
 

 
 

 
Abstract—Light-weight network gateways often employ a 

cost-effective embedded network processor and have received a 
strong demand for empowering content filtering services. In these 
regard, we were motivated to propose a specialized cache, 
fuzzy-updated cache automata matching (FCAM) circuit for 
accelerating the embedded network processors. Although automata 
matching algorithms are robust with deterministic matching time, 
there is still plenty of room for improving its average-case 
performance. The proposed FCAM employs cache to accelerate the 
root state and non-root state with the multiple characters matching, 
and applies the fuzzy decision to improve the cache performance. In 
our experiment, the FPGA implementation of FCAM can perform 
at the rate of 10.5 giga bit per second with the patterns of 25,642 
bytes. This performance is superior to previous matching hardware 
in terms of throughput and pattern set.  
 

Index Terms—String matching, Cache memories, Finite 
automata, Fuzzy control. 

I. INTRODUCTION 
N recent years, deeper and more complicated content filtering 
has been required for applications dealing with intrusion 

detection, keyword blocking, anti-virus and anti-spam. In the 
content filtering applications, string matching usually occupies 
30% to 70% of the systems’ workload [1], [2]. Hence, as the 
transmission speed increases, it becomes very necessary to 
design an appropriate string matching accelerator to offload the 
work of string matching from the network processor. 

To understand the necessary requirements of string matching 
algorithms, we surveyed real patterns from open source software 
which includes Snort [3] for intrusion detection, ClamAV [4] for 
anti-virus, SpamAssassin [5] for anti-spam, and SquidGuard [6] 
and DansGuardian [7] for Web blocking. Their requirements for 
string matching can be summed up as matching the 
variable-length, multiple simple patterns, and on-line processing 
of all content filtering systems. Since complex patterns can be 
converted to patterns composed of multiple simple patterns [8], 
they are optional in most applications.1 

Also, current existing on-line string matching algorithms can 
be classified into four categories, namely, dynamic programming, 
bit parallel, filtering and deterministic finite automata (DFA) 
algorithms. The dynamic programming [9] and bit parallel [10] 
algorithms are inappropriate for variable-length and multiple 
simple patterns, while the filtering algorithms [11] have poor 
worst-case time complexity O( nm ), where n  and m  are the 
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length of the text and patterns, respectively. Only automata 
based algorithms support the features of variable-length, 
multiple simple patterns and deterministic worst-case time 
complexity O( n ). Hence, the DFA based algorithm is a robust 
algorithm that can stand against malicious traffics and selected as 
the base to develop our new approaches. 

Aho-Corasick (AC) [12] is a typical DFA base for string 
matching. However, there are several variations. Bitmap AC [13] 
uses bitmap compression to reduce the storage of AC states. 
AC_BM [1, 14, 15] is a combination of the AC and Boyer Moore 
(BM) algorithms, and aims to improve the conventional AC from 
O( n ) to the sub-linear time co mplexity with the BM approach. 
AC_BDM [16] combines AC with backward dawg matching 
(BDM), and also improves the average-case time complexity of 
the conventional AC. Bit-split AC [17] splits the width of the 
input text into a smaller bit width to reduce the memory usage 
and the number of comparisons for selecting the next states. 
Since AC_BM, AC_BDM and bit-split AC are impractical for a 
large number of patterns. A scalable bitmap AC with space 
efficiency is more suitable for our purpose. 

On the use of fuzzy-updated cache technique, two papers 
mentioned about the fuzzy technique in cache memory, and [18] 
used fuzzy replacement for generic cache memory. Also, [19] 
integrated the neuro and fuzzy logic for cache memory control. 
However, there is no related fuzzy-updated cache that was 
proposed for specific automata matching. Although bitmap AC 
has the good worst-case matching time complexity in O( n ), it is 
insufficient for high speed processing. In this paper, we present a 
fuzzy-updated cache automata matching (FCAM) with two 
novel fuzzy-updated cache, namely the root cache and the state 
cache techniques to accelerate automata based algorithms. 

