
 
 

 

  
Abstract—In this study, response surface models (RSMs) 
based on limited data are developed.  Experimental cutting 
force data for the flat end milling process are employed to 
build these models.  Four RSM models are developed in terms 
of process variables.  The first model is used to build the mean 
cutting force.  Similarly, the second, third and fourth models 
are used to build models for the variance, skewness and 
curtosis coefficients of  the cutting forces.  A bi-objective 
optimization procedure is developed and solved to generate a 
set of optimal process settings.  An approximation scheme  
resulted in 6 possible objective combinations.  The Pareto set of 
solutions (or part of)  are generated for the six possible 
combinations.  The merit of this study lies in the fact that 
response surfaces are built from limited data, often 
experienced in reality. 

  
 

Index Terms—Limited Data, RSM, Multi-objective 
optimization, Approximations. 
 

Nomenclature 
DOE    Design of experiments 
OA     Orthogonal Array 
RSM    Response Surface Method 
ANOVA   Analysis of variance 
A, B, C   Three forms of RSMs 
UL8     8 experiments OA, 2-levels 
UL27    3-Levels, 27 experiments OA 

io , ββ    RSM model parameters  

1X      Depth of Cut 
2X      Rev/min 
3X      Feed Rate 
4X      Tool Diameter 

.Stdmean F,F Mean Force & (Standard Deviation)  

3α      Skewness of meanF  
4α      Curtosis of meanF  

41 f...,f    First, Second.. objective function 
τ       Target value of meanF  

I. INTRODUCTION 
 Multi-disciplinary optimization (MDO) algorithms 

especially the dimensionality and complexity issues are 
addressed [16].   Variable fidelity Response Surface   
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Algorithm (RSA) are used to study the convergence using the 
Trust region algorithm.  A comparative study is given for 
different sampling strategies based on Design of Experiments 
(DOE).  Insufficient space fitting concepts in relation to 
response surface approximations are addressed.   

 The problem of capturing Pareto optimal points on 
non-convex frontiers with the aid of Aggregate Objective 
Functions (AOF) are studied [12].  Admissibility, necessary 
and sufficient conditions  are discussed.  An efficient 
method-using surrogate modeling to explore the design space 
is presented [19].  The method captures the Pareto frontier 
during multi-objective optimization.  Issues related to 
convexity, cancavity and function discontinuity are 
discussed. 

 An algorithm based on the Clonal selection principle is 
presented [1].  Results are compared with other evolutionary 
algorithms.  Evolutionary algorithms are claimed to be less 
sensitive to the shape or continuity of the Pareto Front.  
Quality metrics such as  the two set coverage; spacing and 
generational distances are proposed to compare solutions.  
Physical Programming (PP) can foster the design intent and 
objectives into mathematical models [10].  The Weighted 
Sum (WS); The Compromise Programming (CP); and the 
Physical Programming (PP) are examined.  The Normal 
Boundary method is claimed to generate Pareto Frontier in 
non-convex regions [3].  A similar approach was followed 
based on robust design optimization method [11].   

 The Pareto set of bi-criteria problems is a curve 
approximated by a hyper ellipse [9].  The approximation is 
achieved by means of a hyper ellipse to a minimum number 
of points and the hyper ellipse in explicit analytical 
description.  The ε -constraint method, one criterion is 
optimized while the others are the additional constraints.  The 
Tchebycheff scalarization finds the Pareto solution by 
minimizing a distance between the utopia and Pareto set  (the 
utopia point is a point in the objective space obtained by 
optimizing each criterion independently).  This method is 
capable of fitting only a sector of the Pareto set.  The 2 
methods: ε -constraint and weighted Tchebycheff can be 
used to auxiliary generate Pareto solutions.  The approach is 
circumvented when the Pareto set is adequately small [2].  An 
adaptive approximate model (AAM) based on polynomial 
Genetic Programming with partial interpolation strategy is 
developed [20].  The AAM is sequentially modified in such a 
way that the quality of fitting can be gradually enhanced.  
Various transformation methods are evaluated [18].  The WS 
approach for MOO is employed to study how well different 
methods in depicting the Pareto optimal sets.  Convex 
combination of functions is desirable when generating the 
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Pareto set.  Advantages of Normalization technique are also 
demonstrated.  Some improvements to the implicit limit state 
function method are proposed [15].  The response surface is 
fitted by a weighted regression technique that allows fitting 
points weighted to their distance from true surface and 
estimated design point.   

