

Abstract—Light-weight network gateways often employ a

cost-effective embedded network processor and have received a
strong demand for empowering content filtering services. In these
regard, we were motivated to propose a specialized cache,
fuzzy-updated cache automata matching (FCAM) circuit for
accelerating the embedded network processors. Although automata
matching algorithms are robust with deterministic matching time,
there is still plenty of room for improving its average-case
performance. The proposed FCAM employs cache to accelerate the
root state and non-root state with the multiple characters matching,
and applies the fuzzy decision to improve the cache performance. In
our experiment, the FPGA implementation of FCAM can perform
at the rate of 10.5 giga bit per second with the patterns of 25,642
bytes. This performance is superior to previous matching hardware
in terms of throughput and pattern set.

Index Terms—String matching, Cache memories, Finite
automata, Fuzzy control.

I. INTRODUCTION
N recent years, deeper and more complicated content filtering
has been required for applications dealing with intrusion

detection, keyword blocking, anti-virus and anti-spam. In the
content filtering applications, string matching usually occupies
30% to 70% of the systems’ workload [1], [2]. Hence, as the
transmission speed increases, it becomes very necessary to
design an appropriate string matching accelerator to offload the
work of string matching from the network processor.

To understand the necessary requirements of string matching
algorithms, we surveyed real patterns from open source software
which includes Snort [3] for intrusion detection, ClamAV [4] for
anti-virus, SpamAssassin [5] for anti-spam, and SquidGuard [6]
and DansGuardian [7] for Web blocking. Their requirements for
string matching can be summed up as matching the
variable-length, multiple simple patterns, and on-line processing
of all content filtering systems. Since complex patterns can be
converted to patterns composed of multiple simple patterns [8],
they are optional in most applications.1

Also, current existing on-line string matching algorithms can
be classified into four categories, namely, dynamic programming,
bit parallel, filtering and deterministic finite automata (DFA)
algorithms. The dynamic programming [9] and bit parallel [10]
algorithms are inappropriate for variable-length and multiple
simple patterns, while the filtering algorithms [11] have poor
worst-case time complexity O(nm), where n and m are the

Kuo-Kun Tseng Author is with Hungkuang University, 34 Chung-Chie Rd,

Sha Lu, Taichung, 443, Taiwan, R.O.C. (Tel:886-937-789380 ;
Fax:886-4-26310744; e-mail: kktseng@ sunrise.hk.edu.tw).

Chao-Shi Wang and Ya-Ying Liao Authors are with Hungkuang University,
34 Chung-Chie Rd, Sha Lu, Taichung, 443, Taiwan, R.O.C. (e-mail:
key135g@gmail.com and nacy90033@yahoo.com.tw, respectively)

length of the text and patterns, respectively. Only automata
based algorithms support the features of variable-length,
multiple simple patterns and deterministic worst-case time
complexity O(n). Hence, the DFA based algorithm is a robust
algorithm that can stand against malicious traffics and selected as
the base to develop our new approaches.

Aho-Corasick (AC) [12] is a typical DFA base for string
matching. However, there are several variations. Bitmap AC [13]
uses bitmap compression to reduce the storage of AC states.
AC_BM [1, 14, 15] is a combination of the AC and Boyer Moore
(BM) algorithms, and aims to improve the conventional AC from
O(n) to the sub-linear time co mplexity with the BM approach.
AC_BDM [16] combines AC with backward dawg matching
(BDM), and also improves the average-case time complexity of
the conventional AC. Bit-split AC [17] splits the width of the
input text into a smaller bit width to reduce the memory usage
and the number of comparisons for selecting the next states.
Since AC_BM, AC_BDM and bit-split AC are impractical for a
large number of patterns. A scalable bitmap AC with space
efficiency is more suitable for our purpose.

On the use of fuzzy-updated cache technique, two papers
mentioned about the fuzzy technique in cache memory, and [18]
used fuzzy replacement for generic cache memory. Also, [19]
integrated the neuro and fuzzy logic for cache memory control.
However, there is no related fuzzy-updated cache that was
proposed for specific automata matching. Although bitmap AC
has the good worst-case matching time complexity in O(n), it is
insufficient for high speed processing. In this paper, we present a
fuzzy-updated cache automata matching (FCAM) with two
novel fuzzy-updated cache, namely the root cache and the state
cache techniques to accelerate automata based algorithms.