In addition, among the existing string matching hardware, the 
most prevalent is the finite automata (FA) based hardware. This 
is the case because of the support of the deterministic matching 
time and large patterns. FA based hardware can be divided into 
the deterministic FA (DFA) and non-deterministic FA (NFA) 
based hardware. 

For DFA based hardware, there are three common designs in 
recently developed string matching hardware including 
Aho-Corasick (AC) based hardware [17, 20], Regular 
Expression (RE) based hardware [21, 22] and 
Knuth-Morris-Pratt (KMP) [23, 24, 25] based hardware. To save 
a great number of states, KMP and AC are simplified from RE 
DFA by disabling their regular expression patterns. Each AC 
DFA supports multiple simple patterns, and each KMP DFA 
only supports a single simple pattern. 

As for NFA based hardware, there are two variations, namely, 
the comparator NFA [26, 27] which uses the distributed 
comparators and the decoder NFA [28] which uses the character 
decoder (shared decoder) to build its NFA circuits. The other 
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existing non-DFA based hardware in our classification are the 
parallel comparator [29, 30, 31], Bloom filter [32], systolic array 
[33] and parallel and pipeline [34] hardware in our classification. 

The rest of this paper is organized as follows: Section 2 
describes our algorithm, architecture, and the detailed design of 
the fuzzy-updated cache. The objective evaluation and the 
analysis of space requirement and performance are presented in 
Section 3, while the FPGA implementation and comparison are 
described in Section 4. Finally, we draw our conclusion in 
Section 5. 

II. ALGORITHM AND ARCHITECTURE 
The proposed FCAM incorporates three operations in the 

algorithm, the state cache, root cache and AC matching 
operations, which are described in the first subsections. In the 
second subsections, we illustrate the parallel hardware 
architecture for our automata matching. For lower cache miss 
rate, a new fuzzy updated technique of automata cache is 
described in the last section. 

Matching Algorithm 
FA_matching(T , FA ) { 
 ML =0; FA .

cS = FA .
0S ; 

for(i=0;i<= T ;i++) { 
 checkout ( FA .

cS ); 

 
currentt =

currentt + ML ; 

  ML =0; 
  if( FA .

cS == FA .
0S ) { 

   RC =root_cache_match( ]:[ rccurrentcurrent lttT + ); 
   if( RC . Match ==true)  
    ML = RC . ML ; FA . NS = RC . NS ; 

else { 
    FA . NS =AC_match( ][ currenttT ); 

ML =1; 
} 
root_cache_update( ]1:1[ −−− currentrccurrent tltT ); 

  } 
  else { 
   SC =state_cache_match( ]:[ sccurrentcurrent lttT + ); 

   if( MatchSC. ==true) 
    ML = SC . ML ; FA . NS = SC . NS ; 

else { 
    FA . NS ==AC_match( ][ currenttT ); 

ML =1; 
} 
state_cache_update( ]1:1[ −−− currentsccurrent tltT ); 

  } 
 } 
} 

 
Fig. 1. The sequential version of FCAM matching algorithm is written in C-like 
language. 

As shown in Fig. 1, the FCAM matching algorithm is written 
in C-like pseudo-code. The state cache is applied to each state, 
except for the root state, in order to avoid the bitmap AC 
operation and to match multiple bytes in a single operation. 
During the automata matching FA_matching() process, for-loop 
feeds the text T  into the matching functions from length zero to 
maximum text length T . If the current state FA . cS  is set to a 

root state FA . 0S , FA_matching() will use the result RC  of root 

cache matching   root_cache(). If the root matched status 
RC . Match  indicates a matching hit, its next state RC . NS  is 
used for the next state transition FA . NS . If the current state is 
not the root state, it will perform state cache matching 
state_cache() first. If the state matched status SC . Match  
indicates a hit, the matched result of state cache SC . NS  is used 
for FA . NS  as well. Otherwise, the result of AC_match() is used 
for FA . NS . A cache update is performed in each matching 
operation after FA . NS  is obtained by matched units. 