II.  DEVELOPMENT 

Interest in engineering mathematical based models is 
increasing.  Models, once developed go through a series of 
refinements to describe properly the problem under study.  
Experimentation can alleviate the problem as it allows 
understanding of different phenomena involved.  In this 
study, limited experimental data are available.  The data 
represents a certain domain of interest.  The modeler would 
start by developing a low order response surface model.  
These models are developed for the mean, standard 
deviation, skewness and curtosis coefficients.  Analysis of 
variance is carried on the four models to verify sufficiency of 
fit.  A multi-objective optimization formulation for the four 
objectives using a unique approximation is proposed and 
solved via a nonlinear constrained optimization routine 
developed within Matlab Environment.  The four objective 
functions result in six bi-objective optimization problems.  
The designer  will have several solutions corresponding to 
the two objectives employed one-at-a-time.  Accordingly, the 
sequence of objectives has no effect on the resulting solution.  
Further, the Multi-objective problem is always a bi-objective 
optimization problem.  This removes the issue of high  
number of objectives often experienced in reality.  A physical 
process with four variables and eight experiments is studied.  
Both skewness and curtosis are calculated from equation 1.   

Skewness Coefficient=
3

3
3

]X[E

σ

μ−
=α

 

Curtosis Coefficient= 
4

4
4

]X[E

σ

μ−
=α

   1 

Where X = Fmean, μ =mean of eight force 
measurements, σ =the standard deviation of the mean force.  
The Fmean, Fstd, 3α and 4α are used to develop the models 
in terms of the four variables and their interactions.  Three 
confidence levels are used to assess adequacy of models at 
99%, 95% and 90% confidence levels respectively.  Table 1 
gives the 8 experiments and corresponding mean and force 
standard deviations.  Table 2 gives the significant variables 
using  Fmean and Fstd at different confidence levels.  At 90% 

confidence, 4132321 X.X,X.X,X,X,X  are significant 
using Fmean as a response.  Similarly, 

3231321 X.X,X.X,X,X,X  are significant at 90% level 
using Fstd as a response.  This procedure is repeated similarly 
at 95% and 99% confidence levels.  The maximum error 
based on Fmean ranges from 13.76% (at 90% confidence) to 
16.33% (at 99% confidence).  Moreover, the maximum error 
based on Fstd ranges from 35.50% (at 90% confidence)  to 

66.67%  (at 95% confidence). 
 

Table 1:  UL8 and Mean, Fstd, Skewness and Curtosis 
Coefficients 

Exp Input Parameters 

 1X  2X  3X   4X  

1 1.5 800 71 8 

2 1.5 800 140 12 

3 1.5 1600 71 8 

4 1.5 1600 140 12 

5 3 800 71 12 

6 3 800 140 8 

7 3 1600 71 12 

8 3 1600 140 8 
 

Output Parameters  

Exp 

F mean F std 3α  4α  

1 44.47 31.60 -0.9895 0.9861 

2 100.78 98.15 +0.5420 0.4419 

3 32.37 20.77 -2.6616 3.6886 

4 64.91 55.09 -0.0388 0.01317 

5 70.56 59.45 -0.00387 0.000607 

6 138.58 108.10 +8.3859 17.0368 

7 67.30 65.09 -0.01796 0.004706 

8 84.55 65.51 +0.02518 0.007383 

 
Table 2:  Significant variables based on different 

confidence levels and UL8 
 

Confidence 
Level 

90% 95% 

Max error based 
on Fmean 

13.76% 16.33% 

Max Error based 
on Fstd 

35.59% 66.7% 

Based on Fmean 

4X.1X,3X.2X
,3X,2X,1X

 3X.2X
,3X,2X,1X

 

Based on Fstd 

3X.2X,3X.1X
,3X,2X,1X

 3X.2X
,3X,2X,1X

 

 
Confidence Level 99% 
Max error based on Fmean 16.33% 
Max Error based on Fstd - 
Based on Fmean 

3X.2X,3X
,2X,1X

 

Based on Fstd - 
 
    Accordingly, models developed based on 90% 

confidence level are the best using the maximum error.  Table 
3 gives the RSM model coefficients for UL8 experimental 
model using 3 models: A, B and C respectively.  Error ranges 
from -4.7% - 15.8% for Fmean and 13.9%-28.5% for Fstd 
respectively. 
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Table 3:  RSM Model Coefficients for UL8   
Model 
Coef. 