In addition, among the existing string matching hardware, the
most prevalent is the finite automata (FA) based hardware. This
is the case because of the support of the deterministic matching
time and large patterns. FA based hardware can be divided into
the deterministic FA (DFA) and non-deterministic FA (NFA)
based hardware.

For DFA based hardware, there are three common designs in
recently developed string matching hardware including
Aho-Corasick (AC) based hardware [17, 20], Regular
Expression (RE) based hardware [21, 22] and
Knuth-Morris-Pratt (KMP) [23, 24, 25] based hardware. To save
a great number of states, KMP and AC are simplified from RE
DFA by disabling their regular expression patterns. Each AC
DFA supports multiple simple patterns, and each KMP DFA
only supports a single simple pattern.

As for NFA based hardware, there are two variations, namely,
the comparator NFA [26, 27] which uses the distributed
comparators and the decoder NFA [28] which uses the character
decoder (shared decoder) to build its NFA circuits. The other

A Specialized Cache of Automata Matching for Content
Filtering

Kuo-Kun Tseng, Chao-Shi Wang, Ya-Ying Liao

I

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

existing non-DFA based hardware in our classification are the
parallel comparator [29, 30, 31], Bloom filter [32], systolic array
[33] and parallel and pipeline [34] hardware in our classification.

The rest of this paper is organized as follows: Section 2
describes our algorithm, architecture, and the detailed design of
the fuzzy-updated cache. The objective evaluation and the
analysis of space requirement and performance are presented in
Section 3, while the FPGA implementation and comparison are
described in Section 4. Finally, we draw our conclusion in
Section 5.

II. ALGORITHM AND ARCHITECTURE
The proposed FCAM incorporates three operations in the

algorithm, the state cache, root cache and AC matching
operations, which are described in the first subsections. In the
second subsections, we illustrate the parallel hardware
architecture for our automata matching. For lower cache miss
rate, a new fuzzy updated technique of automata cache is
described in the last section.

Matching Algorithm
FA_matching(T , FA) {
 ML =0; FA .

cS = FA .
0S ;

for(i=0;i<= T ;i++) {
 checkout (FA .

cS);

currentt =

currentt + ML ;

 ML =0;
 if(FA .

cS == FA .
0S) {

 RC =root_cache_match(]:[rccurrentcurrent lttT +);
 if(RC . Match ==true)
 ML = RC . ML ; FA . NS = RC . NS ;

else {
 FA . NS =AC_match(][currenttT);

ML =1;
}
root_cache_update(]1:1[−−− currentrccurrent tltT);

 }
 else {
 SC =state_cache_match(]:[sccurrentcurrent lttT +);

 if(MatchSC. ==true)
 ML = SC . ML ; FA . NS = SC . NS ;

else {
 FA . NS ==AC_match(][currenttT);

ML =1;
}
state_cache_update(]1:1[−−− currentsccurrent tltT);

 }
 }
}

Fig. 1. The sequential version of FCAM matching algorithm is written in C-like
language.

As shown in Fig. 1, the FCAM matching algorithm is written
in C-like pseudo-code. The state cache is applied to each state,
except for the root state, in order to avoid the bitmap AC
operation and to match multiple bytes in a single operation.
During the automata matching FA_matching() process, for-loop
feeds the text T into the matching functions from length zero to
maximum text length T . If the current state FA . cS is set to a

root state FA . 0S , FA_matching() will use the result RC of root

cache matching root_cache(). If the root matched status
RC . Match indicates a matching hit, its next state RC . NS is
used for the next state transition FA . NS . If the current state is
not the root state, it will perform state cache matching
state_cache() first. If the state matched status SC . Match
indicates a hit, the matched result of state cache SC . NS is used
for FA . NS as well. Otherwise, the result of AC_match() is used
for FA . NS . A cache update is performed in each matching
operation after FA . NS is obtained by matched units.

After the matching, the current text position currentt will
advance the matched length ML for each matching iteration.
ML is set to RC . ML and SC . ML if the root cache or state
cache have a matching hit. Moreover, to select the text for the
cache match and updated units, the maximum matched length of
the root cache rcl and the state cache scl are used to control the
text windows. To output the matched result, checkout() is
performed after the next state is obtained. Although this C-like
algorithm looks like a sequential flow, checkout(),
advance_text(), root_cache(), state_cache(), AC_match(),
root_cache_update() and state_cache_update(), the units can be
executed concurrently in the hardware.