After the matching, the current text position currentt  will 
advance the matched length ML  for each matching iteration. 
ML  is set to RC . ML  and SC . ML  if the root cache or state 
cache have a matching hit. Moreover, to select the text for the 
cache match and updated units, the maximum matched length of 
the root cache rcl  and the state cache scl  are used to control the 
text windows. To output the matched result, checkout() is 
performed after the next state is obtained.  Although this C-like 
algorithm looks like a sequential flow, checkout(), 
advance_text(), root_cache(), state_cache(), AC_match(), 
root_cache_update() and state_cache_update(),  the units can be 
executed concurrently in the hardware. 

Matching Architecture 
The proposed FCAM hardware as depicted in Fig. 2 can be 

implemented as a coprocessor to assist the string matching. Its 
three units can perform their matching concurrently in the 
hardware. In this architecture, the AC matching processes only 
one-byte in a single matching iteration, but the state and root 
cache units can match multiple bytes in a single matching 
iteration. 
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Fig. 2. The architecture of the string-matching co-processor, including the logic 
circuits and blocks of the root cache, state cache and AC matching for the FCAM 
co-processor. 

In the state or root cache tables, each entry consists of the tag, 
next state and matched length. Since the state cache uses the 
partial state number and the matching text as its tag, the entry 
size of the state cache table will be larger than the root cache 
table. 
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An Fuzzy Updated Unit for Cache 
A new fuzzy-updated cache updated technique to improve the 

cache matched probability is proposed. This fuzzy-updated 
cache can incorporate more automata matching features in order 
to improve the cache locality, such as the visiting frequency and 
the distance from the root state. Fig. 3 represents the updated unit 
for the root cache. The state cache updated unit is quite similar to 
the root cache although there are two major differences: (1) the 
state cache is indexed by a state number, and (2) it uses a 
fine-tuned parameter for producing a fuzzy update.  

Next
State

NumberTag
Match
Length

Fuzzy
Decision

Yes/No

Last Visit 
Count

Depth

Update
Visit

Interval

Visit
Path

State 
Information

Index

Retrieve
Visit

Interval

Visit Interval
Table

Input
Text … …

Current Matching TextMatched Text

Next
State Number

Cache Table

Current
Visit

Count

Fuzzy Update Unit  
Fig. 3. Fuzzy updated unit for root cache. 

In the implementation of the fuzzy updated mechanism, the 
fuzzy decision is based on two parameters, namely, the visit 
interval and the depth. Their fuzzy membership functions are 
illustrated in Fig. 4. (a) and (b), respectively. One special design 
feature that is used to reduce the entry of a visit interval for each 
state is to use the visit path to index the visit interval instead of 
the state number. Each visit path in the visit interval table keeps a 
last visit count LVC  and the average visit interval 

avgVI  in the 

table. 
avgVI  is computed using a moving average approach as in 

(1) below 
)1()( viviavgavg FLVCCVCFVIVI −×−+×= ,     (1) 

where the visit interval represents the current visit count CVC  
subtracted from LVC , with  a weight sensitive factor 

viF , such 
that a larger 

viF  will be less sensitive to a new visit interval. 

Small Medium Large
μ μ Shallow Medium Deep

smallVI mediumVI largeVI shallowD mediumD depthD
(a) (b)

Visit Interval Depth

 
Fig. 4. (a) Membership functions of the visit interval parameter. (b) Membership 
functions of the depth parameter. 

A fuzzy rule table is used to determine the updated decision. 
The Yes/No assignment of the fuzzy rule table is based on the 
experimental results that can be modified for different 
applications and situations. To compute the final decision, the 
Centroid method is applied in the fuzzy computation. 

III. ANALYSIS 

Space Requirement 

A. Space Requirement 
The space requirement can be determined by combing the 

bitmap AC, state cache and root cache spaces, as 

rcscACtotal SPSPSPSP ++=         (2) 

The original space requirement of bitmap AC, 
ACSP , is mainly 

dominated by the state table, which is equal to the number of 
states S  multiplied by the state size stateSP , 

stateAC SPSSP ×= .        (3) 

The state cache space 
scSP  is determined by its entry amount 

scEA  multiplied with its entry size scES  , as  

scscsc ESEASP ×= .        (4) 

The size of each entry is summed by the size of state tag 
scTag , 

state number 
nostateSP _

 and match length 
scML , which can be 

obtained using 

scnostatescsc MLSPTagES ++= _
.     (5) 

Since the state cache is indexed by the first partial state 
number 

1__ partnostateSP , the tag size of each entry 
scTag  is the sum 

of the size of second partial state number 
2__ partnostateSP  and the 

text size T , then minus 
1__ partnostateSP . 