Models 0β  1β  2β  3β  

A -6.1551 24.403 -0.024 0.630 
B -10.657 26.227 -0.024 0.669 

Fmean 

C -96.155 26.2279 0.0471 1.48 
A 24.076 6.9533 -0.0443 0.5433 
B -35.325 33.3538 -0.0443 1.1063 

Fstd. 

C -127.59 33.3538 0.0326 1.9809 
 

Model 
Coef. 

Models 4β  5β  6β  Error 

A -0.003 - - 15.80% 
B -0.003 -0.0173 - 14.83% 

Fmean 

C -0.0039 -0.0173 -0.0007 -4.70% 
A 0.0071 - - 28.52% 
B 0.0071 -0.2502 - 18.66% 

Fstd. 

C 0.0071 -0.2502 -0.0007 13.19% 
 

III  Bi-Objective Optimization Formulation 
The optimization problem subject to limits on process 
variables is stated next as: 
Minimize  )meanF(1f τ−=   

Minimize  stdF2f =   

Minimize  33f α=   

Minimize  44f α=   
Subject to:  

124X8;1403X71
;16002X800;0.31X5.1

≤≤≤≤
≤≤≤≤

 

Where:

3X.2X0007.03X.1X0173.02X.1X0039.0
3X48.1+2X0471.0+1X2279.26+155.96=meanF

 

3X.2X0007.03X.1X2502.02X.1X0071.0
+3X9809.1+2X0326.0+1X3538.33+59.127=StdF

323121

3213
XX0001.0XX0207.0XX0026.0

X078.0X0094.0X8031.27977.14
−+

−+++−=α
 

323121

3214
XX0002.0XX1027.0XX0080.0

X0346.0X0328.0X8015.05231.21
−+

−+++−=α
 

Approximation: 
A procedure is developed to approximate the sequence of 

problem approximations.  The 4 objectives require 2
4 C  =6 

approximations as given in Table 4.   
 

Table 4:  Six possible multi-objective sub-problems. 
 

Trial 

)F(
f

mean

1
τ−

=
 

stdF2f =  33f α=  44f α=  

1   - - 
2  -  - 
3   -  
4 -   - 
5 -  -  
6 - -   
 

 
 
Figures 1 and 2 give the experimental vs. RSM predicted 

Fmean and Fstd using UL8.  UL8 is an eight trial array and 
models the linear behavior of the experimental forces.  
Nonlinearities, once modeled should use three, four, five 
levels respectively. 

1 2 3 4 5 6 7 8
20

40

60

80

100

120

140

Experiment Number

E
x
pe
rim
en
ta
l &
 P
re
di
ct
ed
 F
m
ea
n

Experimental data
Predicted data

 
Fig. 1:  Exp. versus RSM - Predicted 

Fmean using UL8 Model 
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Fig. 2:  Exp. versus RSM - Predicted 

Fstd. using UL8 Model 
 

Different problems are given as: 
Problem # 1: 
Minimize  )meanF(1f τ−=   

Minimize  stdF2f =   

Subject to: 124X8;1403X71
;16002X800;0.31X5.1

≤≤≤≤
≤≤≤≤

 

and 

3X2X0001.03X1X0207.0+2X1X0026.0
3X078.0+2X0094.0+1X8031.2+7977.14=3α

 

3X2X0002.03X1X1027.0+2X1X0080.0
3X0346.0+2X0328.0+1X8015.0+5231.21=4α

 

Problem # 2, 3, 4, 5 and 6 can be similarly stated. 
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Figure 3 gives the 6-possible approximations for the 
bi-objective optimization problem.   
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Fig. 3:  Multi-Objective Optimization using UL8. 
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The solutions of the multi-objective problems are shown in 

Appendix I.  Problem 1 is a bi-objective optimization in the 
f1-f2 domain.  X* = (1.5, 1600, 71 8) and f1*=32.9044 and 
f2*=26.1183.  In problem 2, the f1-f3 domain, X*=(1.5, 
1600, 71,8) and X*=(1.5 1600, 140, 8).  The point X*=(1.5, 
1600, 71, 8) repeats twice regardless of the bi-objective 
problem solved. A look at the optima generated by the six 
sub-problems, the point X*=(1.5,1600,71,8) is a common 
solution to all the domains.  Hence, this point is certainly a 
point on the Pareto Frontier.  The two points  (1.5, 1600, 71, 
8) and (1.5, 1600, 140, 8) require a bit of attention as the UL8 
allows the variation of 4 variables in 2 levels.  This means, 16 
experiments are needed instead of 8.  Since we have used 