Matching Architecture
The proposed FCAM hardware as depicted in Fig. 2 can be

implemented as a coprocessor to assist the string matching. Its
three units can perform their matching concurrently in the
hardware. In this architecture, the AC matching processes only
one-byte in a single matching iteration, but the state and root
cache units can match multiple bytes in a single matching
iteration.

Bus

Text

Processor

… …

Text

.

.

.

State table

Load
state

Compute
next state

.

.

.

Next state
table

AC
matchingNext

state
address

State
table

String
Matching
Coprocessor

…

Root cache matching

Cache
match Main

ControlFuzzy
update

…
Cache

Hit?

Fuzzy
Update

State cache
matching

State cache table

Root cache table

Matched text Matching text

Current
state

Next
state

Tag

Next
state
no.

Matched
length

Fig. 2. The architecture of the string-matching co-processor, including the logic
circuits and blocks of the root cache, state cache and AC matching for the FCAM
co-processor.

In the state or root cache tables, each entry consists of the tag,
next state and matched length. Since the state cache uses the
partial state number and the matching text as its tag, the entry
size of the state cache table will be larger than the root cache
table.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

An Fuzzy Updated Unit for Cache
A new fuzzy-updated cache updated technique to improve the

cache matched probability is proposed. This fuzzy-updated
cache can incorporate more automata matching features in order
to improve the cache locality, such as the visiting frequency and
the distance from the root state. Fig. 3 represents the updated unit
for the root cache. The state cache updated unit is quite similar to
the root cache although there are two major differences: (1) the
state cache is indexed by a state number, and (2) it uses a
fine-tuned parameter for producing a fuzzy update.

Next
State

NumberTag
Match
Length

Fuzzy
Decision

Yes/No

Last Visit
Count

Depth

Update
Visit

Interval

Visit
Path

State
Information

Index

Retrieve
Visit

Interval

Visit Interval
Table

Input
Text … …

Current Matching TextMatched Text

Next
State Number

Cache Table

Current
Visit

Count

Fuzzy Update Unit
Fig. 3. Fuzzy updated unit for root cache.

In the implementation of the fuzzy updated mechanism, the
fuzzy decision is based on two parameters, namely, the visit
interval and the depth. Their fuzzy membership functions are
illustrated in Fig. 4. (a) and (b), respectively. One special design
feature that is used to reduce the entry of a visit interval for each
state is to use the visit path to index the visit interval instead of
the state number. Each visit path in the visit interval table keeps a
last visit count LVC and the average visit interval

avgVI in the

table.
avgVI is computed using a moving average approach as in

(1) below
)1()(viviavgavg FLVCCVCFVIVI −×−+×= , (1)

where the visit interval represents the current visit count CVC
subtracted from LVC , with a weight sensitive factor

viF , such
that a larger

viF will be less sensitive to a new visit interval.

Small Medium Large
μ μ Shallow Medium Deep

smallVI mediumVI largeVI shallowD mediumD depthD
(a) (b)

Visit Interval Depth

Fig. 4. (a) Membership functions of the visit interval parameter. (b) Membership
functions of the depth parameter.

A fuzzy rule table is used to determine the updated decision.
The Yes/No assignment of the fuzzy rule table is based on the
experimental results that can be modified for different
applications and situations. To compute the final decision, the
Centroid method is applied in the fuzzy computation.

III. ANALYSIS

Space Requirement

A. Space Requirement
The space requirement can be determined by combing the

bitmap AC, state cache and root cache spaces, as

rcscACtotal SPSPSPSP ++= (2)

The original space requirement of bitmap AC,
ACSP , is mainly

dominated by the state table, which is equal to the number of
states S multiplied by the state size stateSP ,

stateAC SPSSP ×= . (3)

The state cache space
scSP is determined by its entry amount

scEA multiplied with its entry size scES , as

scscsc ESEASP ×= . (4)

The size of each entry is summed by the size of state tag
scTag ,

state number
nostateSP _

 and match length
scML , which can be

obtained using

scnostatescsc MLSPTagES ++= _
. (5)

Since the state cache is indexed by the first partial state
number

1__ partnostateSP , the tag size of each entry
scTag is the sum

of the size of second partial state number
2__ partnostateSP and the

text size T , then minus
1__ partnostateSP .

1__2__ partnostatepartnostatesc SPTSPTag −+= . (6)

With the above equation, different configurations of the state
cache can be obtained by a change in the address width of the
index.