1__2__ partnostatepartnostatesc SPTSPTag −+= .    (6) 

With the above equation, different configurations of the state 
cache can be obtained by a change in the address width of the 
index. 

The root cache space 
rcSP  is quite similar to the state cache; 

only the root tag size 
rcTag  is different and is equal to the size of 

second partial text. Thus 
rcSP  and the entry size 

rcES  of the root 
cache are (7) and (8), as 

rcrcrc ESEASP ×= ,        (7) 

rcstatercrc MLSPTagES ++= ,      (8) 

TABLE  I 
COMPARISON FOR FUZZY-UPDATED CACHE PERFORMANCE 

Address
Width
(Bit)

Entry
Amount

Tag
Size
(Bit)

State
NO.

Size (Bit)

Match
Length
(Bit)

Root
Cache Size

(KByte)

State 
Cache Size

(KByte)

16 65536 72 24 3 6336 4800

15 32768 73 24 3 3200 2432

14 16384 74 24 3 1616 1232

13 8192 75 24 3 816 624

12 4096 76 24 3 412 316
 

From the above-mentioned equations, the space root cache 
and state can be computed as in Table I. If the entry amount of 
cache table is from 4096 to 65536 for the state amount of bitmap 
AC from 1,048,576 to 16,777,216.  The sizes of root cache and 
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state cache are from 412 to 6336 Kbytes, and 316 to 4800 Kbytes, 
respectively. Compared to the size of bitmap AC, the state 
amount of bitmap AC from 16,777,216 and 1,048,576 requires 
4,992 and 312 Mbytes, respectively. The sizes of the cache tables 
are relative small and thus, it is feasible to implement the cache 
tables with the internal memories. 

Performance Analysis 
As mentioned earlier, the root cache, state cache and AC 

matching can be performed concurrently, so that the average 
matching time of the matching automata is computed as 

)1()()(
)1(

_
scrcscscrcrc

ACscrcrcscrcrc
timeavg PPPMLPML

TPPTPTP
T

−−+×+×
×−−+×+×

=
,    (10) 

where 
timeavgT _

 is the average time for matching one byte of the 

text, 
rcT , 

scT  and 
ACT  are the root cache, state cache and AC 

matching time, respectively. rcP , scP  and ACP  are the 
probabilities of using the root cache, state cache and AC 
matching, respectively. Since the state cache can advance 
multiple bytes in one single matching, 

scML  and 
rcML  are the 

average matched length for both the state cache and root cache. 
Since the AC matching is the critical path, the worst-case time of 
the FCAM is equal to ACT . 

With the matching algorithm and architecture in Section 3, the 
proposed FCAM was implemented using the Verilog language, 
and then compared with the first in first out (FIFO) and the least 
recently used (LRU) cache update algorithms. In this 
comparative stage, the different cache entry amount 
configurations and the two patterns of major applications, 
namely, the URL block list and the virus patterns were also 
tested. 

TABLE  II 
COMPARISON FOR FUZZY-UPDATED CACHE PERFORMANCE 

Virus URL Virus URL Virus URL

4096 6738 10121 2413 3617 2900 4618

8192 7546 10490 2535 4440 3613 5048

16384 8355 10563 3630 5536 4062 6194

32768 9163 10526 4725 6770 6479 7196

65536 9214 10665 6063 8003 6553 8544

Cache

Entry

Amount

Fuzzy Update LRU Update
Throughput(bps)

FIFO Update

 
 

 For realistic evaluation, the URL blacklists and virus 
signatures from [6] and [4] were chosen. Since the URL 
blacklists and virus signatures have a lot of patterns as well as 
long patterns, these patterns are sufficient to evaluate the 
performance of our FCAM algorithm. The analyzed URL 
blacklists have 21,302 patterns and generate 194,096 states, 
while the virus signatures have 10,000 patterns and generate 
402,173 states. Finally, the Google website and the ethereal 
protocol captures were used to test the URL and virus patterns, 
respectively. 