only 50% of what is required, this means that 43 X&X  
could have been confounded.  The consequence could imply 
that the two points may in fact be one point.  Similarly, the 
point (1.5, 800, 71, 8) in the f1-f4 domain appears in the f2-f4 
domain.  The same can be stated for the point (1.5, 1000, 
71,8) in the f1-f4 and f2-f4 domains respectively.  The 
methodology developed can be depicted graphically in figure 
4.  Similarly, two UL27 (different domains), UL25 and UL32 
are employed to develop the four equations (not shown for 
brevity).  The resulting optima are compared and discussed 
versus the type and nature of array.  These optima are 
compared via several quality indices such as: cost of solution, 
stability of solution, uniformity of solution, etc.  Appendix II 
gives measurements and ANOVA for UL8.  Appendix III 
gives the experimental vs.  Predicted forces using UL27. 
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Fig. 4:  Flow Chart of Proposed Methodology 
 

IV  Conclusion 
A procedure is given to develop mathematical models from 
limited data points.  RSM is employed to optimize a set of 
bi-objective problems.  The 2-objective functions represent 
the majority of optimal solutions in their planes according to 
the approximation given 
 
 

 
Appendix I:  Multi-objective Solutions 

Objectives *X  ]*jf,*if[=*f  
# 

2f&1f  (1.5, 1600, 71, 8)  [32.9044, 26.1183] 1 

(1.5, 1600, 71, 8)  [32.9044, -5.4105] 
(1.5, 1600, 140, 8) [55.9538, -8.9261] 3f&1f  

(1.5, 1600, 71, 8) [32.9044, -5.4105] 

2 

(1.5, 1600, 140, 8) [55.9538, -5.4298] 
(1.5, 800, 71, 8) [39.6641, -1.6467] 
(1.5, 1000, 71, 8)  [37.9744, -0.3267] 

4f&1f  

(1.5, 1600, 71, 8) [32.9044, 3.6333] 

3 

(1.5, 1600, 140, 8) [52.6247, -8.9261] 3f&2f  (1.5, 1600, 71, 8) [26.1183, -5.4105] 
4 

(1.5, 1600, 140, 8) [59.6247, -5.4298] 
(1.5, 800, 71, 8) [31.2783, -1.6467] 
(1.5, 1000, 71, 8) [29.9883, -0.3267] 

4f&2f  

(1.5, 1600, 71, 8)  [26.1183, 3.6333] 

5 

(1.5, 1600, 140, 8) [-8.9261, -5.4298] 
(1.5, 965, 103.8, 8) [-3.9837, -0.7004] 
(1.5, 972, 98.16, 8) [-4.0844, -0.6675] 
(1.5, 976, 89.04, 8)  [-4.2074, -0.6017] 
(1.5, 1600, 71, 8) [-4.4505, -0.3267] 

4f&3f  

(1.5, 1600, 140, 8) [-8.9261, -5.4298] 

6 

 
Appendix II:  UL8OA & experimentation using either 
Fmean and Fstd respectively. 

 
# 1X  2X

 
2X.1X  3X

 
3X.1X  

4X  3

2
X

.X

 
4

1
X

.X
 

1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 1 2 
4 1 2 2 2 2 2 1 
5 2 1 2 1 2 2 2 
6 2 1 2 2 1 1 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

 
# meanF  StdF  

1 44.47 31.60 
2 100.78 98.15 
3 32.37 20.77 
4 64.91 55.09 
5 70.56 59.45 
6 138.58 108.1 
7 67.30 65.09 
8 84.55 65.51 
T 603.52 503.76 

ANOVA Results based on Fmean & Fstd using UL8. 
 

Source SS DOF Variance Fcal 

1X  1754 1 1754 281.2 

2X  1384 1 1384 222.03 

3X  3789 1 3789 607.57 

4X.1X  91 1 91 14.609 

3X.2X  694 1 694 111.34 

Error 12.475 2 6.2375  
SST 7726.88 7  

53.8%90,2,1F = , 5.18%95,2,1F = , 5.93%99,2,1F =  
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Source SS DOF Variance Fcal 

1X  1070 1 1070 31.52 

2X  1031 1 1031 30.37 

3X  2810 1 2810 82.75 

)3X1X(4X  335.4 1 335.4 9.877 

4X.1X  32 1 32 ~1 

3X2X  809.22 1 809.22 23.83 

Error  1   
SST 6124.7 7  

53.8%90,2,1F = , 5.18%95,2,1F = , 5.93%99,2,1F =  
 
Appendix III:  Exp vs. Predicted Fmean and Fstd using 
UL27OA. 
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