The root cache space
rcSP is quite similar to the state cache;

only the root tag size
rcTag is different and is equal to the size of

second partial text. Thus
rcSP and the entry size

rcES of the root
cache are (7) and (8), as

rcrcrc ESEASP ×= , (7)

rcstatercrc MLSPTagES ++= , (8)

TABLE I
COMPARISON FOR FUZZY-UPDATED CACHE PERFORMANCE

Address
Width
(Bit)

Entry
Amount

Tag
Size
(Bit)

State
NO.

Size (Bit)

Match
Length
(Bit)

Root
Cache Size

(KByte)

State
Cache Size

(KByte)

16 65536 72 24 3 6336 4800

15 32768 73 24 3 3200 2432

14 16384 74 24 3 1616 1232

13 8192 75 24 3 816 624

12 4096 76 24 3 412 316

From the above-mentioned equations, the space root cache
and state can be computed as in Table I. If the entry amount of
cache table is from 4096 to 65536 for the state amount of bitmap
AC from 1,048,576 to 16,777,216. The sizes of root cache and

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

state cache are from 412 to 6336 Kbytes, and 316 to 4800 Kbytes,
respectively. Compared to the size of bitmap AC, the state
amount of bitmap AC from 16,777,216 and 1,048,576 requires
4,992 and 312 Mbytes, respectively. The sizes of the cache tables
are relative small and thus, it is feasible to implement the cache
tables with the internal memories.

Performance Analysis
As mentioned earlier, the root cache, state cache and AC

matching can be performed concurrently, so that the average
matching time of the matching automata is computed as

)1()()(
)1(

_
scrcscscrcrc

ACscrcrcscrcrc
timeavg PPPMLPML

TPPTPTP
T

−−+×+×
×−−+×+×

=
, (10)

where
timeavgT _

 is the average time for matching one byte of the

text,
rcT ,

scT and
ACT are the root cache, state cache and AC

matching time, respectively. rcP , scP and ACP are the
probabilities of using the root cache, state cache and AC
matching, respectively. Since the state cache can advance
multiple bytes in one single matching,

scML and
rcML are the

average matched length for both the state cache and root cache.
Since the AC matching is the critical path, the worst-case time of
the FCAM is equal to ACT .

With the matching algorithm and architecture in Section 3, the
proposed FCAM was implemented using the Verilog language,
and then compared with the first in first out (FIFO) and the least
recently used (LRU) cache update algorithms. In this
comparative stage, the different cache entry amount
configurations and the two patterns of major applications,
namely, the URL block list and the virus patterns were also
tested.

TABLE II
COMPARISON FOR FUZZY-UPDATED CACHE PERFORMANCE

Virus URL Virus URL Virus URL

4096 6738 10121 2413 3617 2900 4618

8192 7546 10490 2535 4440 3613 5048

16384 8355 10563 3630 5536 4062 6194

32768 9163 10526 4725 6770 6479 7196

65536 9214 10665 6063 8003 6553 8544

Cache

Entry

Amount

Fuzzy Update LRU Update
Throughput(bps)

FIFO Update

 For realistic evaluation, the URL blacklists and virus
signatures from [6] and [4] were chosen. Since the URL
blacklists and virus signatures have a lot of patterns as well as
long patterns, these patterns are sufficient to evaluate the
performance of our FCAM algorithm. The analyzed URL
blacklists have 21,302 patterns and generate 194,096 states,
while the virus signatures have 10,000 patterns and generate
402,173 states. Finally, the Google website and the ethereal
protocol captures were used to test the URL and virus patterns,
respectively.

Table II shows that the proposed fuzzy updated technique can
archive around 10.5 Gbps for the URL patterns, which is
superior to FIFO and LRU algorithms. Moreover, fuzzy update
provides a better performance when the cache entry amount is
not large.

Fig. 5 provides a more detailed view of cache performance,
matching probability of root cache and state cache. Obviously, a

fuzzy-updated cache has much better matched probability than
FIFO and LRU caches. A URL has better performance than a
virus application by providing a higher matching probability.
Another interesting finding is that the state cache matching
probability does not always increase with an increase in cache
size: especially, when root cache matched probability is high.

Root Cache - Fuzzy Update

0

0.2

0.4

0.6

0.8

1

4096 8192 16384 32768 65536

Cache Entry Amount

R
oo

t
C

ac
he

 M
at

ch
in

g

P
ro

b.

Root Cache - FIFO Update

0

0.2

0.4

0.6

4096 8192 16384 32768 65536

Cache Entry Amount

R
oo

t
C

ac
he

 M
at

ch
in

g

P
ro

b.

