks. 

)9()))R,PA(I(max()R,PA(I
SS tijtij αα

=  

Trust value, called trust T, refers to the social relationship 
among agents taking into account both the amount of 
“goods” actions which mean actions executed in a suitable 
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way and the amount of and “bads” actions which mean 
actions that are executed in a negative way. In this sense, the 
trust of a physical agent is provided by (10). 
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To define how the relevance of the decision axes can 

influence in the calculus of the physical agents’ suitability 
rates. We have designed a classification performed a binary 
combination of the three axes. In this sense, we have obtained 
eight cases study, as shown in Table 1. In particular, each 
case study denotes the behavior of each one of the 
agents-teams that we have used in the empirical experiments. 
It means that each agents-team uses of one of the cases study 
to enhance the information of the decision axes for each 
agents-team cooperative works. 

Table II. Classification of the Decision Axes. 

ΨR(Sα) P I T 
teamR    
teamT    
teamI    
teamI+T    
teamP    
teamP+T    
teamP+I    
teamP+I+T    
    

V. EXPERIMENTS AND RESULTS 
Empirical experiments featuring simulated cooperative 

scenarios have been established in order to put into practice 
the formalization of the problem-solving algorithm for 
situated agents described in this work. In addition, two 
experimental implementations have been developed; first, 
agents-teams (using each one of the cases study introduced in 
Table 1 versus a default opponent provided by the simulator; 
second, a set of games among the above agents-teams using 
the cases study.  

A.  Experiment 1 
This implementation is constituted by predefined number 

of (10) championships, each one with predefined number of 
(30) games, where each agents-team plays versus a default 
opponent provided by the simulator. In addition, the initial 
state of each physical agent in the scenario was randomly set 
after each pause (due to the scored goals) and at ever game. 
The performance is measured as a radio between the total 
points (won: 3 points; tied: 1 point) reached by the proposed 
teams in each championship. 

1) Analyzing Results 
The agents-teams performance is showed both from the 

average in the successful performance taking into account the 
number of obtained points and from the achieved successful 
decisions. In this sense, successful decisions mean that each 
physical agent selects the action for which it is the most 
suitable agent. Then, if the physical agent performs such 
action in a suitable way that increase the performance of the 
multi-agent system. In particular, Fig. 3 shows the agents’ 

performance in a decreasing order (from left to right). To the 
end, the results identify an improvement rate of around 51% 
between the best case (casePIT) and the worst case (caseR). 

 

 
Fig. 3. Analysis Results of the Experiment 1.   

 

B. 4.2 Experiment 2 
This experiment was predefined with number of (10) 

championships, each one with predefined number of (28) 
games, where each agents-team plays against the other 
agents-team denoted by its consideration of the three decision 
axes. In summary, each agents-team plays a set of (280) 
games and its performance is calculated in a radius of (won 
game: 3 points; tied game: 1 point). To mention, in all the 
experiments the initial state of the physical agents was 
randomly changed after each kick-off or after each finished 
game. 

1) Analyzing Results 
Results are analyzed taking into account the average 

reached by the agents-teams in each championship. In this 
sense, Fig. 4 illustrates the agents-teams performance based 
on the successful number of obtained points along the 
championship. The progression of the cases shows that the 
performance does not improve significantly beyond about the 
championship 6. The number to initially confirm the 
agents-teams performance will be fixed in 10 championships. 
In particular, based on a critically comparison between the 
best and the worst cases, there is an improvement rate of 
around 51.40%. 

 

 
Fig. 4. Successful Performance of the Agents-Teams. a) Comparative 
Performance of the worst (teamR) the simple cases (teamT, teamI, teamP) and 
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the best case (teamP+I+T); b) Comparative Performance of the worst (teamR) 
the coupled cases (teamI+T, teamP+T, teamP+I) and the best case (teamP+I+T). 

VI. FINAL REMARKS 
A preliminary conclusion of the results is showed in the 

previous section is how the system performance improves 
when the agents become more “conscious” about which kind 
of information must be included in their knowledge bases 
when they must define their situation to execute a proposed 
action. Reasonable decision performance is achieved when 
agents includes such knowledge in their reasoning process, 
especially when they must work jointly. But more 
importantly, the system performance (successful 
performance) is significantly better when the agents increase 
the information (i.e., when the agents use grater amount of 
knowledge) involved in their decision-making to perform 
any action.  

Summarizing, this preliminary deduction argues how the 
system performance improves when the agents become more 
“conscious” about which kind of information must be 
included in their knowledge bases when they must define 
their capabilities to execute a proposed action.  

The data from the experiments discloses that the 
implementation of the three parameters of the decision axes 
combined in the agents’ decision-making produces best 
performance in all the experiments. However, the remaining 
cases show interesting results but not an optimal strategy for 
the present domains at all. Such fact illustrates that the choice 
of a strategy for include knowledge in the agents’ 
decision-making is far from trivial. In this case, the obtained 
results are significant, and show the need for further 
investigation about the agents’ situation and its effect in the 
performance of complex problems in dynamic and 
cooperative environments. The paper shows that a good 
framework for situated agent based on the knowledge of the 
introduced decision axes can increase the autonomy and 
self-control of agent in cooperative actions and allows 
obtaining reliable capabilities/requirements function in the 
agent cooperative resolution for coordinated task. 

This is a complicated process because the number of action 
grows exponentially and an increase of the number of agents 
could be a new situation, and each agent takes individual 
decisions of which the outcome can be influenced by the 
actions performed by the other agents. For thus, each agent is 
capable of perceive and interpret the information involved in 
the proposed actions and include such information in its 
knowledge base. This fact allows agents to be only focused in 
those particular actions that they can execute taking into 
account its calculated estimation (suitability rate) regards 
such actions. For thus; redundancy in the tasks execution is 
then avoided. This new and effective approach contributes 
to enhance multi-agent efficiency and performance in 
dynamic and cooperative environments because the agents 
can know if they can perform any proposed action. If agents 
cannot perform any action, the agents can make another 
decision depending on the general interest of the multi-agent 
system. Thus, the agents’ situation is based on the elements 
of the three decision axes and is useful in the agent’s 
decision-making aiming to increase the general system 
performance. 
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