Table II shows that the proposed fuzzy updated technique can 
archive around 10.5 Gbps for the URL patterns, which is 
superior to FIFO and LRU algorithms. Moreover, fuzzy update 
provides a better performance when the cache entry amount is 
not large. 

Fig. 5 provides a more detailed view of cache performance, 
matching probability of root cache and state cache. Obviously, a 

fuzzy-updated cache has much better matched probability than 
FIFO and LRU caches. A URL has better performance than a 
virus application by providing a higher matching probability. 
Another interesting finding is that the state cache matching 
probability does not always increase with an increase in cache 
size: especially, when root cache matched probability is high. 
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Fig. 5. Cache matching probability (a) for root cache and (b) for state cache. 

IV. HARDWARE IMPLEMENTATION AND COMPARISON 
When compared with various hardware algorithms, our 

FCAM showed better results. Since many string matching 
hardware [20, 22, 23, 31, 34] store their patterns in on-chip 
hardwired circuits and internal memories, we implemented the 
proposed FCAM using the FPGA internal memories for a fair 
evaluation. Besides, we also synthesized FCAM on various 
Xilinx FPGA devices to directly compare its performance with 
the other matching hardware. 

TABLE II. The Comparisons of String Matching Hardware 

Matching Hardware Device 
Pattern Size

(Byte) 

Throughput

(Gbps) 

RHAM2 

Virtex2P 

25,642 

10.5 
Virtex2 1000 6.2
Virtex2 6000 8.8 
Spartan3 400 6.4 

VirtexE 2000 2.0 

Virtex  8002 1.6 

Bit-split AC [17] Xilinx FPGA 2,048 10.0 
DFA+counter [21] VirtextE 1000 11 3.8 

Parallel Regular DFA [22] VirtexE  2000E 420 1.2 
KMP Comparators [23] Virtex2P 32 2.4 
Comparator NFA [26]  Virtex 100 29 0.5 

Meta Comparator NFA [27] VirtexE 2000 8,003 0.4 
Approximate Decoder NFA [28] Virtex2 6000 17,537 2.0 
Offset Index Comparators [29] Spartan3 400 20,800 1.9 
Pre-decoded Comparators [30] Virtex2 6000 18,032 9.7 

CAM Comparators [31] VirtexE 1000 640 2.2 
Parallel Bloom Filter [32] VirtexE 2000 9,800 0.6 

In the comparison, we compared and analyzed about 11 major 
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recent works as shown in Table II. In addition, the architecture of 
the previous hardware often employed hardwired circuits and 
internal memories for storing their pattern sets and thus, their 
pattern sizes were limited by FPGA resources. Our FCAM 
architecture is scalable to support more patterns with higher 
performance because it can be implemented with external 
multiple banks memory. 

V. CONCLUSION 
In this paper, we present a fuzzy-updated cache automata 

matching (FCAM) with a novel state cache and root cache 
techniques. With the new architecture, the proposed FCAM 
technique avoids the time consuming bitmap AC matching and 
does the matching of multiple bytes in one single matching 
operation. Our FCAM has a distinguishing feature compared to 
previous fuzzy caches, i.e., it has a specialized cache for 
automata structure that is novel compared to all previous work. 
In addition, the result of FCAM implementation demonstrates 
that it surpasses all other existing hardware in terms of pattern set 
and throughput. The FCAM can support the largest pattern size 
of 25,642 bytes and run at the highest throughput of 10.5 Gpbs. 
Moreover, since the proposed architecture works for both 
external and internal memories, and that the external ASIC 
memories can often run at a much higher clock rate than the 
FPGA memories, the architecture of FCAM is scalable for large 
pattern sets. 
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