Root Cache - LRU Update

0

0.2

0.4

0.6

4096 8192 16384 32768 65536

Cache Entry Amount

R
oo

t
C

ac
he

 M
at

ch
in

g

P
ro

b.

(a)

State Cache - Fuzzy Update

0

0.1

0.2

0.3

0.4

4096 8192 16384 32768 65536

Cache Entry Amount

Virus

URL

State Cache - FIFO Update

0

0.1

0.2

0.3

0.4

0.5

4096 8192 16384 32768 65536

Cache Entry Amount

Virus

URL

State Cache - LRU Update

0

0.1

0.2

0.3

0.4

0.5

4096 8192 16384 32768 65536

Cache Entry Amount

Virus

URL

(b)

Fig. 5. Cache matching probability (a) for root cache and (b) for state cache.

IV. HARDWARE IMPLEMENTATION AND COMPARISON
When compared with various hardware algorithms, our

FCAM showed better results. Since many string matching
hardware [20, 22, 23, 31, 34] store their patterns in on-chip
hardwired circuits and internal memories, we implemented the
proposed FCAM using the FPGA internal memories for a fair
evaluation. Besides, we also synthesized FCAM on various
Xilinx FPGA devices to directly compare its performance with
the other matching hardware.

TABLE II. The Comparisons of String Matching Hardware

Matching Hardware Device
Pattern Size

(Byte)

Throughput

(Gbps)

RHAM2

Virtex2P

25,642

10.5
Virtex2 1000 6.2
Virtex2 6000 8.8
Spartan3 400 6.4

VirtexE 2000 2.0

Virtex 8002 1.6

Bit-split AC [17] Xilinx FPGA 2,048 10.0
DFA+counter [21] VirtextE 1000 11 3.8

Parallel Regular DFA [22] VirtexE 2000E 420 1.2
KMP Comparators [23] Virtex2P 32 2.4
Comparator NFA [26] Virtex 100 29 0.5

Meta Comparator NFA [27] VirtexE 2000 8,003 0.4
Approximate Decoder NFA [28] Virtex2 6000 17,537 2.0
Offset Index Comparators [29] Spartan3 400 20,800 1.9
Pre-decoded Comparators [30] Virtex2 6000 18,032 9.7

CAM Comparators [31] VirtexE 1000 640 2.2
Parallel Bloom Filter [32] VirtexE 2000 9,800 0.6

In the comparison, we compared and analyzed about 11 major

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

recent works as shown in Table II. In addition, the architecture of
the previous hardware often employed hardwired circuits and
internal memories for storing their pattern sets and thus, their
pattern sizes were limited by FPGA resources. Our FCAM
architecture is scalable to support more patterns with higher
performance because it can be implemented with external
multiple banks memory.

V. CONCLUSION
In this paper, we present a fuzzy-updated cache automata

matching (FCAM) with a novel state cache and root cache
techniques. With the new architecture, the proposed FCAM
technique avoids the time consuming bitmap AC matching and
does the matching of multiple bytes in one single matching
operation. Our FCAM has a distinguishing feature compared to
previous fuzzy caches, i.e., it has a specialized cache for
automata structure that is novel compared to all previous work.
In addition, the result of FCAM implementation demonstrates
that it surpasses all other existing hardware in terms of pattern set
and throughput. The FCAM can support the largest pattern size
of 25,642 bytes and run at the highest throughput of 10.5 Gpbs.
Moreover, since the proposed architecture works for both
external and internal memories, and that the external ASIC
memories can often run at a much higher clock rate than the
FPGA memories, the architecture of FCAM is scalable for large
pattern sets.

REFERENCES
[1] F. Mike and V. George,“Fast Content-Based. Packet Handling for Intrusion

Detection,” UCSD. Technical Report CS2001-0670, May 2001.
[2] S. Antonatos, K. Anagnostakis and E. Markatos, Generating Realistic

Workloads for Network Intrusion Detection Systems. ACM WOSP, 2004.
[3] M. Roesch et al, “Snort: The Open Source Network Intrusion Detection

System,” http://www.snort.org/.
[4] T. Kojm et al, “Clam Anti-virus,” http://www.clamav.net/.
[5] J. Mason et al, The Apache SpamAssassin Project.

http://spamassassin.apache.org/.
[6] T. D. Internordia et al, “SquidGuard filter,” http://www.squidguard.org/.
[7] D. Barron et al, “DansGuardian content filter,” http://dansguardian.org/.
[8] G. Navarro and M. Ranot, “Flexible Pattern Matching in Strings,”

Cambridge University Press, 2002.
[9] G. Navarro, “A Guided Tour to Approximate String Matching,” ACM

Computing Surveys, 33(1):31-88. 2001.
[10] S. Wu and U. Manber, “Fast Text Searching Allowing Errors,”

Communication of the ACM, 35:83-91.
[11] R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm.

Communications of the ACM,” 20, 10, 762–772.
[12] A. V. Aho and M. J. Corasick, “Efficient String Matching: An Aid to

Bibliographic Search,” Communications of the ACM, pp.333–340.
[13] N. Tuck, T. Sherwood, B. Calder and G. Varghese, “Deterministic

memory-efficient string matching algorithms for intrusion detection,” IEEE
Infocom, Hong Kong, China, 2004.

[14] C. Coit, S. Staniford and J. Mcalerney, “Towards Faster String Matching
for Intrusion Detection,” DARPA Information Survivability Conference and
Exhibition, pp. 367-373, 2002.

[15] N. Desai, “Increasing performance in high speed NIDS,”
http://www.snort.org/.

[16] M. Raffinot, “On the Multi Backward Dawg Matching Algorithm
(MultiBDM),” Workshop on String Processing, Carleton U. Press, 1997.

[17] L. Tan and T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection And Prevention,” ISCA, 2005.

[18] H. Diab, U. Furbach and H. Tabbara, “On the Use of Fuzzy Techniques in
Cache Memory Management,” JCIS, Atlanta, 2000.

[19] O. Hammami, “Pipeline Integration of Neuro and Fuzzy Cache
Management Techniques,” FUZZ-IEEE, Barcelona, Spain, Jul. 1997.

[20] M. Aldwairi, T. Conte and P. Franzon, “Configurable String Matching
Hardware for Speeding up Intrusion Detection,” ACM CAN, 2005.

[21] J. Lockwood, “An Open Platform for Development of Network Processing
Modules in Reconfigurable Hardware,” IEC DesignCon, Santa Clara, CA,
Jan. 2001.

[22] J. Moscola, J. Lockwood, R. P. Loui and M. Pachos, “Implementation of a
Content-Scanning Module for an Internet Firewall,” IEEE FCCM, 2003.

[23] Z. K. Baker and V. K. Prasanna, “Time And Area Efficient Pattern
Matching on FPGAs,” ACM/SIGDA FPGA, California, USA, Feb 2004.

[24] G. Tripp, “A Finite-State-Machine Based String Matching System for
Intrusion Detection on High-Speed Network.,” EICAR, May 2005.

[25] L. Bu and J. A. Chandy, “A Keyword Match Processor Architecture Using
Content Addressable Memory,” ACM VLSI, April 26-28, 2004.

[26] R. Sidhu and V. Prasanna, “Fast Regular Expression Matching using
FPGAs,” IEEE FCCM, April 2001.

[27] R. Franklin, D. Carver and B. L. Hutchings, “Assisting Network Intrusion
Detection with Reconfigurable Hardware,” IEEE FCCM, Napa, CA, Apr
2002.

[28] I. Sourdis and D. Pnevmatikatos, “Pre-Decoded CAMs for Efficient and
High-Speed NIDS Pattern Matching,” IEEE FCCM, 2004.

[29] Y. H. Cho and W. H. Mangione, “A Pattern Matching Coprocessor for
Network Security,” ACM/IEEE DAC, California, USA, Jun 2005.

[30] I. Sourdis and D. Pnevmatikatos, “Pre-Decoded CAMs for Efficient and
High-Speed NIDS Pattern Matching,” IEEE FCCM, 2004.

[31] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole and V. Hogsett,
“Granidt: Towards Gigabit Rate Network Intrusion Detection Technology,”
LNCS, Volume 2438, Jan 2002.

[32] S. Dharmapurikar and P. Krishnamurthy, T. S. Sproull and J. W. Lockwood,
“Deep Packet Inspection Using Parallel Bloom Filters,” IEEE Micro, Vol.
24, No. 1, Jan. 2004.

[33] H. M. Blüthgen, T. Noll and R. Aachen, “A Programmable Processor For
Approximate String Matching With High Throughput Rate,” IEEE ASAP,
2000.

[34] J. H. Park and K. M. George, “Parallel String Matching Algorithms based
on Dataflow,” HICSS, Hawaii, 1999.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

